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Visual object recognitio~ ~ay be de~ed as the process by whi~h image da~ is :1)1:

referenced to k?own desc~~tIo~s of objects. Conse~uently, ~odels ofb.oth m~chine .,~
and human object recogllltion mvolve the extractIon and mterpretatlon of Image g,~
features which can index 3D world structures from what is sensed. However, "vi- . ,
sual systems" are restricted to the sensing and processing of information which can J i
be displayed as 2D projections, possibly varying over time, and also restricted by i

specific constraints such as the lack of transparency. Such restrictions on accept-
able representations for vision systems prohibit, for example, higher dimensional
analysis, seeing "inside" without a view, and specific topologies. It does not restrict
vision to the study of images produced by passive means nor exclude images gen-
erated by artificial or active sensors (for example, ultra-sound, infra-red or range
sensors). Any object recognition system (aRS) which claims either to describe hu-
man object recognition, or to be useful in machine object recognition applications
must include the following properties:

1 . It must be possible to recognize objects with some degree of view invariance.

. The data structure for the stored description of objects should be such that it
is possible to access it through partial information as, for example, with single
views, degraded, or partially occluded object data.

. A description must be general enough to include any known stimulus within
the object class to which it refers, and specific enough to exclude other stimuli.

Theories of machine object recognition are inherently algorithmic while physio-
logical and psychophysical descriptions are typically more qualitative, often due to

, practical difficulties in the observation of brain structure and function but, some-

times, also due to what the biological vision (BY) scientific community is prepared
to accept as "theory". That is, most theories in biological vision do not consist
of algorithms which actually predict behavior in explicit detail but, rather, are
descriptions of encoding and information processing.
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Machine vision (MY) provides representations and algorithms for solving 3D vi-
sion problems (e.g. Jain and Hoffman [1], Fan, Medioni and Nevatia [2]). However, :
these theories are not aimed at satisfying biological constraints. Rather, they are
typically developed as a result of current applications of engineering technologies ;
and preconceived notions of just what constitutes an 'efficient' solution. Many !

ORS's developed in the MV tradition have not been adequately evaluated and often !~,lack the generality of a biologically-based ORS. Further, there is no standards for ~

quantifying the performance machine ORS's - at least up to recently.
Experimental research on human object recognition has focussed mainly on sub- 1 :

proce~ses and general qualitative descriptions rather than providing complete com- .1 J

putatIonal models. Those "models" which do exist are typically undetailed and lack "1 i
algorithmic description (e.g. Triesman [3], Biederman [4]). Because of the com- : Jplexity and abstractness of the psychological approach to object recognition, it has "

been easier to investigate it in a piecemeal fashion. To preempt the conclusion of. :
this chapter, the MV conceptual analyses of how we understand the processes of
recognition in machines, may provide BV with questions and tools which will allow
for a truly explicit computational theory of BV to evolve. From a BV perspective,
MV theories may provide a theoretical outline which must be translated into the
language of experimental psychology and specified in ways which allow for psy- .
chophysical experimentation. The thesis of this chapter is that BV and MV can
mutually learn from each other and, in particular, MV offers the theory necessary
for BV to ask appropriate questions of biological information processing.

Indeed, one can well argue that in many areas of biological inquiry, successful
languages and models are borrowed from more formal areas of science: Mathemat-
ics, Physics, Engineering and Artificial Intelligence. Perhaps the most relevant
example of this, in BV, is that of the concept of a receptive field (RF). This is the
notion that we can describe the information processing characteristics of a nerve
cell in terms of the stimulus which best activates it. RF's were first delimited in the
mammalian retina by Ratliff and Hartline [5] during a period when the formula-
tion offilter theory, adaptive filters, and their underlying control system (network)
formalization were taking place. That is, the formal definition and analyses of such
structures gave BV scientists the "tools" for representing what may be processed at
a given level of function. This notion of filtering became very popular in the 1960's
to the present in most areas of BV since it fit well with the notion that the activity
of individual neurons is sufficient to describe visual processing - the "Neuron Doc-
trine" [6]. The notion that BV systems do filtering has, in turn, motivated many
engineers and computer scientists to construct pre-processing procedures which
incorporate such mechanisms. However, the latter is done less critically than one
would expect and so there are many misconceptions in the MV community about
what we really know about BV. For example, it is by no means proven that there are
only four, six or even a fixed number of frequency bands of the signal that the visual

