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Abstract — In this paper, the implementation of a novel
surveillance system that incorporates muitiple active-
vision sensors controlled by a real-time dispatching
algorithm is presented. The proposed system improves
reliability and accuracy of target surveillance — tracking
systems used for visual-servoing and other similar
applications.

Experiments using a dispatched system have shown
that the use of dymamic sensors can improve the
performance of a surveillance system, primarily, due 1o the
following  factors: (i) ~decrease in the uncertainiy
associated with the object’s estimated pose, (ii) increase in
robustness of the system due to its ability to cope with a
wider range of a priori unkmown object trajectories, and
(iti) increase in reliability through sensory fault tolerance.

Keywords: Active vision, surveillance, dispatching, sensor

Fusion.

1 Introduction

Many autonomous tasks require sensory data to be
collected in real time. The coordination and control of
multiple mobile sensors provide an opportunity to
significantly improve the quality and robusmess of the
acquired data as compared to information collected by a
single-sensor and/or static systems. As sensor fusion may
be used to combine information from multiple, coordinated
sensors into a single representation, reducing the
uncertainty of the measured data [3], sensing-system
reconfiguration via effective dispatching can be used to
increase sensor performance [5].

The principles of dispatching used for the operation of
service vehicles (e.g., taxicabs and ambulances) can be
similarly used in effective on-line sensing-system
reconfiguration {7]. On-line dispatching requires selecting
an optimal subset of dynamic sensors to be used in a data
fusion process and manoeuvring them in response to the
motion of the object. The goal is to provide information of
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increased quality for the task at hand while ensuring
adequate response to future object manoeuvres.

The system proposed in [9] handles moving objects by
discretizing time and computing new viewing
configurations for each time interval while attempting to
minimize changes in sensor position from one time to the
next. Matsuyama et al. [4] determine 2-D camera layouts
using an off-line optimization. Deviations from the
planned approach are handled on-line using heuristics to
adjust camera actions and temporal camera switching
points. Such systems, however, rely heavily on a priori
knowledge and, therefore, are not robust to variations in
target trajectory. The dispatching algorithm presented
herein utilizes, if available, @ priori objective knowledge,
however, can quickly adapt to unexpected trajectory
variations. The specific focus of this paper is the
implementation and evaluation of an active-vision target-
tracking system that utilizes an online-dispatching
algorithm developed in our laboratory.

2 Sensor Dispatching

In the context of object surveillance, sensor dispatching
attempts to maximize the effectiveness of a sensing-system
used to provide estimates of object parameters at
predetermined times or -positions ‘along the object
trajectory. Herein, it is assumed that the times at which the
information is desired are fixed. These predetermined
times are referred to as demand instants, 7. The position of
the object at a particular demand instant is a demand point,
D;. Without prior knowledge of the object trajeciory, the
demand point corresponding to each demand instant may be
predicted from observations of the object motion. In
general, the estimation of the demand point location
changes (and its corresponding uncertainty diminishes) as
the prediction accuracy improves over time; however, the
demand instant remains constant,

If the sensing-system comprises multiple redundant
sensors, a subset of these may be sufficient to satisfy the
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sensing requirements of a demand. In other words, a sensor
fusion process does not need to combine the information
from all of the sensors in the system. Instead, a subset of
sensors (k < n, where k is the subset size and » is the total
number of sensors) may be sclected to survey the object at
a particular demand instant. This group of sensors is
referred to herein as a fusion subset.

In this context, the general sensor dispatching problem
may be stated as: Given a set of sensors and a set of time-
varying demand points (based on the predicted motion of a
manoeuvring object at the corresponding set of demand
instants), determine the subset of sensors {and their
corresponding poses) that will sense the object at each
demand instant while ensuring that the remaining sensors
are adequately distributed throughout the workspace for
possible future use.

There are a number of different methods by which this
sensor dispatching problem may be approached. These
include optimization techniques, machine learning and
heuristic approaches. One such heuristic sensor
dispatching approach was detailed in [5], a brief review of
which follows.

