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Abstract

We present an efficient method within an active vision framework for recognizing objects which are ambiguous from certain viewpoints.
The system is allowed to reposition the camera to capture additional views and, therefore, to improve the classification result obtained from a
single view. The approach uses an appearance-based object representation, namely the parametric eigenspace, and augments it by probability
distributions. This enables us to cope with possible variations in the input images due to errors in the pre-processing chain or changing
imaging conditions. Furthermore, the use of probability distributions gives us a gauge to perform view planning. Multiple observations lead
to a significant increase in recognition rate. Action planning is shown to be of great use in reducing the number of images necessary to
achieve a certain recognition performance when compared to a random strategy.q 2000 Elsevier Science B.V. All rights reserved.
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1. Introduction

Most computer vision systems found in the literature
perform object recognition on the basis of the information
gathered from a single image. Typically, a set of features is
extracted and matched against object models stored in a
database. Much research in computer vision has gone in
the direction of finding features that are capable of dis-
criminating objects [1]. However, this approach faces
problems once the features available from a single view
are simply not sufficient to determine the identity of the
observed object. Such a case happens, for example, if
there are objects in the database which look very similar
from certain views or share a similar internal representation
(ambiguous objectsor object-data); a difficulty that is
compounded when we have large object databases.

A solution to this problem is to utilize the information
contained in multiple sensor observations.Active recogni-
tion provides the framework for collecting evidence until we
obtain a sufficient level of confidence in one object
hypothesis. The merits of this framework have already
been recognized in various applications, ranging from
land-use classification in remote-sensing [16] to object
recognition [2–4,15,18,19].

Active recognition accumulates evidence collected from
a multitude of sensor observations. The system has to
provide tentative object hypotheses for each single view.1

Combining observations over a sequence of active steps
moves the burden of object recognition slightly away
from the process used to recognize a single view to the
processes responsible for integrating the classification
results of multiple views and for planning the next action.

In active recognition we have a few major modules whose
efficiency is decisive for the overall performance (see also
Fig. 1):

• The object recognition system (classifier) itself.
• The fusion task, combining hypotheses obtained at each

active step.
• The planning and termination procedures.

Each of these modules can be realized in a variety of
different ways. This article establishes a specific coherent
algorithm for the implementation of each of the necessary
steps in active recognition. The system uses a modified
version of Murase and Nayar’s [12] appearance-based
object recognition system to provide object classifications
for a single view and augments it by active recognition
components. Murase and Nayar’s method was chosen
because it does not only result in object classifications but
also gives reasonable pose estimations (a prerequisite for
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active object recognition). It should be emphasized,
however, that the presented work is not limited to the eigen-
space recognition approach. The algorithm can also be
applied to other view-based object recognition techniques
that rely on unary, numerical feature spaces to represent
objects.

2. Related research

Previous work in planning sensing strategies may be
divided into off-line and on-line approaches [21]. Murase
and Nayar, for example, have presented an approach for off-
line illumination planning in object recognition by search-
ing for regions in eigenspace where object-manifolds are
best separated [11]. A conceptually similar but methodically
more sophisticated strategy for on-line active view-planning
will be presented below.

The other area of research is concerned with choosing
on-line a sequence of sensing operations that will prove
most useful in object identification and localization. These
approaches are directly related to our work and some
examples will be described here. The overall aim of all
these methods is similar: given a digital image of an object,
the objective is to actively identify this object and to esti-
mate its pose. In order to fulfill this task the various systems
change the parameters of their sensors and utilize the extra
information contained in multiple observations. The
systems differ in the way they represent objects and actions,
the way they combine the obtained information and the
underlying rational for planning the next observation.

Hutchinson and Kak [8] describe an active object recog-
nition system based on Dempster–Shafer belief accumula-
tion. Based on a set of current hypotheses about object
identity and position, they evaluate candidate sensing
operations with regard to their effectiveness in minimizing
ambiguity. Ambiguity is quantified by a measure inspired
by the entropy measure found in information theory but
extended to Dempster–Shafer theory. The action that mini-
mizes ambiguity is chosen next. Hutchinson and Kak
mainly use range images as their input data and objects
are represented by aspect graphs. They only present

experiments in a blocks-world environment with very
simple objects.

Callari and Ferrie [5] base their active object recognition
system on model-based shape and position reconstructions
from range data. Their system first tries to estimate the
parameters of super-ellipsoid primitives approximating the
range data and subsequently uses the uncertainty in these
parameters to calculate a probability distribution over object
hypotheses. The uncertainty in this distribution is measured
by Shannon entropy and the system chooses those steps that
minimize the expected ambiguity.

Sipe and Casasent’s system [20] is probably the work
most closely related to ours. They describe a system that
uses an eigenspace representation for the objects in
question. Individual views of an object are modeled as
points in eigenspace and objects are represented by linear
interpolation between these points. The resulting data
structure is called afeature space trajectory(FST). View
planning is accomplished by learning for each pair of
objects the most discriminating viewpoint in an off-line
training phase. A viewpoint is highly discriminating if the
two FSTs of the inspected object pair are maximally sepa-
rated. In contrast to our approach Sipe and Casasent do not
model the non-uniform variance of the data points along the
FST. This neglects the variability in the data and leads to
suboptimal recognition performance. Furthermore, they do
not fuse the obtained pose estimates, which can lead to
wrong interpretations as will be demonstrated in Section
8.3.