f system is selectively sensitivity to. It is certainly not the case that the system is
~ insensitive to phase nor even that the global Fourier transform is computed by the
1 biological vision system [7,8].
.-
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ros for solving 3D vi- In a similar vein, a number of BV scientists have borrowed representations and
evatia,[2]). However, procedures from the MV literature without due critical analysis of the status of
lts. Rather, they are such models. For example, the work of Marr [9] has been taken too literally and
neering technologies definitively representative of developments in MV by the BV community and, here,
~nt' solution. Many we wish to clarify these misconceptions and demonstrate the both BV and MV have
1 evaluated and often much to offer each other so long as each area understands the status of theory and
e is no standards for results in the other. In particular, MV scientists should remember that BV is less
~cently. formal and less is known objectively about how the system works: BV is driven by
ussed mainly on sub- observation whereas MY is typically part of Information Science.
viding complete com- This paper is focused on one central problem in vision: Object Recognition Sys-
"undetailed and lack tems (ORS) - the ability of systems to store and/or learn the descriptions of 3D
Because of the com- objects and recognize them in 2D data structures invariant to their rigid motion,
,ct recognition, it has viewer position and, to some extent, environmental complexity. Common to all
rlpt the conclusion of approaches to ORS, in man or machines, are the following two major questions:
and the processes of ~
ols which will allow ~~ 8 How do we generate/store 3D models including their explicit feature-based0 " . ?

,m a BV perspective, representatIon.
~ t~anslated into the ~~~ 8 How do we match 2D data to such models?
which allow for psy- ~_.
hat BY and MV can Associated with both questions are specific questions related to:

the theory necessary
>rocessing. 8 How do we ~~~-.b. or shape from image data?

II inquiry, successful ~~~~rl~ b . -.-1' .nfi .?.science: Mathemat- 8 How do we 5'_"L""" aslc sWlace I ormatIon.

IS the most relevant 8 How do we ~t models and/or data?
?ld (RF). This is the
Icteristics of a nerve 8 ~attlre!; do we use for model/data representations?
first delimited in the
i when the formula- "f~ 8 How do we actually do 3D-ORS in BV, or, efficiently in machines?
rol system (network) I th fi II ' t ' b ' ft ' h h d h .bld I f h n e 0 oWIng sec Ions we ne y reVIew eac suc process an , were pOSSI e,
an ana yses 0 suc compare ideas and results from BV and MY.
may be processed at
)opular in the 1960's . .. ..
;ion that the activity 2. Theory m BIOlogical and Machine Vision

g. the "~euron Doc- In MV, the term "theory" typically refers to a description of a process by algorithms
ro, motIvated m~ny which are implementable on digital computers. In the psychological literature the
19 p~~cedllurehs which term is used more loosely to refer to a description of a process which is testable with
s cntIca y t an one h h ' I ' tat ' To .11 t tethi d 'n' h I . IV . b psyc op YSIca expenmen Ion, 1 us ra s Illerence, two psyc 0 oglca

commUnIty a out th . , d ' b ' f Th " h ." h R '. B Ch h eones are examIne In ne, ese t eones are t e ecogrution y omponents
Iroven t at t ere are d I f . "
, I h h ' I mo e 0 BIederman [4], and the Feature IntegratIon Theory of Treisman [3].
Ign ha t ~t t e VISU~ ! The Recognition by Components(RBC) model provides a non-algorithmic and
~ ,t at t e system IS sketchy account of "primal access: The first contact of a perceptual input from
lIS .computed by the an isolated, unanticipated object, to a representation in memory" (Biederman [4],

p. 32). Briefly, according to this theory, an image is segmented into regions and
combined with infornlation about non-accidental properties in order to describe
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the 3D components in the scene - which are known as "geons". Geons have the
highly advantageous property of being finite in number; they are defined in terms of
non-accidental properties of generalized cones. In fact, apart from lacking explana-
tory validity, in that it includes no algorithms, this model is not even descriptively
complete. No account is given of how geons and their spatial relationships may
be encoded. However, there has been some psychological research following up ~

the RBC theory but, as can be seen from the following examples, because its pro-
cesses are not described in detail, any number of models, other than RBC, could
explain the findings. For example, Biederman and Ginny [10] examined surface ..

and edge information in recognition. They found that subjects recognized full color 1

photographs and line drawings with the same degree of speed and accuracy. They ~

concluded that line descriptions of visual images are what are used for object recog- 1
nition, and that surface information such as color and texture gradient may be
useful in edge extraction, but is not directly useful in object recognition tasks. This
conclusion is claimed to be supportive of the RBC model, though, from the authors'
perspective, it is difficult to imagine any theory that it wouldn't support!

