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Abstract

This paper provides a review on techniques for computing a three-dimensional model of a scene from a single moving camera, with
unconstrained motion and unknown parameters. In the classical approach,atatedlibrationor self-calibration camera motion and
parameters are recovered first, using rigidity; then structure is easily computed. Recently, new methods based on gteatifezatidn
have been proposed. They upgradegt@ectivestructure, achievable from correspondences only, t&ti@ideanstructure, by exploiting
all the available constraint® 2000 Elsevier Science B.V. All rights reserved.
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1. Introduction view of some of the most promising techniques. Such a
comparative account sheds light on the relations between

The goal of Computer Vision (see Ref. [1] for an intro- different methods, presented in different ways and formal-
duction) is to compute properties (mainly geometric) of the isms in the original research articles.
three-dimensional (3D) world from images. One of the In Section 2 some necessary notation and concepts are
challenging problems of Computer Vision isreconstruct introduced. Then (Section 3) the reconstruction problem is
a 3D model of the scene from a moving camera. Possible formulated. In Section 4 the classical autocalibration
applications include: navigation of autonomous vehicles, approach is briefly outlined. Stratification methods are
object recognition, reverse engineering and synthesis ofdescribed in some details in Section 5. Applicability of
virtual environments. the methods is discussed in Section 6. Finally (Section 7),

Most of the earlier studies in the field assume that the conclusions are drawn.
intrinsic parameters of the camera (focal length, image
center and aspect ratio) are known. Computing camera
motion in this case is a well-known problem in photo- 2. Notation and basics
grammetry, calledrelative orientation [2,3], for which
several methods are available (see Ref. [4] for a review). This section introduces the mathematical background on
Given all the parameters of the camera, reconstruction is perspective projections necessary for our purposes. Our
straightforward. notation follows Faugeras [10].

However, there are situations wherein the intrinsic A pinhole camera is modeled by itptical centerC and
parameters are unknown or off-line calibration is impractic- its retinal plane (or image plang %#. A 3D point W is
able. In these cases the only information one can exploit is projected into an image poimh given by the intersection
contained in the video sequence itself. of # with the line containingC andW.

Yet, some assumptions are necessary to make the Letw = (xy,2 be the coordinates dfV in the world
problem tractable. We will focus on the classical case of a reference frame (fixed arbitrarily) amd the pixel coordin-
single camera with constant but unknown intrinsic ates ofm. In homogeneous (or projective) coordinates
parameters and unknown motion. Other approaches restrict

the motion [5-8] or assume a rigidly moving stereo rig [9]. u X
The contribution of this paper is to give a critical, unified y
m=|v W= , (1)
_ z
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Fig. 1. The pinhole camera model, with the camera reference f&ez)
depicted Z is also called theptical axis

the transformation froni to m is given by the matrix:
kM = PW, 2

where k is a scale factor callegrojective depthlf P is
suitably normalizedx becomes the true orthogonal distance
of the point from the focal plane of the camera.

The camera is therefore modeled by perspective
projection matrix (henceforthsimply camera matrix P,
which can be decomposed, using the QR factorization,

into the product
P = A[R[t]. ©)

The matrixA depends on thimtrinsic parameter®nly, and
has the following form:

o Y W
A= 0 ay, Vo |, (4)
0O 0 1
w

v
-/

Fig. 2. Epipolar geometry. The epipole of the first cameisithe projection
of the optical cente€’ of the second camera (and vice versa).
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where o, = —fk,, a, = —fk, are the focal lengths in
horizontal and vertical pixels, respectivelfyi¢ the focal
length in millimeters,k, andk, are the effective number
of pixels per millimeter along the- and v-axes),(Ug, Vo)
are the coordinates of thggincipal point given by the inter-
section of the optical axis with the retinal plane (Fig. 1), and
v is the skew factor.

The camera position and orientati@x{rinsic parameteds
are encoded by the83 rotation matrixR and the trans-
lationt, representing the rigid transformation that aligns the
camera reference frame (Fig. 1) and the world reference
frame.

2.1. Epipolar geometry

Let us consider the case of two cameras (see Fig. 2). If we
take the first camera reference frame as the world reference
frame, we can write the two following general camera
matrices:

P = A[l0] = [Al0], )

P’ = A'[R[t]. (6)

A 3D pointw is projected onto both image planes, to points
m = PW andrm’ = P'W, which constitute aonjugate pair
From the left camera we obtain:

X 0
y 0
k'm’ = A'[R|t]w = A'[R|t] + 0
0 1
X
=AR|ly | +A't 7
z

From the right camera we obtairA ™ ‘m = [I|0\W =
[x,y,Z]". Substituting the latter in Eq. (7) yields:

k'm' = kA'/RAIm+A't = kHm + & (8

where H,, = A'/RA™! and & = A't (the reason for this
notation will be manifested in the following).