Gremban and Ikeuchi [7] represent objects by a set of
aspects. Each aspect is a set of views which are indistin-
guishable given the available features. If an input image is
assigned to more than one such aspect, their system uses a
tree search procedure to reposition the sensor and to reduce
the set of possible aspects. As the tree of possible observa-
tions is far too large to be searched exhaustively, a heuristic
search is used instead.

Kovačič et al. [9] cluster similar views in feature space.
The system learns the changes in this clustering for each
possible action and records that action which maximally
separates views originally belonging to the same cluster.
Doing this for all obtained clusters they pre-compile a
completerecognition–pose-identification plan, a tree-like
structure which encodes the best next view relative to the
current one and is traversed during object recognition.

3. Object recognition in parametric eigenspace

Appearance-based approaches to object recognition, and
especially the eigenspace method, have experienced a
renewed interest in the computer vision community due to
their ability to handle combined effects of shape, pose,
reflection properties and illumination [12,13,22]. Further-
more, appearance-based object representations can be
obtained through an automatic learning procedure and do
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Fig. 1. The major modules involved in active object recognition. A query
triggers the first action. The image data is processed and object hypotheses
are established. After the newly obtained hypotheses have been fused with
results from previous steps the most useful next action is planned and
termination criteria are evaluated. The system will perform further active
steps until the classification results have become sufficiently unambiguous.



not require the explicit specification of object models.
Efficient algorithms are available to extend existing eigen-
spaces when new objects are added to the database [6]. As
we will use the eigenspace object recognition method
proposed by Murase and Nayar in the following we shall
give a brief description of their approach (more details can
be found in Ref. [12]).

The eigenspace approach requires an off-line learning
phase during which images of all different views of the
considered objects are used to construct the eigenspace
(See for example, Fig. 6). In subsequent recognition runs
the test images are projected into the learned eigenspace and
assigned the label of the closest model point.

In a preprocessing step it is ensured that the images are of
the same size and that they are normalized with regard to
overall brightness changes due to variations in the ambient
illumination or aperture setting of the imaging system. Each
normalized imageI can be written as a vectorx(I ) by read-
ing pixel brightness values in a raster scan manner, i.e.x �
�x1;…; xN�T with N being the number of pixels in an image.
X U �xo1;w1

; xo1;w2
;…; xono ;wnw

� denotes a set of images with
no being the number of models (objects) andnw being the
number of views used for each model.2 Next, we define the
N × N covariance matrixQ U XXT and determine its
eigenvectorsei of unit length and the corresponding eigen-
valuesl i. See Ref. [12] for a discussion of various efficient
numerical techniques which are useful in the given context.
SinceQ is real and symmetric, it holds thatkei ;ejl � dij ;

with k…;…l denoting the scalar product. We sort the eigen-
vectors in descending order of eigenvalues. The firstk
eigenvectors are then used to represent the image setX to
a sufficient3 degree of accuracy:xoi ;wj

<
Pk

s�1 gses; with

gs � kes; xoi ;wj
l: We call the vectorgoi ;wj

U �g1;…;gk�T the
projection ofxoi ;wj

into the eigenspace. Under small varia-
tions of the parametersw j the imagesxoi ;wj

of objectoi will
usually not be altered drastically. Thus for each objectoi the
projections of consecutive imagesxoi ;wj

are located on piece-
wise smooth manifolds in eigenspace parameterized byw j.

In order to recover the eigenspace coordinatesg(I ) of an
image I during the recognition stage, the corresponding
image vectory(I ) is projected into the eigenspace,g�I � �
�e1;…; ek�Ty�I �: The objectom with minimum distancedm

between its manifold andg(I ) is assumed to be the object in
question: dm � minoi

minwj
ig�I �2 goi ;wj

i: This gives us
both: an object hypothesis and a pose estimation.

4. Probability distributions in eigenspace

Before going on to discuss active fusion in the context of
eigenspace object recognition we extend Murase and
Nayar’s concept of manifolds by introducing probability
densities in eigenspace.4 Let us assume that we have
constructed an eigenspace of all considered objects. We
denote byp�guoi ;wj� the likelihood of ending up at pointg
in the eigenspace when projecting an image of objectoi with
pose parametersw j. The parameters of the likelihood are
estimated from a set of sample images with fixedoi, w j

but slightly modified imaging conditions. In our experi-
ments we use multi- and univariate normal distributions
and slightly change the viewing position and simulate
small segmentation errors to obtain different sample images.
In a more general setting the samples may capture not only
inaccuracies in the parametersw j such as location and
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Fig. 2. (a) Exemplary eigenspace representation of the image set of one object used in the experiments to be described in Section 8.1, showing the threemost
prominent dimensions. (b) Illustrates even more explicitly how different views of an object give rise to likelihood distributions with different standard
deviations in eigenspace. The dots indicate the positions of the learned samples for the views 270 and 08 of objecto1 used in the experiments described in
Section 8.2.

2 In order to simplify notation we assumeX having zero mean.
3 Sufficient in the sense ofsufficient for disambiguating various objects.

4 Moghaddam and Pentland also used probability densities in eigenspace
for the task of face detection and recognition [10].



orientation of the objects but also other possible fluctuations
in imaging conditions such as moderate light variations,
pan, tilt and zoom errors of the camera and various types
of segmentation errors. Fig. 2a depicts the point cloud in
eigenspace corresponding to the full set of sample images of
a specific object to be used in the experiments.