On the other hand, Price and Humphreys [11] found that both colo.r and surface
detail information can enhance object recognition. They suggested that the degree
to which surface detail is useful is proportional to the B;mount of within category
discrimination required: features are relative to the classification problem - a char- .
acteristic of human pattern recognition well-documented in 2D vision (see, for ex-
ample, Caelli, Bischof and Liu [12]). Other research, in the geon tradition, includes
that of Biederman and Cooper [13], who primed subjects on images with either half
the features (lines and vertices), or half the geon components removed. Priming fa-
cilitation was tested, using identical, complementary, and different class samples.
For feature primed subjects, there was no difference in priming between identical
and complimentary images, meaning the actual features present in the original
image had nothing to do with the priming. Different exemplars showed somewhat
less priming. For component primed subjects, the identical images showed more
priming than the complementary ones: priming took place at the component level,
rather than the feature level. This suggests that early preprocessing in biological
ORS involves some form of segmentation and it was claimed that these results,"' support RBC. The difficulty with this is that RBC is not well defined and, again,

the results are so predictable from most ORS theories that one can hardly use them
to strongly support RBC, per se.

Physiological evidence shows that in early stages of visual processing, color, .

orientation, motion, etc. are analyzed by separate but related channels (Livingstone
and Hubel [14]). According the feature integration theory (FIT) of Treisman and
Galade [15], a visual scene is processed first along these lines of separate dimension.
Where attention is focussed, these features are combined into "unitary objects".
They are then encoded in memory in this unitary form. However, with memory

~ decay, the features may once again become dissociated. Without attention, these
features cannot become associated in the first place. This model is interesting in
that it brings visual attention into play, an aspect which is neglected in most models
ofORS. However, it suffers from the same problems as Biederman's RBC model, in

,
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ons". Geons have the that it is descriptive, but not explanatory, in terms of algorithms. Further, it should
are defined in terms of be noted that such features are not even conceptually independent in so far as color
fro~ lacking explana- and motion must be indexed by space, pattern and form - unless they ~re d~rived
not even descriptively from some perceptual "ether." Indeed, ~e have rece?tly shown how .this notIon of
jal relationships may . modularity actually misses rich pro~erties of ~he sIgnal, at least WIth respect to
r~search.following up spatio-chromatic information processIng (Caelh and Reye [16]).

Iples, because its pro-
ther than. RBC, could 3. Sensin Objects
10] exalnlned surface g !

;s recognized full color During a time when most vision research was related to understanding how to
!d and accuracy. They encode and process images as signals, per se - in man and machines - one scientist
) used for object recog- made a stand which was to become the basis for a change in vision research: the
lure gradient may be "Gibsonian" position (see Gibson [17]). Paraphrasing and consolidating what was

l~cognition tasks. This really a very qualitative and introspective inquiry into visual perception, we can
19h, from the authors' simply point out that Gibson's essential "insight" was that the various algorithms
n't support! which constitute the "act of perception" must have evolved to reference world i~
loth color and surface structures and not just image features, per se. This perspective on vision was '

:ested that the degree taken up by the Artificial Intelligence (AI) community while both Image Processing
nt of within category and BV scientists were still mainly focussed on how the image is encoded, etc.
tioil problem - a char- However, the early AI approaches to such a view were mainly symbolic, as in
ill vision (see, for ex- "Block World" interpreters [18] and not until the late 1970's was there any formal
on tradition, includes attempt to integrate known image processing technologies of visual systems with
Iages with either half properties of objects and structures within the world around us. This is not to say
remoVtJd. Priming fa- that BV avoided such issues. Indeed, "ecological optics" (a term used by Gibson
ferent class samples. to describe this perspective) was of central interest to many BV researchers from
ng between identical motion, spatial encoding, through to color vision research programmes. The main
esent in the original difference, however, was that experiments were conducted which really did not
rs showed somewhat enable us to unambiguously infer how given processing systems actually encode
images showed more the signal to infer world structures. This is particularly true of most of the work
the component level, done on the threshold detection of grating patterns which not only have not provided
ocessing in biological of consistent theory of threshold spatial vision but has not been able to predict how
!d that these results humans process above threshold images, in general, nor how such information is
I defined and, again, used to solve problems of inferring depth or shape. On the other hand, exceptions
can hardly use them to this situation are the studies of Reichardt [19] on understanding the encoding

of motion by flies in flight, and the experimental work by Johannson [20] on how
tal processing, color, . observers solve motion correspondence problems with the motion of realistic shapes.