To facilitate dispatching in real-time, a finite segment of
the object trajectory (consisting of m demand instants) may
be defined and the corresponding demand points estimated.
This set of demands constitutes a rolling horizon that
estimates the object motion a limited interval into the
future. The period between two demand instants is the
service interval—the amount of time available for planning
and positioning the sensors before data acquisition must
occur.  The rolling horizon serves as a basis for
dispatching, allowing the dispatching methodology to
balance the immediate need of servicing the first demand
with the anticipated needs of future demands.

Dispatching is accomplished using two complementary
strategies. A coordination strategy is used to specify which
sensors will be used at each demand instant. The
dispatcher must evaluate the fitness of each sensor for the
immediate sensing demand. The pose of each sensor is
specified through a positioning strategy. In this approach,
the demands are considered sequentially, limited to the
rolling horizon, An assignment search method considers
only the first demand instant; the remaining demand
instants on the rolling horizon are considered by a
preassignment search method,

2.1 Assignment and Positioning

Assignment considers the first demand point on the rolling
horizon. The coordination strategy is implemented by
performing a search that selects a subset of sensors (of size
k) to service the demand instant from the set of all sensors
(total of »). In addition, the search method specifies a
desired pose for each assigned sensor at the time of data
acquisition, thereby implementing the positioning strategy.
Assignment is triggered by an object entering the
workspace or the completion of a previous service interval.
Once assigned, the subset of sensors cannot be altered until

the demand is serviced (i.e., data is acquired), completing
the service interval. This contrasts with the desired poses
of the assigned sensors which may be altered in real-time.
The uncertainty of the predicted demand point locations at
the time of assignment necessitates reevaluation over the
service interval to ensure that the sensors are in the best
possible positions. Pose adjustrnent is handled by a
replanning method, Section 2.3.

The general approach to the assignment and positioning
of sensors for a demand point can be summarized as
follows:

1. Predict the object’s pose, D;, with respect to the
world coordinate frame, at the demand instant, #.
2. Foreverysensor, S, i=1...n:
(a} Determine its best achievable pose with respect
to Dy, and
(b) Assess the corresponding (single sensor)
performance metric, visibility of Dj, v,, from
the best achievable pose.
3. Rank all §; according to the achigvable visibility, v,
from highest to lowest.
4. Assign the top & ranked sensors to #. (The desired
pose of each assigned sensor is the best achievable
pose determined in Step 2a).

2.2 Preassignment and Prepositioning

The goal of preassignment and prepositioning is to position
sensors in anticipation of future sensing requirements.
These sensors that have not been assigned to the most
immediate demand instant {the first demand on the rolling
horizon) may be preassigned to subsequent demands.

The approach wused for preassignment and
prepositioning is very similar to that outlined in Section 2.1
for assignment and positioning; however, there are some
differences. First, while the suitability of each sensor is
considered for each demand, only those that have not been
previously (pre)assigned may be preassigned to the demand
under consideration. Second, the preassignment algorithm
loops to consider additional demand instants until either all
sensors have been preassigned or the end of the rolling
horizon has been reached. This approach aims to service
each demand with the sensors that can provide the highest
quality data. '

2.3 Initial System Configuration and
Replanning

The quality of information provided through sensor
dispatching is dependant on the initial pose of each sensor
within the workspace (i.e., the pose of each sensor prior to
object entry). The effect of the initial sensor placement
becomes more pronounced as the speed of the sensors
decreases relative to the speed of the object. In general, as
sensor speed decreases, adequate performance requires the
sensors to become more widely distributed in the
workspace. If the object trajectory is known 4 priori, the
sensing system can be reconfigured in an optirnal manner.
While beyond the scope of this paper, one approach for
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determining  initial
outlined in [6].