It is important to note that we interpret each captured image
as a sample which is associated with a corresponding prob-
ability distribution. Accordingly capturing multiple images
from (approximately) the same position amounts to sampling
the underlying probability distribution for that position.

With the rule of conditional probabilities we obtain5

P�oi ;wj ug� �
p�guoi ;wj�P�wj uoi�P�oi�

p�g� : �1�

Given the vectorg in eigenspace the conditional probability
for seeing objectoi is

P�oi ug� �
X

j

P�oi ;wj ug�: �2�

Murase and Nayar’s approach consists in finding an
approximate solution forom � arg maxiP�oi ug� by identify-
ing the manifold lying closest tog. We can restate this
approach in the above framework and thereby make explicit
the underlying assumptions. We obtain Murase and Nayar’s
algorithm if we

1. EstimateP�oi ;wj ug� � f �igoi ;wj
2 gi� with f �x� . f � y� ,

x , y: Thus they assume that the mean of the distribution
lies at the one captured or interpolated positiongoi ;wj

: The
distributions have to be radially symmetric and share the
same variance for all objectsoi and all posesw j

6. With
this estimation the search for minimum distance can be
restated as a search for maximum posterior probability:

arg max
oi ;wj

P�oi ;wj ug� � arg min
oi ;wj

igoi ;wj
2 gi:

2. In the calculation of the object hypothesis the sum in
Eq. (2) is approximated by its largest term:

P�oi ug� < max
wj

P�oi ;wj ug� ) arg max
oi

P�oi ug�

� arg min
oi

min
wj

igoi ;wj
2 gi:

The first approximation is error-prone as the variance and
shape of the probability distributions in eigenspace usually
differ from point to point. This is exemplified in Fig. 2b
where the point clouds for the viewsw � 2708 andw � 08
indicate samples of the corresponding probability distribu-
tions. The experimentally obtained values for the standard

deviations in this example ares2708 � 0:01 ands08 � 0:07
which have to be compared to an average value of 0.04. The
second approximation may lead to mistakes in case only a
few points of the closest manifold lie near tog while a lot of
points of the second-closest manifold are located not much
further away.

5. Active object recognition

Active steps in object recognition will lead to striking
improvements if the object database contains objects that
share similar views. The key process to disambiguate such
objects is a planned movement of the camera to a new view-
point from which the objects appear distinct. We will tackle
this problem now within the framework of eigenspace-based
object recognition. Nevertheless, the following discussion
on active object recognition is highly independent of the
employed feature space. In order to emphasize the major
ideas only one degree of freedom (rotation aroundz-axis) is
assumed. The extension to more degrees of freedom is
merely a matter of more complicated notation and does
not introduce any new ideas. We will present experiments
for one and two degrees of freedom in Section 8.

5.1. View classification and pose estimation

During active recognition step numbern a camera move-
ment is performed to a new viewing position at which an
imageIn is captured. The viewing positioncn is known to
the system throughcn � c0 1 Dc1 1 …1 Dcn whereDc k

indicates the movement performed at stepk. Processing of
the image In consists of figure-ground segmentation,
normalization (in scale and brightness) and projection into
the eigenspace, thereby obtaining the vectorgn � gn�In�:
When using other feature spaces we have a similar determi-
nistic transformation from imageIn to feature vectorgn,
even though feature extraction may proceed along different
lines.

Given input imageIn we expect the object recognition
system on the one hand to deliver a classification result
for the object hypothesesP(oiuIn) while on the other hand
a possibly separate pose estimator should deliver
P�ŵ j uoi ; In�.7 We obtain through Eq. (1) the quantity
P�oi ; ŵ j uIn� U P�oi ; ŵ j ugn� from the probability distributions
in the eigenspace of all objects. From that quantity we can
calculateP�oi uIn� U P�oi ugn� as indicated by Eq. (2). The
pose estimation for objectoi is given by

P�ŵ j uoi ; In� �
P�oi ; ŵ j uIn�

P�oi uIn�
: �3�

In order to ensure consistency when fusing pose estima-
tions obtained from different viewing positions each pose
estimation has to be transformed to a fixed set of coordi-
nates. We use the quantityP�wj uoi ; In;cn� to denote the
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5 We use lower casep for probability densities and capitalP for prob-
abilities.

6 This follows becauseP�oi ;wj ug� is only a function of radial distance
igoi ;wj

2 gi from goi ;wj
and because that functionf is the same for alloi,w j.

7 The reason for the hat on̂w j will become evident below.



probability of measuring the posew j at the origin of the
fixed view-sphere coordinate system after having processed
imageIn, which has been captured at the viewing position
cn. In our experiments the system is initially positioned at
c0 � 08: ThereforeP�wj uoi ; In;cn� indicates how strongly
the system believes that the objectoi has originally been
placed at posew j in front of the camera. Since the current
imageIn has been captured at positioncn this probability is
related toP�ŵ j uoi ; In� through

P�oi ;wj uIn;cn� U P�oi ; ŵ j 1 cnuIn�: �4�
It is P�oi ;wj uIn;cn� that will be used for fusion. For ease of

notation we shall omit the dependence oncn in the follow-
ing and write onlyP�oi ;wj uIn�:

5.2. Information integration

The currently obtained probabilitiesP�oi uIn� and
P�wj uoi ; In� for object hypothesisoi and pose hypothesisw j

are used to update the overall probabilitiesP�oi uI1;…; In�
andP�wj uoi ; I1;…; In�: For the purpose of updating the confi-
dences, we assume the outcome of individual observations
to be conditionally independent givenoi and obtain:

P�oi jIi ;…; In� � P�I1;…; Inuoi�P�oi�
P�I1;…; In�

� P�I1;…; In21uoi�P�Inuoi�P�oi�
P�I1;…; In�

� P�oi uI1;…; In21�P�I1;…; In21�P�oi uIn�P�In�P�oi�
P�oi�P�oi�P�I1;…; In�

P�oi uI1;…; In� / P�oi uI1;…; In21�P�oi uIn�P�oi�21
:

�5�

In the first line we have exploited the assumed conditional
independence while in the last line we have summarized all
factors that do not depend on the object hypotheses in a
single constant of proportionality. Similarly we obtain the
update formulae for the pose hypotheses

P�wj uoi ; I1;…; In� / P�wj uoi ; I1;…; In21�P�wj uoi ; In�P�wj uoi�21
;

�6�

P�oi ;wj uI1;…; In� � P�wj uoi ; I1;…; In�P�oi uI1;…; In�: �7�
The priorsP�wj uoi� andP(oi) enter at each fusion step. In

our experiments every object is placed on the turntable with
equal probability andP(oi) is uniform. For the purpose of
simplifying the calculations we have also assumedP�wj uoi�
to be uniform even though in general rigid objects have only
a certain number of stable initial poses.

The assumption of conditional independence leads to a
very good approximative fusion scheme which works well
in the majority of possible cases. Nevertheless counter-
examples exist and lead to experimental consequences.
We will discuss such a case in Section 8.3.

5.3. View planning

View planning consists in attributing a scoresn(Dc) to
each possible movementDc of the camera. The movement
obtaining the highest score will be selected next:

Dcn11 U arg max
Dc

sn�Dc�: �8�

The score measures the utility of actionDc , taking into
account the expected reduction of entropy for the object
hypotheses. We denote entropy by

H�Oug1;…;gn� U 2
X

oi[O

P�oi ug1;…; gn� log P�oi ug1;…;gn�

�9�
where it is understood thatP�oi ug1;…;gn� � P�oi uI1;…; In�
and O� { o1;…;ono

} is the set of considered objects. We
aim at low values forH which indicate that all probability is
concentrated in a single object hypothesis rather than
distributed uniformly over many. Other factors may be
taken into account such as the cost of performing an action
or the increase in accuracy of the pose estimation. For the
purpose of demonstrating the principles of active fusion in
object recognition, let us restrict attention to the average
entropy reduction using

sn�Dc� U
X
oi ;wj

P�oi ;wj uI1;…; In�DH�Dcuoi ;wj ; I1;…; In�: �10�

The termDH measures the entropy loss to be expected, if
oi,w j were the correct object and pose hypotheses and step
Dc was performed. During the calculation of the score
sn(Dc ) this entropy loss is weighted by the probability
P�oi ;wj uI1;…; In� for oi,w j being the correct hypothesis.

The expected entropy loss is again an average quantity
given by

DH�Dcuoi ;wj ; I1;…; In� U H�Oug1;…; gn�2
Z
V

p�guoi ;wj

1 cn 1 Dc�H�Oug1;…;gn;g� dg:

�11�
Here w j is the supposedly correct pose measured at the
origin of the viewsphere coordinate system andcn 1 Dc
indicates the next possible viewing position. The integration
runs in principle over the whole eigenspaceV (i.e. over a
sub-manifold ofV because the images are normalized). In
practice, we average the integrand over randomly selected
samples of the learned distributionp�guoi ;wj 1 cn 1 Dc�.8

Note thatH�Oug1;…; gn;g� on the right hand side of Eq. (11)
implies a complete tentative fusion step performed with the
hypothetically obtained eigenvectorg at positionoi ;wj 1
cn 1 Dc:

The scoresn(Dc ) can now be used to select the next
camera motion according to Eq. (8). The presented
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mate the parametric form of the likelihoods during the learning phase.



view-planning algorithm greedily chooses the most discri-
minating next viewpoint. This output of the view-planning
module is completely determined by the current prob-
abilities for all object and pose hypotheses and the static
probability distributions in eigenspace that summarize the
learning data. Hence it is obvious that the algorithm will
choose new viewing positions as long as the probabilities for
object and pose hypotheses get significantly modified by
new observations. Once the object–pose hypotheses
stabilize the algorithm consistently and constantly favors
one specific viewing position. As has already been stressed
in Section 4, capturing multiple images from approximately
the same viewing position does indeed give further informa-
tion about the correct hypothesis. Each single image
corresponds to only one specific sample while multiple
images give a broader picture of the underlying probability
distributions in eigenspace.

However, since inaccuracies will inevitably arise during
the modeling process9 we prefer to forbid the system to
favor only one final viewing position. Thereby we diminish
the potential influence of local errors in the learning data on
the final object–pose hypothesis and increase the system’s
robustness by enforcing a global sampling. To this end the
score as calculated through Eq. (10) is multiplied by a mask
to avoid capturing views from similar viewpoints over and
over again. The mask is zero or low at recently visited
locations and rises to one as the distance from these loca-
tions increases. Using such a mask we attribute low scores
to previous positions and force the system to choose the
action originally obtaining second highest score whenever
the system would decide to make no significant move
(Fig. 3).