tIannels (Livingstone However, funda:mental research into the variety of passive sensing sources and
'IT) of Treisman and just how they are used in inferring shape from image intensity information is still
.separate dimension. evolving in the BV literature.
to "unitary objects". Though most recent techniques for ORS in MV use range data, there is still need
wever, with memory for intensity-based ORS not only becau&e of its relevance to BV but also because
Lout attention, these. of the robustness of passive sensing for industrial and other applications. Hence
Ide I is interesting.in there is still strong interest (see, for example, Seibert and Waxman [21]) in both
ected in most models MV and BV circles in problems of inferring depth from passive sensing resources
nan's RBC model, in such as focus, stereo, motion, perspective/texture. What follows is a brief resume of

I
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the known relationships between MV solutions to Shape-from-X and the associated
results, where possible, from BV.

. Shape-from-Shading. Here, with appropriate assumptions and one image,
or, with photometric stereo, etc., it is possible to generate shape and depth from
intensity information with knowledge of the rendering model. The algorithms
are generally of the relaxation type, propagating depth from boundaries - as

has been also shown to be the case with human vision [22,23].

. Shape-from-Focus. Here, at least 2 images are required and the degree of
blur about a pixel (measured, say, by variance) is used to fit a blur [24] or
even point spread function [25] from which depth is determined. Since the
human eye, under photopic vision, functions with a small aperture, focus is
not a strong cue, per se. However, accommodation of the lens is, implicitly,
a response and/or source for depth though the exact degree of afferent-to-
efferent processing with this is still yet to be fully determined. That is, the
visual system does adjust the power of the lenses with respect to distance but
the degree to which this can serve as a depth cue is not resolved.

. Shape-from-Stereo. Whether it be with two or multiple images, the use of
image disparity information to infer depth is well established in photogram-
metry or stereo procedures. However, the problems with this resource's insen-
sitivity to small disparities and the "correspondence problem" with large ones,
still leaves this as a source needing additional analyses [26]. However, human
vision does use binocular disparity to infer depth and cells have been found
within the vertebrate visual cortex which directly encode this and so produce
a signal which can be be used by higher-order neurons to infer depth [27].

. Shape-from-Motion. Motion flow has been studied in both areas as a strong
resource for depth and, again, without large disparities the process is quite
insensitive. With large displaceme~ts h~wever, there is, again, a "correspon- "- :

1dence problem". Rec~nt neuro~~yslolog1ca! data shows that ~ertebra.tes a~so ~
have neurons selectIvely sensItive to vanous types of relatIve motions m- ~
cluding looming and linear motion components [28]. Also, recent evidence
suggests that the same type of constraint satisfaction algorithm used to solve
motion correspondence problems in MV may well explain and predict similar
problems in BV [29].

. Shape-from-PerspectiverI'exture. This resource for MV is not that pop-
ular due to the fact that many imaging devices have little perspective. In
the human visual system, depth may be inferred from edges, which shows
that the preprocessed image, in terms of lines, bars and edges, described by
Marr [9] as the "primal sketch", for example, is enough to provide sparse depth

, information. The psychological literature has many reports of how observers
: use this cue for depth - so long as these types of features are present [17].

" However, for passive sensing there is one major limitation: no depth or shape can
be inferred from pixels whose neighborhood variances are zero: where there is no

"
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l-Xand the associated variation in light or "features". This shows that the inference of full range from
intensity information cannot be obtained without prior or "top-down" knowledge or

t. d . constraints. Indeed, recent solutions to this "interpolation" problem [30,31] demon-
ttp

h lons an ddonetlhmfjage, strate how this knowledge can be introduced either locally and algorithmically, or,
s ape an ep rom f h al d 1 .

1 dd 1 Th 1 'thm globally via knowledge 0 t e actu mo e s mvo ve . .
1~ e. b e adgO? s To this stage, however, only broad relations between the known physiology of
lrom oun anes - as " d h ti f d th .1 bl ' h th t . 22 23] intensity proceSSIng an t e extrac on 0 ep are aval a e m t e sense a It !