As each sensor is assigned to a particular demand point,
the desired pose of the sensor with respect to the demand
point is also specified. This desired pose is used as input to
the sensor motion controller. As the service interval
elapses, the estimates of the demand point locations are
continually updated as additional observations become
available. If the demand point at the time of assignment
lies outside of a specified confidence interval for the newly
predicted demand point position then the demand point is
replaced with the new prediction. Upon replacement, the
desired pose of any sensor assigned to the demand is
adjusted to reflect the change in demand position.

sensing-system configurations is

3 Implementation

An experimental setup was devised to evaluate the
performance of the proposed dispatching algorithm.
Although the algorithm can be used for a wide range of
surveillance applications, the specific system detailed
herein focuses on object tracking and localization: The
system uses four mobile cameras to determine the position
and orientation of a single target represented by a circular
marker, maneuvering through a pre-defined workspace on a
planar trajectory, Figure 1. A stationary overhead camera is
utilized to obtain estimates of the gross target motion.
These estimates are used to plan the motion of the four
mobile cameras. The planar-motion cameras have one or
two degrees of freedom (dof) - all have one-dof rotational
capability (pan), while two of the cameras can also translate
linearly (see Table 1 for a component list).

b

Figure 1. Physical system layout.

Table 1. Hardware specifications.
Characteristic ~ . -

Range: 300 mm/500 m
Positional Accuracy: 18 uym
Max velocity: 1.5 m/sec
Positional Accuracy: 12 arc sec
Max velocity: 15 revisec
Resolution: 640x480 pixels

Linear Stages

Rotary Stages

Horizontal CMOS
Cameras
Overhead
Camera

CCD | Resolution: 640x480 pixels

Overall, the surveillance system consists of four main
modules, each with a distinct function: Prediction,
dispatching, motion, and vision modules, which work in
tandem to estimate the target’s future location, reconfigure
the active vision sensors, and optimally track the target.

Prediction Module: The primary purpose of this module is
to determine a rough estimate of the farget’s current
position as well as a prediction of its future positions. The
position of the target {a circular marker) is monitored
continuously by the overhead (static) camera and the data
fed to a recursive Kalman-Filter (KF) [2]. The KF is
initialized with one of three¢ motion models, 1* order
Gauss-Markov, constant jerk, or constant velocity
depending on the expected target-motion trajectory. The
acceleration and velocity of the target are assumed to be
decoupled in the x and y directions and the acceleration in
both directions is assumed te be subjected to Gaussian
white noise. Data from the prediction module is used as
input to the dispatching module.

Dispatching Module: This module bas two primary
functions: (i) selection of a subset of all cameras and their
positicning in accordance to the current and future
predicted target positions as received by the prediction
module and (ii) directing the vision module to perform
multi-camera imaging of the target location. The cutrent
camera locations (as received from the motien module) are
also forwarded to the vision module to facilitate sensor
fusion. The module uses the dispatching algorithm
discussed in Section 2 to assess optimal sensor selection
and positioning in accordance with the target’s predicted
location. Sensor positions are updated at the frequency of
the prediction module, about 15 Hz.

Motion Module: This module controls the motions of the
cameras. The input to this module are the desired camera
locations from the dispatching module, while the outputs
are the motion commands (poses and velocity) to the linear-
and rotary-stage controllers on which the cameras are
mounted, This module also informs the dispatching module
about the cameras’ current locations and velocities. (In
addition, this module independently controls motion of the
target trajectory and records its actual pose during imaging
for later assessment of the system performance.)

Vision Meodule: This module receives commands and
information from the dispatching module to image the
target and, subsequently, determine the target’s pose in
world coordinates. Each camera captures and processes
images (of the circular marker) independently, The pose
(position and orientation) of the marker is estimated using
an analytical solution developed earlier in our laboratory
[8]. Through the knowledge of the pre-calibrated cameras’
positions and bearings, as provided by the dispatching
module, all estimates are determined in world coordinates.
The data from cameras is then fused to decrease the
uncertainty in the final estimate of target’s pose.