The process terminates if entropyH�Oug1;…; gn� gets
lower than a pre-specified value or no more reasonable
actions can be found (maximum score too low).

6. The complexity of the algorithm

In the following we denote byno the number of objects,
by nw the number of possible discrete manifold parameters
(total number of viewpoints) and bynf the number of
degrees of freedom of the setup. Sincenw depends exponen-
tially on the number of degrees of freedom we introducenv,
the mean number of views per degree of freedom, such that

nw � nnf
v : Finally, let us denote byna the average number of

possible actions. If all movements are allowed we will
usually havena � nw:

Before starting the discussion of the complexity of the
algorithm it is important to realize that many of the inter-
mediate results which are necessary during planning can be
computed off-line. In Eq. (11) the quantityH�Oug1;…; gn;g�
is evaluated for a set of sample vectorsg� ĝ1;…; ĝns

for
each of the possible manifold parameterswj 1 cn 1 Dc:
We denote byns the number of samples per viewpoint
used for action planning. The corresponding likelihoods
p�ĝr uoi ;wj 1 cn 1 Dc� and probabilities P�oi uĝr �; r �
1;…;ns are computed off-line such that only the fusion
step in Eq. (5) has to be performed on-line before computing
the entropy according to Eq. (9). Hence the complexity of
calculating the score for a particular actionDc is of order
O�nonwnsno�:

On the other hand, the complexity of calculating the score
values for all possible actions is only of order

O�nonwnsno 1 nonwna�: �12�
if a lookup table is calculated on-line. The first term
nonwnsno expresses the order of complexity of calculating
the fused probabilities (and the corresponding average
entropies) for all thenonwns possible samples that are used
as potential feature vectors for view planning (ns per view
with nonw being the total number of views). These average
entropies can be stored in a lookup table and accessed
during the calculation of the total average entropy reduction.
Thus we need onlynonwna additional operations to compute
all the scoressn(Dc ) through Eqs. (10) and (11).

We can also take advantages of the fact that finally only
hypotheses with large enough confidences contribute to
action planning. This is due to Eq. (10) in which hypotheses
with low confidences do not affect the calculation of the
score. Hence only thenl most likely compound hypotheses
(oi,w j) may be taken into account. The numbernl is either
pre-specified or computed dynamically by disregarding
hypotheses with confidences below a certain threshold.
Usually nl ! nonw; for example nl � 10 (taking nl � 2
imitates the suggestion presented by Sipe and Casasent
[20]). With this simplification we obtain the following
estimate for the order of complexity of the algorithm:

O�n2
onwns 1 nlna� / O�nnf

v �n2
ons 1 nl��: �13�

This can be lowered again if not all possible actions are
taken into account�na , nw�: The above estimates explain
why the algorithm can run in real-time for many conceiv-
able situations even though the algorithm scales exponen-
tially with the number of degrees of freedom. In fact, since
the contributions of each sample and each action can be
computed in parallel a great potential for sophisticated
real-time applications exists. In the experiments to be
described in Section 8 typical view planning steps take only
about one second on a Silicon Graphics Indy workstation
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Fig. 3. The heuristic mask used to enforce global sampling.

9 Outliers in the learning data or too strict parametric models for the
likelihoods.



even though the code has been optimized towards generality
rather than speed and none of the mentioned simplifications
has been used.

7. Continuous values for the pose estimation

The fundamental likelihoodsp�guoi ;wj� are based upon
learned sample images for a set of discrete pose parameters
w j, with j � 1…nw: It is possible to deal with intermediate
poses if also images from viewswj ^ Dwj are used for the
construction of p�guoi ;wj�: However, the system in its
current form is limited to final pose estimations
P�wj uoi ; I1;…; In� at the accuracy of the trained subdivisions.

For some applications one is not only interested in recog-
nizing the object but also in estimating its pose as precisely
as possible. One way to increase the accuracy of the pose
estimation is to generate additional intermediate views by
generating artificial learning data through interpolation in
eigenspace [12]. This does not necessitate any modifications
of the presented algorithm but the new pose estimates are
again limited to a certain set of discrete values.

In order to include truly continuous pose estimates it is
possible to use a parametric form for the pose estimates
p�wuoi ;g� instead of the non-parametricP�wj uoi ;g�: This
can be achieved for example by fitting the parameters of a
Gaussian mixture model to the discrete probabilities
obtained from Eqs. (3) and (4) (see also Fig. 4):

p�wuoi ;g� U
XM
m�1

P�m�fmm;sm
�wuoi ; g�; �14�

where the parametersP(m) are the mixing coefficients and
fmm;sm

�wuoi ;g� are basis functions containing parameters
mm, sm. Defining the total error through

E�oi ;g� U
X
wj

P�wj uoi ;g�2
XM
m�1

P�m�fmm;sm
�wj uoi ; g�

 !2

we estimate the parameters of the model through minimizing
E(oi,g). In the most primitive case one uses a single
Gaussian basis function and estimating the parameters
becomes trivial.

Having established continuous pose estimations
P�wuoi ; g� of higher accuracy we can use them in the usual
way during fusion and view-planning. For the task of fusion
Eq. (6) remains valid (without the subscript onw j). Various
possibilities exist to let the higher accuracy of the pose
estimates influence the view-planning phase. One solution
is to rely on interpolated values for the quantities needed in
Eqs. (10) and (11). Since this may make it difficult to assess
the real quality of the pose estimate one can also consider
the following alternative strategy. The system first recog-
nizes the object using discrete and non-parametric pose
estimations. After this stage, the pose is represented
through Eq. (14). In order to estimate the pose more
precisely the viewing position is adjusted for the most
probable intermediate pose value such that the camera
again captures images from views for which sample
images have been learned. Subsequently view planning
proceeds along the usual lines. Repeating this strategy the
system accumulates a very precise value for the offset of
the initial pose to the closest pose for which learning data
exists.