, . is well established that the visual system is capable of differentiating the intensity

red and the degree of image via the hierarchy of orientation-specific receptive fields. However, at this
d to fit a blur [24] or stage the only depth resources with direct physiological substrate are stereo and
etermined. Since the motion.
1all aperture, focus is
lhe lens is, implicitly,

4 P t d F t. ar s an ea uresdegree of afferent-to-
~rmined. That is, the It is widely accepted in the both the psychological (e.g. Biederman [4], Hoffman
espect to distance but and Richards [32], Braunstein, Hoffman and Saidpour [33]), and in the machine
resolved. literature (e.g. Jain and Hoffman [1], Fan, Medioni and Nevatia [2]), that some

)le images the use of form of image segmentation must occur before recognition can take-place.
,Jished in ~hotogram- Current practice in the MV literature is to segment surface data into parts as a
this resource's insen- function of various degrees of prior knowledge or constraints. The purpose of seg-
.lem" with large ones mentation in this literature is to reduce the matching problem and obtain descrip-
26]. Howeve~ huma~ tions which are more robust and less dependent of specific pixel-based matching
ells have be~n found criteria. However, the segmentation problem is underconstrained without addi-
e this and so produce tional knowledge and, equally, segmentation does not necessarily imply that the
I) infer depth [27]. complete surface needs to be partitioned into surface "parts". That is, one form of

segmentation is the location of surface "edges", comers, etc., without determining
loth areas as a strong what is non-edge, etc.
i the process is quite The issue of segmentation for ORS's, and for range data, specifically, has received
again, a "correspon- a good deal of attention in recent years [35,36]. Common to most approaches is the

that vertebrates also development of surface part clustering in terms of similarities in surface point posi-
relative motions in- tion, normals, or curvature information or surface curve fitting parameters [35,36].
I.1so, recent evidence Actual techniques vary from simply grouping via curvature sign (-,0,+) values or
~orithm used to solve by complex clustering algorithms with hybrid constraints [36] to actually merging
:I and predict similar and splitting initial clustered regions to be consistent with known part properties

in the model database [1]"
MV" t th t Incorporating the notion of image segmentation into a model of human ORS is attl IS no t .a polP- very good way of providing the flexibility required for recognition from novel views,
' e perspec Ive. n d "ti. f rt . 11 1 d d d d d " S . dd hi h h an recognI on rom pa la yocc u e or egra e Images. egmentatIon re ucese ges. w c sows t . "nfi t " b b.. d. bl h I hid d .b d b geome nc I orma 10n a out an 0 ~ect Into Iscrete, managea e c unks. n t se ges, escn e y rt b . d . . 1 t . k.. fi 11 b . .d d th way, pa s may e recognIze m ISO a Ion, ma mg It unnecessary or a 0 ~ect
proVl e sparse ep rt to b "" bl fi b. . . k 1 I . hrt fh b pa s e VlSI e or 0 ~ect recognItIon to ta e pace. t IS necessary, owever, to' so ow 0 servers " 1 d .nfi "

t [17] mc u e 1 ormatIon not only about the segmented parts themselves, but also aboutare presen . the spatial relationships between these parts. One common view of the segmenta-

) depth or shape can tion problem is that of defining where the boundaries between parts should occur.
0: where there is no Herein lies the strong contrast between segmentation in MV and BV.
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ans segment surfaces Table 1
~nother [~], an~ ~ey Typical Surface Features used in Machine ORS's
:I of negative mImma

t " (Hoffim d Feature ORSl-measure'a ure an an .rt b d . .11 M.l Penmeter
pa oun anes WI
so that parts would Morphological M.2 Number of Parts

., M.3 Total Area
a rule has two obVIous M 4 G (M K) ~

. t d .t . . enus eannan, an I reqUIres
S U C 1 M Hh try f th ense.. ean

1 t e geome 0 e U.C.2 Mean K

that when presented U.D.l Area
at positive maxima, Size U.D.2 3D Spanning Distance

:ts usually chose one (max)
mark part boundaries B d U B 1 P .

tet ti .. oun ary .. enme r
i a nega ve mImma.h .t d h Features U .B.2 Mean Curvature; I oes ave some .
. h tat . 11 U.B.3 Mean TorsIon
IC were ro lona y
urvature extrema are Boundary B.B.1 Length of Jumps
;he MV segmentation Type B.B.2 Length of Creases
fferent $urface types Part Distance B.D.1 Bounding Distance
1 is the role of jum~ Relations B.D.2 Centro~d Distance
t ' b. t t If a B.D.3 Max DIstancen 0 ~ec s mee . .

ity, it should account B.A.1 Normal Angle DIfferences
, (average)

