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Abstract— To reconstruct the complete model of a 3D target
by robot vision, multiple viewpoints oftén need to be planned to
obtain sufficient 3D surfaces for integration. This paper presents
a novel method of viewpoint planning for incrementally building
the models of unknown objects or environments by an active
vision system, This method is based on the concept of trend
surface, which is the regional feature of a surface for describing
the global tendency of change. A new mathematical model is
proposed for predicting the unknown area of the object surface.
A criterion is defined to determine the exploration direction and
a unique surface model is established by analyzing the surface
curvature. Then an algorithm is developed for determining the
sensor pose which satisfies the many placement constraints such
as resolution, focus, and field of view. Experiments are carried
out to demonstrate the proposed method.

Index Terms - Sensor planning; Viewpoint; Obfect reconstruction;

3D modeling; Trend surface; Surface prediction

I INTRODUCTION

For 3D object reconstruction, a strategy with controlled
viewpoints determines cach subsequent vantage point and
offers the benefit of reducing or eliminating the manual work.
The research on' actively moving a vision sensor for modeling
objects has been active for more than ten years, since 1988
when an early attempt was made in this aspect by Cowan and
Kovesi [1]. Among the previous approaches to the modeling
problem, "occlusion" and uncertainty have been strongly
associated with viewpoint planning for a period. Kutulakos et
al. [2] utilized the changes in the boundary between sensed
surface and occlusion with respect to sensor position to recover
shape. A similar histogram-based technique was used by
Maver and Bajcsy [3] to find the viewing vector that would
illuminate the most edge features derived from occluded
regions. Whaite and Ferrie [4] used a sensor model to evaluate
the efficacy of the imaging process over a set of discrete
orientations by ray-casting: the sensor orientation that would
hypothetically best improve the model is selected for the next
view. The work by Pito [5] removed the need to ray-cast from
every possible sensor location by determining a subset of
positions that would improve the current model.

On the next best view (NBV) problem for incremental
object modeling, two issues were addressed [6] to determine
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the next-best-viewpoint: 1) a uniform tessellation of the
spherical space and its mapping onto the 2D armay; 2)
incremental ypdating computations from evaluating viewpoints
as the NBV. Pito ef al. [5] presented a solution for planning a
depth camera in the process of digitizing unknown parts. Arbel
et al. [8] showed how entropy maps can be used to guide an
active observer along an optimal trajectory and how a gaze-
planning strategy can be formulated by using entropy
minimization as a basis for cheosing a next best view. A NBV
will reveal the greatest quantity of previously unknown scene
information [9]. These is the uncertainty driven approach to the
NBYV problem where maximizing the information gain for the
next view is set as the goal in the view point planning [10).
Reed et al. [11] determined the visibility volume, which is the
volume of space within which a sensor has an unobstructed
view of a particular target. Assuming polyhedral and cylinder
objects, a technique was proposed to solve the NBV problem
via a depth-first search algorithm [12].

To this end, two distinct methods have been widely used:
the weighted function method and tessellated space approach.
The former [11], [13], [14] employs a function that combines
several components representing the placement constraints.
This method is usually used in model-based planning tasks [15],
[16]. The latter method is mainly for object modeling tasks.
The object surface is partitioned as void surface, seen surface,
unseen surface, and uncertain surface. The working space is
also partitioned into void volume and viewing volume. An
algorithm is then developed to plan a sequence of viewpoints
so that the whole object can be sampled. This method is
effective for dealing with some small and simple objects, but it
is difficult to model a large and complex object, e.g. an
environment with many concave areas, as it cannot solve the
problems of occlusion constraint.

Therefore, previous efforts were often made on finding the
best next views by volumetric analysis or occlusion as a guide.
The viewpoint planning method developed in this paper is an
effective strategy for generating a sequence of viewing poses
for optimal completion of a task. It involves decision of
exploration direction and determination of the next view. The
trend surface is proposed as the cue to predict the unknown
portion of an object or environment and the next best
viewpoint is determined by the expected surface. The
viewpoint determined in such a way is predictably best.
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II. TREND ANALYSIS AND SURFACE PREDICTION

A.  Trend Analysis

Surface trend describes the global shape of a surface and
trend surface analysis is a global method for processing spatial
data, Mathematically, a mapped surface can be separated into
two components - that of the trend and the residuals from the
trend. The trend is the regional feature of a surface, and the
residuals are the local fluctuations of high frequent features.