Eq. (8) means thah' lies on the line going througd and
the pointH ., m. In projective coordinates the collinearity of
these three points can be expressed with the external
product:m’" (@& A Hem) = 0, or

m'TFm = 0, 9)

where F = [&],H,, is the fundamental matrix relating
conjugate points, anfg’], is a matrix such tha&’ A x =
[&'],x. From Eq. (9) we can see that’ belongs to the line

Fm in the second image, which is called thygipolar lineof

m. It is easy to see tha& F = 0, meaning that all the
epipolar lines contain the poiré’, which is called the
epipole (Fig. 2). SinceFé = F'& = 0 the rank ofF is in
general 2 and, being defined up to a scale factor, it depends
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upon seven parameters. In the most general case, the onlynatricesli"i:l,_,_,,\,. Let rﬁj = l5'Wj be the (homogeneous)
geometrical information that can be computed from pairs of coordinates of the projection of théh point onto theith
images is the fundamental matrix. Its computation requires acamera. Thereconstruction problencan be cast in the
minimum of eight point correspondences to obtain a unique following way: given the set of pixel coordlnates, find

solution [11,12].
It can be seen that Eq. (9) is equivalent to

(A"Tm) [t RA ™M) = (10)

Changing to normalized coordinates= A~'m, one can
obtain the original formulation of the Longuet-Higgins [13]
equation

ATER =0 (11
involving theessential matrix
E=[tI\R 12

the set of camera matricsand the scene structuiig such
that

mi = P'W,. (19)

Without further restrictions we will, in general, obtain a
project [15-17] defined up to an arbitrary projective trans-
formatlon Indeed, if' andw; satisfy Eq. (19), als&'T and
T w, satisfy Eq. (19) for any % 4 nonsingular matrix .

A projective reconstruction can be computed starting
from point correspondences only, without any a priori
knowledge [18—25]. Despite that it conveys some useful

which can be obtained when intrinsic parameters are known. information [26,27], we would like to obtain Buclidean

E depends upon five independent parameters (rotation ancreconstructiona very special one that differs from the true
translation up to a scale factor). From Eq. (10) it is easy to reconstruction by an unknown similarity transformation.

see that
F=A"TEA™L (13

2.2. Homography of a plane

Given two views of a scene, there is a linear projective
transformation (@omographyrelating the projectiom of
the point of a plandI in the first view to its projection in the
second view,m’. This application is given by a 83
invertible matrixH ;; such that
m’ = Hm. (14
It can be seen that, given the two projection matrices,

P=A[l0, P =A'R[] 15

This is composed by a rigid displacement (due to the
arbitrary choice of the world reference frame) plus a
uniform change of scale (due to the well-known depth-
speed ambiguity: it is impossible to determine whether a
given image motion is caused by a nearby object with
slow relative motion or a distant object with fast relative
motion).

Maybank and Faugeras [28,29] proved that, if intrinsic
parameters are constant, Euclidean reconstruction is
achievable. The procedure is knownagocalibration

In this approach, the internal unchanging parameters of
the camera are computed from at least three views. Once the
intrinsic parameters are known, the problem of computing
the extrinsic parameters (motion) from point correspon-
dences is the well-known relative orientation problem, for
which a variety of methods have been developed [4,30,31].

(the world reference frame is fixed on the first camera) and aIn principle, from the set of correspondena®s one can

plane T of equationn’x = d, the following holds [14]:
nT
Hy= A’(R + tF)A_l.

Hp is the homography matrix for the pladé. If d — o,
H, =A'RA™L (17)
This is the homography matrix for thefinity plane which

(16)

maps vanishing points to vanishing points and depends onIy
on the rotational component of the rigid displacement. It can

be easily seen that

T
n —
Hp=He, +&—A !

d
whered’ = A't.

18

3. The reconstruction problem

Consider a set of 3D points viewed Iby cameras with

compute the fundamental matrix, from which the essential
matrix is immediately obtained with Eq. (13). Motion
parameter® and the direction of translatianare obtained
directly from the factorization (12) dt. In Ref. [32] direct
and iterative methods are compared.

Recently, new approaches based on the idestrafifi-
cation [14,33] have been introduced. Starting from a
projective reconstruction, which can be computed from
the set of correspondence¢ only, the problem is comput-
ing theproperT that upgrades it to a Euclidean reconstruc-
tion, by exploiting all the available constraints. To this
purpose the problem is stratified into different
representations: depending on the amount of information
and the constraints available, it can be analyzed at a
projective, affine’ or Euclidean level.