[1]. One, Morphologi- Part Angle B.A.2 Bounding Angle between
'0, unary(U): features Relations surfaces (average)
.es derived from part B.A.3 Normal Angle Differences
latch pixels (local, as (average)
ill also refer to patch
ypically capture part
mdary relationships. without having viewed all surface points or without having equivalent alternative
Inn). These features, knowledge. This is not to be confused with the issue of how such data is symbolically
ures(U .C), unary dis- encoded. For example, one can have enough data to have a full description of a given
3.B), binary distance 3D object but if surface descriptors are used which are not invariant to rigid motions
mIS, as shown in the then the model cannot be said to be "view-independent". For this reason, most MV
luch features as real- models consist of range surface mean and Gaussian curvature descriptors which
nt to rigid motions. are invariant to rigid motions whereas their original (x, y, z) surface coordinates

are not. As will be seen in the following section, for MV, objects are fundamentally
represented via "shape descriptors" which are "positionless" in the sense that the
curvatures are fully independent of the 3D location of the object. As seen in Table 1,

~r obtained via active such descriptors are then used to segment and, in general, extract model features
constraints of surface which can be found in data - invariant to position and pose.
Iphs" where the fully . The i~t~rnal representation o~ objects .in humans is a dynamic memory process,
lte numbers of views. In that It Involves a model of objects which may be both accessed and modified by
3D model knowledge perceptual information. Current models of internal representation are rooted in
-independent models early work on 2D shape recognition. For example, the work of Deutsch [38) and

Sutherland [39) found that shapes could be recognized independently of location,
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size and brightness, but not orientation. Theories of internal representation in ]
human object recognition may be grouped into three divisions (see Pinker [40] . .
for a review): view-independent versus object centered models, single-view-plus- 1;'
transformation models, and multi-view models. ] i

According to the view-independent models, objects are represented as a collec-
tion of spatially independent features, such as intersections, angles, curves and !surfaces. View-independent theories assign an object a representation that is the ~

same regardless of its orientation, location, or size. Opposing this are object- .

centered theories, under which an object representation may be described as a
data-base consisting of a store of descriptions, from multiple view-points, with
which an image may be directly compared. Rock, DiVita, and Barbeito [41] found
that novel wire objects shown in one position, are not often recognized when they
were rotated about a vertical axis and presented later. Rock, DiVita, and Bar-
beito [42] also found that mirror images and left-right reversals are difficult to
discriminate. Rock, Wheeler, and 'I\1dor [43] asked subjects to imagine how these
3D wire objects would appear from positions other than the one they were in. They
found that subjects were unable to perform this task unless they made use of strate-
gies that circumvent the process of visualisation. This suggests that objects are
not simply rotated about in space as seen on a CAD computer screen, but, in fact,
draw on several of the available heuristics (as, for example, 2D projected feature
similarities) available to humans when performing such a task.

According to single-view-plus-transformationmodels, object recognition is achieved
via transformation, typically mental rotation, of an input stimulus into either a per-
spective, or an orthogonal (canonical orientation) view. In these models, mental
representations are defined in terms of the end products of the transformation
process. Shepard and Metzler [44] found that reaction time in a "same-different"
(binary classification) matching task was a linear function of the angular differ-
ence between two geometrically identical figures. This was true for rotations in
the plane and for rotations in depth. Countering this research, experiments inves-
tigating orientation-independence have provided arguments against the notion of
reaction time being a linear function of the angular difference in rotation. Corbal-
lis and Nagoumey [45] suggested that the time required to name normal versions
of letters and digits was largely independent of the orientation of the characters.
Orientation-independence in recognition time seems to occur only for highly fa-
miliar combinations of shapes and orientations; when unfamiliar stimuli must be
recognized, orientation effects reminiscent of mental rotation appear. This suggests
that humans may sometimes use mental rotation to recognize unfamiliar shapes
or examples of shapes. However, the actual computational procedure including
internal data structures and matching criteria have not usually been specified.

Because there is no theory of form perception that explains the necessity of men-
tal rotation, Takano [46] became interested in why mental rotation appears to

~, happen only in certain instances but not in others. If mental rotation does not
~ occur, then simple template matching theories of form recognition would have diffi-

culty coping with the storage and computational requirements in performing their
task adequately. To deal with this problem, feature extraction theories have been
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al representation in proposed. These theories suggest that recognition is based on those features that
ons (see- Pinker [40] are not affected by rotation (see, for example, Sutherland [39]). In instances where
!ls, single-view-plus- these features are unavailable, or not relevant, objects may need to be aligned by