8. Experiments

An active vision system has been built that allows for a
variety of different movements (see Fig. 5). In the experi-
ments to be described below, the system changes the vertical
position of the camera, tilt, and the orientation of the
turntable.
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Fig. 4. In order to obtain a more accurate pose estimation, we can inter-
polate the discrete distribution (a) and obtain a continuous distribution (b).
The pose parameterwmax that maximizes the continuous distribution can
then be regarded as a refined estimate of the true object pose and used, for
example, to correct the camera position. (a)P�wj uoi ;g�. (b) P�wuoi ; g�.

Fig. 5. A sketch plus a picture of the used active vision setup with 6 degrees of freedom and 15 different illumination situations. A rectangular frame carrying a
movable camera is mounted to one side-wall. A rotating table is placed in front of the camera. (a) Sketch. (b) Setup.



8.1. Illustrative runs performed with eight toy cars

The proposed recognition system has first been tested
with 8 objects (Fig. 6) of similar appearance concerning
shape, reflectance and color. For reasons of comparison,
two objectso7 and o8 are identical and can only be dis-
criminated by a white marker which is attached to the rear
side of objecto8. During the learning phase the items are
rotated on a computer-controlled turntable at fixed distance
to the camera by 58 intervals. The illumination is kept
constant. The object region is automatically segmented
from the background using a combined brightness and
gradient threshold operator. Pixels classified as background
are set to zero gray level. The images are then rescaled to
100× 100 pixels and projected to an eigenspace of dimen-
sion 3 (see Section 9 for comments on the unusually low
dimensionality). For each view possible segmentation errors
have been simulated through shifting the object region in the
normalized image in a randomly selected direction by 3% of
the image dimension, as proposed in Ref. [11].

In Fig. 7a the overall ambiguity in the representation is

visualized by the significant overlap of the manifolds of all
objects, computed by interpolation between the means of
pose distributions.

For a probabilistic interpretation of the data, the likeli-
hood of a sampleg, p�guoi ;wj�; given specific objectoi and
pose w j, has been modeled by a multivariate Gaussian
density N�moi ;wj

;Soi ;wj
�; with meanmoi ;wj

and covariance
Soi ;wj

being estimated from the data that has been corrupted
by segmentation errors. From this estimate both object (Eqs.
(1) and (2)), and pose (Eqs. (1), (3) and (4)) hypotheses are
derived, assuming uniform probability of the priors.

Table 1 depicts the probabilities for the object hypotheses
in a selected run that finishes after three steps obtaining an
entropy of 0.17 (threshold 0.2) and the correct object and
pose estimations. Fig. 8a displays the captured images.
Object o7 has been placed on the turntable at pose 08.
Note that the run demonstrates a hard test for the proposed
method. The initial conditions have been chosen such that
the first image—when projected into the three-dimensional
(3D) eigenspace—does not deliver the correct hypothesis.
Consequently, object recognition relying on a single image
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Fig. 6. Each of the objects (top row) is modeled by a set of 2D views (below, for objecto1). The object region is segmented from the background and the image
is normalized in scale. The pose is shown varied by a rotation of 308 intervals about a single axis under constant illumination. A marker is attached to the rear
side of objecto8 to discriminate it from objecto7 (bottom right).

Fig. 7. Manifolds of all 8 objects (a) and distance between the manifolds of two similar objects introduced by a discriminative marker feature (b).



would erroneously favor objecto3 at posew � 08 (pose
estimations are not depicted in Table 1). Only additional
images can clarify the situation. The next action places
the system to position 2908 and the initial probability for
objecto3 is lowered. Objectso7 ando8 are now the favored
candidates but it still takes one more action to eliminate
object o3 from the list of possible candidates. In the final
step the system tries to disambiguate only between objects
o7 ando8. Thus the object is looked at from the rear where
they differ the most.

The results of longer test runs are depicted in Fig. 8b
where the number of necessary active steps to reach a
certain entropy threshold are depicted for both a random
strategy and the presented look-ahead policy. The obtained
improvements in performance will also be confirmed in
more detail in the following experiment.

8.2. Experiments performed with 15 objects and 2 degrees of
freedom

In a second experiment we have used 15 different objects
(Fig. 9) and two degrees of freedom (Fig. 10) in camera
motion. For each of the 15 objects 12 poses are considered

at three different latitudinal positions amounting to a total of
540 different viewpoints. For each of the 540 viewpoints, 40
additional images have been captured from slightly varying
viewing positions. Using these samples the likelihoods
p�guoi ;wj� have been modeled by univariate Gaussian distri-
butions. The mean and variance have been estimated for
each viewpoint separately.

An extensive set of 1440 test runs has been performed
during which each object has been considered for runs with
initial poses close to the learned poses (^58). For each
initial condition the system’s behavior has been observed
over 15 steps. The experiment has been repeated with eigen-
spaces of dimensions 3, 5 and 10. Each complete run has
been performed twice, one time with view planning
switched on, the other time relying on random motions of
the camera. The recognition module has analyzed a total of
21600 images.