Trend surface analysis is often used for fitting and
interpolating regression surfaces in three dimensions as
smoothed representation of area data. It is assumed that the
spatial distribution of a particular phenomenon can be
represented by some form of continuous surface, usually a
defined geometric function. The observed spatial pattern can be
regarded as the sum of such a surface and a "random", or local,
term. The surface is a function of two orthogonal coordinate
axes which can be represented by

z=f(x,y)te, ()

in which the variable z at the point (x, y) is a function of the
coordinate axes, plus the error term e, This expression is the
generalized form of the General Linear Model (GLM), which
is the basis of most trend methods.

The function f{x, y) is usually expanded or approximated
by various terms to generate polynomial equations, To develop
complex, smoothed equations for geophysical data by
expanding the summation term of the General Linear Model,
the relationship between standard multivariate regression
analyses and trend methods can be defined. This expansion
was performed by incorporating power terms and cross-
products of the x and y coordinates. For an n-order three-
dimensional surface, the form of the power series is given by

Sa,v)=3"% bulv o 2
i=0 j=0

where # and v are the coordinates on an arbitrary orthogonal

reference system, b;; is the constant coefficient of the surface

(boo is the surface base). .

The trend part is very helpful for predicting the unseen part
of an object or environment and is thus used for determining
the next viewpoint in this paper. The residuals (local features)
do not affect viewpoint planning much, but they should be
filtered out during the image processing.

Let a single surface M be split into two parts, M and M:,
M=M, UM, ‘ )

I the surface M changes smoothly, both the trends of M,
and M; should be approximately equal to the trend of M, i.e.
Trend(M) = Trend(M,} = Trend(M.,). )

Suppose the vision agent has already captured a part of the
surface, say M), but M, remains unknown. Then by computing
the surface trend of M, the surface shape of M, can be
predicted. In this paper, we will not use (1) or (2) directly as
the trend model for surface prediction, since it relies on
interpreting regression of the known area. Instead, we will

develop a new mathematical model for describing the surface
trend, thus emphasizing on the prediction of the unknown area.

B. Exploration Direction

With the partially known mode!, the pose of a next view is
decided according to the known information. Here two steps
are used to make this decision. The first step is to determine the
exploration direction and the second is to determine the sensor
pose in the space.

Except for surface edges and object boundaries, since the
curvature of trend surface changes smoothly, the unknown part
of object surface can be predicted by analyzing the curvature
tendency of the known surface. Assume that the known part is
located in the center of the scene and its surrounding arcas are
unknown. Since only one direction, called exploration direction,
can be chosen for planning the next viewpeint, it may be
determined as the area where the surface is most smoothed or
with the lowest surface order. The reason is that the trend
surface can predict the unknown area accurately where the
surface has a low order. Fig. 1 illustrates the selection criterion
of the exploration direction.

The surface order is determined according to (2) with the
same fitting error. To avoid computation of surface fitting,
alternatively we may just approximately compute the integral
value of the curvatures in a small area, i.c.

tion
seen 3-D model
The area with
lowest
ace or
Fig. 1 Exploration of object surface
Aerdie (1, V) = H k.o (%, y)dxdy ()

x.y€ 8§ (w,v)

where S(u, v) is the neighborhooﬂ area of point (, v) émd ki,
¥) is the curvature at point (x, y) along a specific direction.

It is only necessary to compute the surface orders in the
areas near to the boundary of the known surface. The surface
order in the center ared of the known model does not affect the
exploration direction. After the minimum surface order is
obtained, ie. mg, = Min{neger ( % v }}. the exploration
direction is' decided to be along the direction outside the
unknown area. .