mental rotation. Takano used a mental rotation paradigm to see whether the dis-
resented as a collec- tinction between orientation-free information and orientation-bound information
, angles, curves and I played a significant role in human form perception. The conclusions drawn from
sentation that is the this experiment suggest that mental rotation is unnecessary if the forms differ in
sing this are object- either type of orientation-free information, provided that the difference is actually
lY be described as a encoded as such.
lIe view-points, with Multi-view theories are hybrids of object centered and transformation models.
I Barbeito [41] found Representations consist of pools of object views in familiar orientations. Recogni-
ecognized when they tion will occur rapidly when an image is oriented according to a stored, familiar
:k, DiVita, and Bar- view. When an image does not match one of these views, transformation is neces-
rsals are difficult to sary. Jolicoeur and Kosslyn [47] investigated long term memory representation of
0 imagine how these three dimensional shapes. Their study provides converging evidence that people
le they were in. They can store three dimensional shapes in long term memory using both object-centered
~y made use of strate- and viewer-centered recognition, and that these dimensions were very stable ap-
ests that objects are pearing in every subjects data for every family of stimuli. A second experiment
r screen, but, in fact, showed that the introduction of memory requirements did not seem to mitigate the
2D projected feature subjects tendency to use both sorts of coordinate systems to compare the stimuli
k. within each family. This contradicts Marr and Nishihara's [48] claim that recogni-
recognition is achieved tion proceeds solely through the use of object-centered representations. Tarr and
Jlus into either a per- Pinker [49] presented participants with several objects each at a single rotation.
hese models, mental They were given extensive practice at naming and classifying them as normal or
r the transformation mirrored- reversed at various orientations. Their preliminary findings were con-
in a "same-different" sistent with the early 3D mental rotation studies in that response times increased
fthe angular differ- with departure from the study orientation. This suggests that subjects mentally
true for rotations in transform the orientation of the input shape to one they had initially study or fa-
1, experiments inves- miliar with. An interesting finding from this research was that whenever mirror
against the notion of images of trained shapes were presented for naming, subjects required the same
~ in rotation. Corbal- amount of time at all orientations. This finding suggests that mental rotation
ame normal versions transformations of orientation can take the shortest route of rotation that allows
on of the characters. the alignment of the input shape with its memorized counterpart.
Ir only for highly fa-
iliar stimuli must be . .
lppear. This suggests 6. Recogmtlon Processes

~e unfamiliar shapes One of the most difficult problems in ORS's is that of grouping object (model)
procedure i~cluding parts and feature states into a form which can optimize recognition. This is because
Ily been sp.eClfied. different objects share similar feature values on different parts of their surfaces.
the ne.cessrty of men- That is, given adequate features and the situation where, from any view, object
rotatIon appears to part features are clearly differentiated in' feature space, then well-known optimal

~l rotation does ~ot . classification procedures can be employed - precisely the scenario which does not

tI~n would h~ve dI~- occur in generic ORS environments. This situation is similar to problems in concept
s In performIng theIr learning where different concepts share common states and the learning procedure,
n theories have been whether in modeling human function or machine applications, has to be capable
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of forming a structure which captures common properties within class (object)
examples and highlight features which differentiate between classes. Techniques
in MY which attain these goals are of two basic types: Feature Indexing (Fl)
and Evidenced-Based Systems (EBS's). In the former case object parts, and their
feature states are ordered according to their discrimination power - along the lines
of being representative of given classes of objects and discriminating others. The
search procedure usually is in the form of a decision/strategy tree or some form
of graph matching (where binary constraints prune the state space) initiated from
more critical parts - indexed for their complexity (see, for example, McLean [50],

Grimson [51] and Lowe [52]).
Evidence-Based Systems (EBS) solutions to this problem revolve around the

generation of clusters of different object samples in feature space which, to various
degrees, "evidence" different objects [1]. A feature space is simply an n-dimensional
Euclidean space, on which each dimensional axis corresponds to some property of
the data. For example, object part features such as perimeter and average GauS-
sian curvature would constitute two such feature dimensions. These predicates
are normally either unary (describing properties of single features), or binary (de-
scribing relations between pairs of features). Evidence-based systems use bounded
regions of feature space as probabilistic evidence rules for the occurrence of objects
which have features represented within that region. An object in an evidence-based
system is represented in terms of a series of these rules, which are triggered by the
occurrence of the features of that object. Once triggered, a rule provides a certain
amount of evidence for each object in the database, according to the likelihood of
any given object having features which fall within the bounded region defining that
rule. An object is recognized on the basis of accumulated evidence over all triggered

rules.The role of world knowledge and semantic association is an important issue for I