The results of the experiments performed with the whole
database of model objects are depicted in Fig. 11 where
recognition rate over the number of active recognition
steps is shown for 3, 5 and 10 dimensions of the eigenspace
and for planned vs. random runs. The following observa-
tions can be made:

• A static system that stops after the first observation
reaches recognition rates of 30% (3D), 57% (5D), 60%
(10D). These values have to be compared to 84% (3D),
96% (5D), 98% (10D) which are finally achieved through
fusing the results from multiple observations.

• The final recognition level that can be obtained with a 3D
eigenspace (84%) lies beyond the recognition rate of a
system that relies on a single observation and is using a
10D eigenspace (69%). Thus multiple observations allow
the use of much simpler recognition modules to reach a
certain level of performance.

• When comparing the algorithm relying on planned
actions and the use of a random strategy, attention has
to be paid to the increase in recognition rate, especially
during the first few observations. The system is able to

H. Borotschnig et al. / Image and Vision Computing 18 (2000) 715–727 723

Table 1
Probabilities for object hypotheses in an exemplary run. See also Fig. 8a.Pf

are the fused probabilitiesP�oi ug1;…; gn�: Object o7 is the object under
investigation

oi c0 � 08 c1 � 2908 c2 � 1258 c3 � 1708

P�oi ug0� Pf P�oi ug1� Pf P�oi ug2� Pf P�oi ug3� Pf

1 0.001 0.001 0.000 0.000 0.139 0.000 0.000 0.000
2 0.026 0.026 0.000 0.000 0.000 0.000 0.000 0.000
3 0.314 0.314 0.097 0.203 0.055 0.074 0.091 0.013
4 0.027 0.027 0.096 0.017 0.097 0.011 0.002 0.000
5 0.000 0.000 0.098 0.000 0.335 0.000 0.032 0.000
6 0.307 0.307 0.015 0.031 0.009 0.001 0.224 0.000
7 0.171 0.171 0.354 0.403 0.224 0.597 0.822 0.967
8 0.153 0.153 0.338 0.344 0.139 0.315 0.032 0.019

Fig. 8. (a) Sample pose sequence actuated by the planning system (see Table 1). A comparison of the number of necessary active steps (b) using a random (top)
and the presented look-ahead policy (below) illustrates the improved performance.



come very close to its final recognition rate already after
2 to 3 steps if it plans the next action. In that region the
achieved recognition rate lies more than 10% above the
level obtained for the random strategy which usually
needs 6 or more steps to reach its final recognition rate
no matter how many dimensions of the eigenspace are
used. The beneficial effect of planning can also be
inferred from the much faster decrease in average
entropy indicating that the system reaches a higher
level of confidence already at earlier stages. In our
experiment the time cost of calculating where to move
( < 1 s) is well below the time needed to maneuver
( < 4 s). Hence, the directed strategy is also faster than
the random strategy.

• The above results can also be used to compare our
approach to a static multi-camera setup. A static system
is not able to perform the right movement already at the
beginning of the recognition sequence but rather has to
hope that it will capture the decisive features with at least
one of the cameras. We have seen that using a random
strategy the system needs usually 6 or more steps to reach
its final recognition level. This fact translates to the
assertion that a multi-camera system with randomly but
statically placed cameras will need on the average 6 or
more cameras to obtain a recognition rate comparable to
our active system for the used set of objects.

These observations are even more conclusive when

comparing the results obtained only with the two Mercedes
carso8 ando9. The cars are identical except for the marker
ono9. Even using a 7D eigenspace the difference in average
recognition rate between planned actions and random
strategy reaches a maximum beyond 30% at the second
step. As the dimensionality of the eigenspace increases to
10 the maximum difference is still above 10%.

8.3. A counter-example for conditional independence in
Eq. (5)

The case of the Mercedes cars is noteworthy for another
reason. We can see from Fig. 12 thato9 can be recognized
without efforts using only a 3D eigenspace. This is in sharp
contrast too8 which very oftencannotbe recognized when
using a 3D eigenspace. The situation changes as the dimen-
sionality of the eigenspace increases. The explanation of
this effect leads to a deeper insight into the fusion process
in Eq. (5).

The above effect occurs because the car without the
marker appears to be symmetric under rotations of 1808 if
one is using only a 3D eigenspace. In other words, there is a
significant overlap ofp�guo8;w� andp�guo8;w 1 1808� since
the system does not resolve finer details at this level.

If the object database contains two identical objects that
appear to be symmetric under rotation of e.g. 1808 (for
example two blocks) and one of the objects carries a marker
on one side then fusing probabilities according to Eq. (5)
will fail to integrate results correctly when trying to
recognize the object without the marker. This can be under-
stood easily if one imagines a static system with an arbitrary
number of cameras placed all over the view-sphere
observing the object without the marker. Each separate obser-
vation will produce equal confidences for both considered
objects because each single view may stem from either of
the two objects. But the whole set of observations is only
possible for the object without the marker because no
marker can be found even though images from opposite
views have been taken. However, if fusion is based upon
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Fig. 9. Extended database consisting of 15 objects (some cars, a bike and animals). Top row (left to right): objectso1..o5, middle:o6…o10, bottomo11…o15.
Objectso8 ando9 are identical except for a white marker.