C. Surface Prediction

There are different curvatures for a surface point along
different directions, although the principal curvature and
Gaussian curvature are the most frequently used ones. Without
loss of generality, we may describe the mathematical formula
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unseen surface

z=M"(x,y.)

known surface

Fig. 2 A curve on the sectionat plane

along the horizontal direction. Using a vertical sectional plane
which is parallel to x-axis, at y=y,, to cut through the 3-D
surface, we get a surface curve (see Fig. 2),

-zv:fw(x). . - (6)
The curvature of this curve is
k=ky, (X)=2z"/ 1+ (7

Let X = [x,, X3] be the domain of the known part of the
surface curve. To predict the unseen surface, we use a linear
regression of x on & and get a fitted curve C, for approximating
the curvature tendency on the curve z,. Hence,

cv(x) =ax+ b: Xe le: X3], i ' (8)

where [x;, xa] is the whole domain including the known area
and unseen area, i.e. [X;, X3] = [X, X3] v [X2, X3]. The two
parameters a and b are fitted by the known part of surface
curve, i.e.,

6(x +x )f k(x yv)dx—IZI xk(x, yv)dx
(x,—x,)*

(9

and
b =1 kx, 7 )de = (2 = x))ali(x, — x,)- (10)

Given a threshold k. the curvature in the unseen area is
expected to be:

[ ax+b,
C(x,yv)=1 p

where x;< x4 < x; 15 a domain for satisfying the constraint that
he object surface will be in the Field-of-View (FOV) of the
sensor. Then the surface curve in the unseen part of the object
will be a solution of the following equation:

Ilz"[i / [+ - ex, y,) =0, (12)

The solution of this differential equation is:

clx,y, )<k
c(x, ¥, 2 Ky

(ax® +2bx+2C))

+ dx+C
T ".Fax +2bx+2C)2 i

-b)/a, (13)

of z=4k *—(x-C,)’ +C, when x> (k. —b)/a, (19

when x < (% e

max re[xz, X4), (11)7

where C; is differential constants which can be determined
according to boundary conditions, such as z(x,) = z; and z'(x;)
= z;'. The sign "+" or "-" can also be determined by the known
pari of the surface curve (convex or concave). Since the
predicted curve is based on the analysis of the tendency of
known area, it is called the frend curve.

OI. PARAMETERS OF CONTROLLED VIEWPOINTS

To determine the next viewpoint is to specify the sensor’s
placement parameters as well as to satisfy the placement
constraints, The placement parameters include sensot's position
(x, ¥, 2) and sensor orientation (a, P, ). The placement
constraints usually include visibility, focus, field of view,
viewing angle, resolution, overlap, occlusion, and some
operational constraints such as kinematic reachability of the
sensor pose and robot-environment collision. Let the resolution
constraint be '

Q
Py :2\/(xp —xz)z +[z, _z(xz:yp)]l tan(?)/N<rm‘“’ (15)
where N is the pixel number on a scanning line of the digital
image and Q is the angle of view.

To satisfy the constraints of sensor placement on resolution
and FOV, the parameter x; in (11) is determined by a searching
algorithm; ’

Step 1. Obtain the numerical solution of (13) or (14) and stores
the pairs (xi, zi) in an array. xi =x; + (i-1)*w, , where
w, is the pixel length in x-direction;
Step 2. For each pair, test the satisfaction of the resolution
constraint (15) and eliminate the points that fail;
Step 3. Let x4 = max {x;}.
Algorithm 1 Determination of boundary position

The mid-point of such a trend curve is:

Qm,yv: (xv’yv!zm.v)! zm‘y = f(xv!yv)" 'xv =_)£2;_xd_, (16)

By moving the V-V plane to different positions, in the
domain of -y v <V, <Y, WE get a series of surface curves.

Connecting the mid-point of each such curve, we get a new
curve: .

1+1 L(mev s YV) ﬁ:v <y, < +chv (17)

Calculating its centroid, the position of the reference  point
{i.e. the new scene center) is obtained:

Ll L
O Xt = l,‘f " o =:[5my dl’ and
Ldl Ldi
LIH Lm
I zLdl
2% = 4 (18)
Ldi

where (i+1) denotes the next view pose.

Now the position of the eye point and the viewing direction
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can be determined. To achieve the maximum viewing angle (i.e.
the angle between the viewing direction and the surface tangent)
for mlmmlzmg the reconstruction uncertainty, the viewing
direction is the inverse of the average normal on the predicted
surface that is,

L= HN(x y)dxdy
ey

= ( pﬁl', v IHJs -K |+lk)’

f[ i l.-.

thl’ﬁ: #(x y) = ‘);, ]l/(x,y);: g‘;‘ ,I K(x,y) =.—1 N and N(x, y)

[t e,y
JJasdy

19

is the stirface normal on ﬁoint (%, ¥, 2).

