Three Camera Epipolar Geometry Image Correspondence and Depth Recovery

Gene Wang 4/26/2011

Problem Statement

- Stereopsis and epipolar geometry can be used to determine 3D point information from 2D images.
- Does adding a third camera give the system any more information for solving the correspondence problem and depth recovery?

Review of Stereopsis

Trinocular Geometry

- Given three cameras with centers $\mathrm{C}_{1}, \mathrm{C}_{2}, \mathrm{C}_{3}$.
- $\mathrm{X}, \mathrm{C}_{1}, \mathrm{C}_{2}, \mathrm{C}_{3}$ forms a triangular prism.
- The plane $C_{1} C_{2} X$ and $C_{1} C_{3} X$ intersects image 1 in a line.
- The two lines intersect at the projected point of X on image 1. (Likewise for images 2 and 3).

Correspondence Problem

- Given projected point x_{1} on image 1 , find the corresponding points on the other images.

Fundamental Matrix

- Given:
- Camera calibration matrices K_{1}, K_{2}
- Translational matrix $S(t)$
- Rotational matrix R
- Point x_{1} in image 1
- Then: $\mathrm{x}^{\top}{ }^{\top} \mathrm{Fe}=0$
- Where $F=\left(K_{1}{ }^{-1}\right)^{\top} S(t) R^{-1} K_{2}{ }^{-1}$
- Can be used to find a linear set of candidates for corresponding points in image 2.

Correspondence Problem

- By repeating the fundamental matrix calculation for camera 3, the correspondence problem can be done with 2 linear searches.
- However, this is simply repeating the two camera solution twice.

Using All Three Cameras

- With the same method, the projected point X_{1} on image 1 will determine one epipolar line on each of the other images.

Camera base plane (analogous to the base line in stereopsis)

$$
\mathrm{C}_{1}
$$

C_{3}

- Using the epipolar lines in images 2 and 3, it's only possible to "undo" the projections and recover the ray $\mathrm{C}_{1} \mathrm{X}$
- Any possible new information must come from between cameras C_{2} and C_{3}.
- Image 2 and 3 both contain 1 epipolar line.
- Each line represents a half plane in the world space.
- Projected back on to the other camera results in a region.

- So the information between cameras 2 and 3 is actually a 2D search range.
- It does not help in any way to improve the search range from the original epipolar line derived from image 1.

Depth Recovery

- Depth recovery is predicated on having completed image correspondence.
- Given two corresponding points and the camera calibration matrices, the world coordinates for any point X can be easily calculated.
- Using camera angles and triangulation.

Practical Applications

- In real world situations, estimations and probability are involved.
- Having a trinocular system can reduce error and increase robustness.
- Once a point is located in 3D space, its projection on any calibrated camera can be calculated.
- Error reduction can be done by calculating projection for the third camera using the other two for each camera and find the best match.

Additional Goals

- Testing and evaluating trade-off between extra correspondence calculations and error reduction.

Thank you