The specific fusion algorithm was chosen based on
three criteria: The algorithm should require a minimum
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amount of @ priori knowledge about the target’s trajectory
allowing system rcbustness to unexpected trajectory
variations; data fusion must be carried out optimally, where
uncertainties in all cameras are estimated and considered
during the fusion process; and the fusion process should
allow some degree of fault tolerance in the case of
malfunction, where the invalid data must be identified and
discarded.

The utilized data-fusion algorithm, developed by
Brooks [1], uses range trees recursively to find an optimal
region, where the true target position/orientation is located.
Through off-line sensor modelling, (see Appendix}, the
uncertainty range of each camera is estimated and,
subsequently, used to estimate a probability range, R, for a
specific confidence level. Given multiple ranges (one per
camera) the maximum intersection range, R,, (if all cameras
are functioning properly) is chosen as the optimal estimated

region, whose mid-point is taken as the target’s
position/orientation:
R, =R NR,N..NR,. (1)

In order to illustrate the data-fusion algorithm, let us
consider the following example: Four cameras individuaily
estimate target’s x position. Camera #1 returns an x value of
1.5 m, where through off-line sensor modeling it is known
that, with 99% confidence, the true target position is within
+0.2 m of the reading and, therefore, the range is defined to
be 1.3 to 1.7 m. Individual ranges are obtained similarly for
all camera readings, Figure 2.

Figure 2. The intersecticzpn )of four probability ranges.

The intersection of the ranges marked, by the grey
region, Figure 2 (1.4<x<1.5), is taken as the range of true
target’s position, and the fused estimate is the midpoint of
the region (x=1.45m). This example illustrates 1-D
estimation with no fault tolerance allowed. However the
data-fusion algorithm was employed for 3D target
estimation and single fault tolerance.

4 An Experiment: Dispatching versus
Non-Dispatching Surveillance

Numerous experiments were conducted in our laboratory,
using the active vision set-up presented in Section 3, to
illustrate the implementation of the proposed dispatching
algorithm. The experiments verified that the performance of
a surveillance system can be tangibly improved with the use
of active sensors controlled by a dispatching algorithm. As
noted in Section 2, the improvement is primarily due to (i)
increased robustness of the system (i.e., its ability to cope

with a priori unknown target trajectories), (ii) decreased
uncertainty associated with estimating the target’s pose, and
(iii) increased reliability through sensory fault tolerance.

In the specific example discussed herein, the
performances of two systems are compared; one system is
equipped with four active-vision sensors {CMOS cameras)
while the other system comprises four static sensors. Both
systems track a moving target with a prior/ unknown
trajectory. The dispatched system uses best three out of four
cameras for each imaging instants, while the non-
dispatched system images the target using all four cameras.

4.1 Trajectory Selection

The cameras for both the active and static systems were
placed into optimal initial poses, with the expectation that
the target would enter from one comer of the workspace
and fellow a straight-line trajectory to the opposite diagonal
comner, Figure 3. The actual trajectory followed by the
target, however, was intentionally chosen to be different
than this expected frajectory. The prime objective of these
experiments was to highlight the ability of the dispatching
algorithm to deal with variances in target trajectories
through replanning of sensor locations, while the static
sensors are completely restricted to their initial
configurations. The size of the tracking zone was limited by
the viewing area of the non-dispatched system.

Expected
» Tmajectory
#
4
Premmbece ,-{ ---------- -
! Actnal
. . ’
o Tracking Trajectory ¢
Zone

(@ {b)

Figure 3. Optimal initial configuration for (a) the non-
dispatched (b) the dispatched system and expected and
actual target trajectories.

The speeds of the active semsors were chosen as
dx/ds=30 mm/s and da/dr=1 rad/sec, while the speed of the
target was set to 15 mm/sec. Through simulation it was
determined that for active sensors, exceeding the
aforementioned speeds does not significantly improve
system performance.