The sensors position Py (x, y, z) for the next viewpoint is
planned as a solutlon of the followmg set of equatlons

l X :Ixﬁwu ' Lo -_Au‘m .
0= Pl N4 1y T
! y.an = J}m _ Vi . I 20)
10 Pl Tl |
10 "Bl 2 me 20
2tan —
L 2

whete' ¢y, i$ @ positive constant for compensating the depth
value, range, £ is  the sensor's Angle-of-View,
” I.M: Hl;z" pnlg +VI‘+1'2 +K..i+lz' ’.and‘”oi'” - PH'IHZ iS thE‘diStanCE
between, pdint Oy and P, ‘

Finally, the placcmem pararheters of the vision sensor is
descnbed as a vector

on

ThlS placement vector is based on the local coordinate

'H (xx+1’yl+l’ ¢+l’ﬂx+l! |+!’ 1+l)

system. Tt néeds to be converted to the world coordinate system. «;

by multlplymg a coefficient matrix.

Fig. 3 The repetitive modeling process

Finally the iterative modeling process is illustrated in Fig. 3,
in which the symbols Si (i=1, 2, ..., 7) represent the states of:

S1: Acquisition of a view

S2: Recenstruction of the 3-D local model

53: Registration and fusion with the global model

S4: Model analysis and checking complete conditions
$5: Ranking for selection of exploration directions

S6: Computing trend surface and determining next view
§7: Moving the robot to the new viewpoint.

IV. EXPERIMENTS

A.  Modification for Digital Image Processing

Several experiments were carried in our laboratory for
construction of object models. The range data are obtained by a
structured light system [7] set up in this research, which mainly
consists of a DLLP projector and a CCD camera. The projector
is connected to a computer and is controlled to generate some
gray-encoded stripe-light patterns for 3D reconstruction. The
camera has a 1-inch sensor and a 25mm lens. The pixel number
on a scan line is N=1024, and the resolution constraint is
Fma=0.85mm. This structured light system was installed on a
6DOF robot to reach any arbitrary position in the workspace
according to the setting parameters.

Fig. 4 is an object as the typical example here for
iltustration of model construction. The first view is assumed to
be taken from the top view. To determine a next view for
acquiring some unseen information of the object, we used trend
surface method and developed a program to compute the
expected surface curves., Then the trend is computed and the
next viewpoint is determined.

The object model was incrementally built by four views.
Each view acquired a new surface and it wds integrated with
the existing ones to form a partial model. The -exploration
direction and sensor’ placement were determined- by the
proposed method. Some intermediate computation results are
shown Fig. 5 to Fig. 9. For example, after a partial model was
integrated from the first two views (Fig. 5), an exploration
direction was decided and several trend curves are computed to
predict the unknown part of the surface as in Fig. 6 and Fig. 7.
Then the next viewpoint was determined as in Fig. 8. 3D
surface acquisition and integration were followed to increase
the information of the target (Fig. 9). The Fig. 10 illustrates the
final result of the 3D model and the planned four viewpoints in
the space.

jamryiny >

Fig. 5 The partial model integrated from the first two views
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Fig. 8 The next viewpoint.
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Fig. 9 The 3D surface was obtained from the third view and mtcgrated thh
all known views.

Fig. 10 The complete model and planned viewpoints

V. CONCLUSION

In this paper, we proposed a trend surface model which was
used to predict the unseen. part of objects or environments. In
this way, the next viewpoint can be determined for on-line
acquisition of the range data until the whole structure of the
object or environment is reconstructed. The trend surfaces and
trend curves were computed from the curvature tendency.
While determining the next viewpoint, multiple sensor
placement constraints were considered in this paper, such as
resolution, figld-of-view, and viewing angle. The analysis
shows that the trend model can accuratély predict the unknown
surface of the object if the surface is composed of 1st-order and

2nd-order curves and surfaces Expenments were carried out to
demonstrate the method: presented m thls paper. -
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