A Surface-growing Approach for 3D Object Surface Representation

Xiaojiang Ling CSE 668, Animate Vision Principles for 3D Image Sequences CSE Department, SUNY Buffalo xiaojian@buffalo.edu

Overview

- Problem Statement
- Previous studies and solutions
- Related Investigation
- Algorithm Description
- Simulated Experimental Results
- Advantages/Disadvantages
- References

What problem are we solving?

Generate a complete surface model of a 3D object from point cloud data using a surface-growing method

Photograph

point cloud data

fitted surface

http://www.farfieldtechnology.com/casestudies/eros/

Different methods for 3D surface model

- Point cloud data
- Noise filtering, Smoothing, merging, etc
- Curve-net-based method polygon-based method
- Several smooth regions divided by Segmentation
- Modify fitting surface
- 3D Surface model

Segmentation

Partitioning a point cloud into meaningful regions and extracting important features

http://www.magic.ubc.ca/artisynth/pmwiki.php?n=OPAL.MarkoMarjanovic

Existing segmentation methods

- Edge-detection method
- Region-growing method

Edge-detection Method

- Calculating curvature of scanned lines including most edge points
- Form closed boundaries of components in the point data

Region-growing Method

- Suitable selection of seed points required
- Determining a suitable threshold value for region membership criterion
- Absorbing the neighboring pixels of seed points which meet this criterion and growing the region until including all the eligible pixels
- Achieving regions with different criterions

Seed points

- Based on user criterion(pixel intensity, gray level range, pixels evenly spaced on grid, color, etc.)
- Homogeneity/ Similarity threshold value

Suitable criteria can be chosen according to different situations! Even multiple criteria can be proposed at the same time!

Region properties

(a)
$$\bigcup_{i=1}^{n} R_{i} = R$$
.
(b) R_{i} is a connected region, i = 1, 2, ..., n
(c) $R_{i} \bigcap R_{j} = \emptyset$ for all $i = 1, 2, ..., n$.
(d) $P(R_{i}) = TRUE$ for $i = 1, 2, ..., n$.
(e) $P(R_{i} \bigcup R_{j}) = FALSE$ for any adjacent region R_{i} and R_{j}
Every pixel must be in a region! No points missed!

Shortcomings

- Time consuming and power consuming
- Noise or variety of intensity may result in holes or over-segmentation
- Discontinuities and outliers may result in under-segmentation(bridges across the discontinuities)

Surface-growing segmentation method

Similarly to the region-growing segmentation method, let's see how the surface-growing method works :

Seed points	seed regions
Region grows by absorbing points which satisfy a suitable threshold value	Surface grows by absorbing regions avoiding straddling discontinuous
Expanded until no eligible points detected	Expanded until no eligible regions available

Algorithm Simulation

http://www.newdimchina.com/expertise/reverse_engineering.html

Problems to be solved

Color shading

Transparent body

Tremendous computing

Minimum Goal

- Acquiring point cloud data from 2D images
 Avoiding the under-segmentation and achieve a model more closer to the real model using a small point cloud data
- Maintaining the performances of existing region-growing segmentation

Further research(if time permits)

- Implying this method into large point cloud data, finally the real 3D model
- Trying to reduce the computational complexity in the data processing procedure

References

- James V.Miller, Charles V.Stewart. "Prediction Intervals for Surface Growing Range Segmentation." Univ.RPI, NY, 2001.
- H.Woo, E.Kang, Semyung Wang, Kwan H.Lee. "A new segmentation method for point cloud data." International Journal of Machine Tools & Manufacture, 42(2002), 167-178.
- Shyi-Chyi Cheng, Chen-Tsung Kuo, Wei-Ming Lai. "A region-growing approach to 3D model segmentation using relaxation labeling." 16th IPPR Conference on Computer Vision, Graphics and Image Processing(CVGIP 2003)
- Jean Daniel Boissonnat. "Geometric structures for 3D shape representation." ACM Transactions on Graphics, Vol.3, No.4, 1984, P266-286.
- Retrieved from

"<u>http://en.wikipedia.org/wiki/Segmentation (image processing)</u>"" <u>http://en.wikipedia.org/wiki/Region growing</u>"

The End

Thank you!