4.2 Performance Evaluation

System evaluation was catried out using a visibility metric
as previously proposed in [6], see Appendix. Target
visibility by a sensor is calculated using the expected
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variance in th¢ measurements that is a function of the
sensor’s Euclidean distance to the target and its bearing
(ie., the angle the camera’s local axis makes with the
normal of the target’s surface). The system performance
was also evaluated by determining the errors in the real-
time estimation of the target’s pose. Absclute error in
position estimation, Epgon, is the Euclidean distance
between the true target position, (x,31,z), and the system’s
estimate of the target’s position, (x,Ve.z.}:

Eposirin.n = \/(xe - xl)z + (yg _yl)2 + (Ze - zr)2 . (2)

surface normal
is the angle between the true surface

Similarly, the absolute error in

estimation, £

orientation *

normal, n,, and the estimated surface normal, n.:

E =cos”'(n,m,)- 3

orienfation

4.3 Results

The pose of the moving target was estimated at ten distinct
locations (demand instants), The visibilities of the demand
instants for both dynamic and static systems are given in
Figure 4. As can be noted, the visibility of the target by the

dispatched system is tangibly higher than that by the non- -

dispatched system. As may also be noted, visibility of the
static system is fairly constant over the entire target
trajectory. This is due to two main factors: the constant
camera bearings and the monotonic motion of the target.
The corresponding absolute position errors associated are
shown in Figure 5 for two repeated experiments under

identical conditions. The absoMute errors in surface-normal™ -

estimations are given in Figure 6. Despite the presence of
random noise in both systems, the data confirms the
tangible improvement of system performance through the
use of a dispatching algorithm.

IS 16 - v v v ¥ -y
=5 , == Dispaichad ;
B 44 | == Non-Dispaizhed |
2
> -t
120 2 4 ] 8 10
Demand Instants

Figure 4. Observed visibility.

5 Conclusions

The implementation of a novel multi-sensor surveillance
system has been presented in this paper for target
localization in on-line applications. Dispatching is utilized
to optimally select and position groups of sensors to track a
meving farget. Extensive experiments, some of which are
presented herein, have shown that tangible improvements in
accuracy and reliability can be obtained through the use of
multi-active vision sensors controlled by the proposed
dispatching algorithm.

-

% 2 4 [] 8 10
Demand Instants

Figure 5. Absolute errors in target position estimates.

25 -

0.
50 2

4 ]
Demand Instants

Figure 6. Absolute errors in target’s surface normal
estimates. '

Appendix

Al Sensor Modeling

Sensor modeling is an important part of optimal
dispatching: The objective is to estimate a sensor’s
performance given a set of environmental conditions. The
performance of each camera, in this work, is described by a
visibility performance metric:

V=,
]

where, ||R| is the Euclidean norm of the covariance matrix
associated with the parameter measurements. For the
cameras used in our experiments, there are four variance
measurements, three for target’s position (x,y,z) and one for
orientation (n.n,.n;). Through variation analysis it was
determined that only two controlled parameters
significantly . affect the measurement variances: the
Euclidean camera-to-target distance, 4, and the camera’s
bearing, , Figure Al.

(AD
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Figure Al. Camera’s distance, d, and bearing, 4.

A2. Factorial Experiments for Variance Estimation

Two-factorial experiments were performed to determine the
relationship between each measurement variance and the
two controlled parameters, d and . As an example, results
for two variances (estimation along the y-axis and surface
normal) are shown in Figure A2. As can be noted, the
distance and bearing of the camera significantly affect its
performance in target localization. The improvement in
variance is mainly due to the shape of the elliptical
projection of the circular marker (target viewed better at
around 20-40°) and noise in images has lower noise-to-
signal ratios at close distances, (i.e., larger marker images).

In order to evaluate the complete system
" performance, the visibility of the fused estimates of data
from multiple cameras is required. The visibility of k
sensors, whose measurements are combined using sensor
fusion, is defined as:

1
V,=—— (A2)
Ny
where, P is the fused covariance matrix,
41
P= [Z R;’} . (A%)
k
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