Fig. 10. Top half of the view sphere of 2D rotation about the object (at
sphere center). Images are captured at three latitudinal levels (0, 20, 408)
and at 308 longitudinal intervals.
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Fig. 11. Results obtained with the whole database of toy objects depicted in Fig. 9. Average recognition rate (left column) and entropy (right column)over
number of steps (1…15). Each of the figures in the left column contains three plots: the average recognition rate for runs with action planning switchedon
(upper plot), for runs relying on a random strategy (middle plot) and the difference of the two recognition rates (lower plot). The number of dimensions of the
eigenspace increases from top to bottom. In the right column the average entropy of the probability distributionP�oi uI1;…; In� is depicted for each stepn. Each
of the figures shows the entropy for runs with action planning (lower plot) and without action planning (upper plot). Again the number of dimensions of the
eigenspace increases from top to bottom. (a) Rec. Rate 3d. (b) Entropy 3d. (c) Rec. Rate 5d. (d) Entropy 5d. (e) Rec. Rate 10d. (f ) Entropy 10d.



Eq. (5) then this fact will not be accounted for. Instead, even
after fusing all single results both object hypotheses will
achieve equally high probabilities.

The naive Bayesian fusion operator has been applied
widely by different authors working on active recognition
tasks [4,5,15,20] since it allows for efficient information
integration. We have shown that in some cases the con-
sidered fusion scheme will fail to integrate all the
encountered hints. The necessary conditions for this to
happen may seem to be artificial. All conceivable features
for one object must also be possible for another object. But
it should not be overlooked that what really counts isnot the
actual visual appearance of the objects but rather the
internal representation (see Fig. 13a and b). This can also
be concluded from the above experimental example in
which the real car isnot symmetric under rotations of
1808 but its internal representation is symmetric if the eigen-
space has only three dimensions. Therefore, the effect
disappears if the eigenspace has enough dimensions to
capture the data in greater detail (see Fig. 12b).

To resolve the above difficulties within the presented
framework one may exploit the fact that the pose estimation
for o9 becomes more and more uniform while the pose ofo8

can still be estimated precisely (modulo the rotational
symmetry).10 A more elegant solution can be found
using a more sophisticated fusion scheme which requires
the explicit consideration of performed action sequences
[18].

9. Conclusions

We have presented an active object recognition system
for single-object scenes. Depending on the uncertainty in

the current object classification the recognition module
acquires new sensor measurements in a planned manner
until the confidence in a certain hypothesis obtains a pre-
defined level or another termination criterion is reached.
The well-known object recognition approach using eigen-
space representations was augmented by probability distri-
butions in order to capture possible variations in the input
images. These probabilistic object classifications can be
used as a gauge to perform view planning. View planning
is based on the expected reduction in Shannon entropy over
object hypotheses given a new viewpoint. The algorithm
runs in real time for many conceivable situations. The
complexity of the algorithm is polynomial in the number
of objects and poses and scales exponentially with the
number of degrees of freedom of the hardware setup.

The experimental results lead to the following
conclusions:

1. The number of dimensions of the feature space can be
lowered considerably if active recognition is guiding the
object classification phase. This opens the way to the use
of very large object databases. Static methods are more
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Fig. 13. Manifolds in feature space in case each separate observation for
objecto8 could as well stem from objecto9. Fig. (a) depicts the case of a
practically complete overlap of possible feature values for objecto8 with
objecto9. Objecto8 has to be symmetric to produce a manifold, each point
of which corresponds to two (or more) views of the object. Fig. (b) illus-
trates the case in whicho8 is not fully symmetric, i.e. feature vectors for
different views are not equal but only very similar. This can also happen if
the chosen feature space is not appropriate for resolving finer details of
different views (artificial symmetry due to internal representation).

Fig. 12. The average recognition rate achieved for the two Mercedes carso8 ando9 (with marker) using 3D and 5D eigenspaces. In both figures the upper plot
corresponds too9, the lower plot too8. (a) Rec. Rate 3d. (b) Rec. Rate 5d.

10 This work-around is only possible because we fuse the pose estimates
(Eq. (6)). It cannot be applied within the algorithm suggested by Sipe and
Casasent [20].



likely to face problems if the dimensionality of the
feature space is too low relative to the number of objects
represented (due to overlapping manifolds).

2. Even objects sharing most of their views can be dis-
ambiguated by an active movement that places the
camera such that the differences between the objects
become apparent. The presented view planning module
successfully identifies those regions in feature space
where the manifold representations of competing object
hypotheses are best separated.

3. The planning phase has been shown to be necessary and
beneficial as random placement of the camera leads to
distinctively worse experimental results both in terms of
steps and time needed for recognition. In general, a fair
comparison of the directed strategy to a random strategy
has to take into account the cost of additional moves (in
terms of time, energy, risks,…) compared to the cost of
planning. Even though these factors will strongly depend
on the considered application, it can be anticipated that
planning will outperform random strategies in many
other settings as well.

The presented work has focused on demonstrating the
principles of an active vision algorithm within a well-
defined setting. We consider multi-sensor planning and
planning for multi-objects scene analysis to be among the
most interesting possible extensions. On the other hand, it is
possible to extend the range of applications (e.g. different
feature spaces and sensing techniques) without changing
fundamental parts of the algorithm. For example, the
currently used recognition modules are foiled by changes
in lighting. Nevertheless, such changes can be embraced by
recognition modules which either rely on illumination
invariant features or which are built upon learning data
that reflects the effect of all possible important changes in
illumination [14,23].
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