human object recognition, which has not been well addressed in the literature.
Most researchers who put forward models of object recognition tend to ignore this
issue. For example, Biederman [4], in proposing the recognition by components
model defined object recognition in terms of matching geons to non-accidental image
features without specifying the search process. Without fear of over-generalizing it
appears that there is no search model for human object recognition - certainly one
which makes specific predictions about the complexity of the matching process for'

given classification problems.
Human ORS must make sense of complex scenes containing multiple objects,

some of which may be occluded to a very high degree. The evidence-based approach
is able to account for both perceptual and semantic considerations in object recog-
nition, with explanatory efficiency. When evidence rules (which may be abstractly
described as bounded regions of feature space) are triggered, they provide a level of. \

activation to objects represented within that region of feature space, proportional
to the amount of evidence provided by that rule for each object. Activation may be
mediated by either perceptual or a semantic processes. Perceptual processes build
up the visual percept of a scene. Semantic processes use perceptual information
to invest perceptual entities, including objects in the scene, with meaning, includ-

j
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within class (object) ing names and properties. These semantic processes feed back into the perceptual
classes. Techniques channel to provide contextual infonnation as an aid to the visual organization of the

!ature Indexing (Fl) scene. Whenever an evidence rule is triggered by perceptual infonnation, all repre-
.ject parts, and their sentations which are semantically associated with each of the objects repr~sented
wer - along the lines on the area of feature space designated by the triggered rule are also activated.
rinating others. The The degree of activation is proportional to the strength of memory association,
;y tree or some fonn as well as the amount of evidence for any particular object, provided by the trig-
space) initiated from gered rule. This allows for rapid recognition of objects in familiar environments,
ample, McLean [50], as well as recognition of objects which are higWy occluded. For example, in an

office scene, a telephone may be entirely occluded by papers, apart from the cord.
revolve around the As an isolated cue, a cord alone would probably provide insufficient evidence for

ace which to various the recognition of the telephone. Nevertheless, recognition of the cord will provide
ply an n-dimensional considerable semantic activation for the telephone representation, which together
; .to some property of with semantic activation due to the triggering of evidence rules for various other
r and average Gaus- items of office paraphernalia, may well be enough to facilitate the recognition of
IS. These predicates the telephone. This concept of semantic facilitation is drawn from an extensive
lures), or binary (de- literature in psycholinguistics (e.g. Meyer and Schvanaveldt [53]).
;ystems use bounded Modeling human ORS in tenns of the evidence based system accotmts well for
occurrence of objects the issues of view-independence, partial occlusions, variation between object within
in an evidence-based object classes, and novel exemplars of object classes. View independence is achieved
L are triggered by the simply by including all the segmented features of an object in the database. No
Ie provides a certain matter which direction an object is viewed from, it will trigger rules which give
g to the likelihood of evidence for the presence of that object. Preferred views are also accounted for, in
I region defining that tenns of those views which provide the most evidence for the object in question.
nce over all triggered Partial occlusion is accounted for in much the same way. Provided at least some of

the features of an object are displayed, some rules will be triggered, giving evidence
L important issue for for the object. Variation within object classes, and novel exemplars of object classes
ed in the literature. are also accounted for, because each rule is a bounded region in feature space, and
n tend to ignore this each feature is simply a point. Therefore, any given feature predicate may vary in
ition by components its precise position within a bounded region, and still provide the same evidence
lon-accidental image for its object class. As long as an object has enough similarity to the other objects
f over-generalizing it in its class, that it triggers approximately the same set of evidence rules, it will be
rition - certainly one recognized as a member of that object class.
matching process for A final point should be made about the underlying physiology of object recogni-

tion. First, it should be noted that vision, as a sense, is passive and so any theory
ing multiple objects, of biological object recognition that does not address the problem of inferring depth
ence-based approach or shape from intensity - as an integral part of the processing system - is not com-
tions in object recog- plete. For these reasons it is difficult to evaluate results from neurophysiological
ch may be abstractly studies showing certain sensitivities to photographs of faces, etc.(see Perrett [54],
ney provide a level of as the results confound the perception of patterns (as 2-D structures) in comparison
~ space, proportional to objects (as 3-D structures). Unfortunately, to this stage, we know very little
t. Activation may be about how the visual system solves, and uses solutions to, Shape-from-X in the act
)tual processes build of object recognition though experiments are underway to investigate such issues.
rceptual infonnation The evidence-based paradigm should prove useful in the study of these processes
ith meaning, includ- as it lays out a blueprint for how BV may learn relationships between surface types
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and expected image intensities, or, vice-versa.
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