! An affine reconstruction differs from the true one by an affine transfor-
mation.
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4. Autocalibration Decomposition of the fundamental matrix. Llebe written
asF = UDV' (with SVD), and
In the case of two different cameras, the fact that for any

fundamental matrix- there exist two intrinsic parameter ug vi
matricesA andA’ and a rigid motion represented bynd u=|u? v=]| D = diagr, s,0)
R such thatF = A" T([t][,R)A"! is called therigidity 2 2 e
constraint u3 vi

The seven parameters of the fundamental matrix are ) ) o
available to describe the geometric relationship between 'Nen the Kruppa equations write (the derivation can be
the two views; the five parameters of the essential matrix found in Ref. [36])
are needed to describe the rigid displacement, thus at most vIKv —vIKy vIKy
two independent constraints are available for the computa- 22 = 21 = 171 (21
tion of the intrinsic parameters from the fundamental rfuikuy - rsuiKu, - SuzKup

matrix. Indeed, Hartley [30] proposed an algo.rithm tofactor grom Eq. (21) one obtains two independent quadratic equa-
the fundamental matrix that yields the five motion parameters ;s in the five parameters df for each fundamental

and the two di_fferent focal lengths. He also noticed that N0 4+rix (i.e. for each displacement). Moreover, assuming
more information could be extracted from the fundamental i, y=0, which is a good approximation for usual

matrix without making a_dditional assumptions. _ cameras, one has the additional constriidt = k, [32].
In the case of a moving camera with constant intrinsic Thee are basically two classes of methods for solving the

parameters, it is possible fto obtain a Euclidean reconstruc-resumng system of equations (assuming that more than
tion by cumulating constraints over different displacements. i ee views are available) [32,37]:

There are five unknowns (the intrinsic parameters), each N _ _ _
displacement yields two independent constraints, hence® Partition the equations set in groups of five and solve
three views are sufficient (between three views there are €ach group with a global convergent technique for

three independent displacements: 1-2, 1-3 and 2-3). systems of polynomial equations, like homotopy con-
tinuation methods [38,39]. Each system will give a set
4.1. Kruppa equations of solutions and the solution common to all of them is

chosen. This method—presented in Ref. [32]—has the

With a minimum of three displacements, we can obtainthe  great advantage of global convergence, but is computa-

internal parameters of the camera using a system of poly- tionally expensive. Moreover, the number of systems to

nomial equations due to Kruppa [34], which are derived be solved rapidly increases with the number of displace-
from a geometric interpretation of the rigidity constraint ments.

[28,35]. e The over-constrained system of equations is solved with
The unknown in the Kruppa equations is the makix= a nonlinear least-squares technique (Levenberg—
AAT, called theKruppa coefficients matrjxhat represents Marquardt [40], or lterated Extended Kalman Filter
the dual of the image of thabsolute coni¢see Ref. [10] for [41]). The problem with nonlinear least-squares is that
details). FromK one can easily obtain the intrinsic a starting point close to the solution is needed. This can
parameters by means of Cholesky factorizatidt i6 be obtained by applying globally convergent methods to
symmetric and positive definite), or in closed form: subsets of equations (like in the previous case), or by
making the additional assumption thak, vp) is in the
ki ko ks center of the image, thereby obtaining (from just one
it K=k k ke fundamental matrix) two quadratic equations in two
2 variablesky, k;, which can be solved analytically [36].
ks ks 1 This technique is used in Ref. [37].
\/kl g ek o —laks
Ky = k8 kg — k2 5. Stratification
then A = .
0 kg — K2 ks Let us assume that a projective reconstruction is avail-
0 0 1 able, that is a sequenéé,mj of camera matrices such that

20 Bhg =00 Py =[Q]d. 22

Kruppa equations were rediscovered and derived by We are looking for a Euclidean reconstruction, that is>a 4
Maybank and Faugeras [28]. Recently Hartley [36] 4 nonsingular matrixi that upgrades the projective recon-
provided a simpler form, based on the Singular Value struction to Euclidean. IfW; is the sought Euclidean
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structure,T must be such thath! = P ol T v”vj, hence

I5eucl PprOJT (23)

where the symbol= means “equal up to a scale factor”.
5.1. Using additional information

Projective reconstruction differs from Euclidean by an
unknown projective transformation in the 3D projective

space, which can be seen as a suitable change of basi
Thanks to the fundamental theorem of projective geometry

[42], a collineation in space is determined by five points,

hence the knowledge of the true (Euclidean) position of five

points allows to compute the unknowrx4 matrix T that

transform the Euclidean frame into the projective frame. An

application of this is reported in Ref. [43].
Moreover, if intrinsic parameterd are known, thenl

559
Affine reconstructionEg. (28) can be rewritten as

Q +qr"Al=ARA=HL, (29

relating the unknown vecta = r'A~* to the homography
of the infinity plane (compare Eq. (29) with Eq. (18)). It can
be seen thal factorizes as follows:

RN

(30

&rhe right-hand side matrix is aaffine transformationnot

moving the infinity plane, whereas the left-hand one is a
transformation moving the infinity plane.
Substituting the latter into Eq. (23) we obtain:

g [At o] 10 .y
Peucl o 1 :Paf'fl_PpI’O] a1 :[Hoo|q] (3D

can be computed by solving a linear system of equations Therefore, the knowledge of the homography of the infinity

(see Eq. (52) in Section 5.2.5).

5.2. Euclidean reconstruction from constant intrinsic
parameters

The challenging problem is to recovérwithout addi-
tional information, using only thdwypothesis of constant
intrinsic parametersThe works by Hartley [18], Pollefeys
and Van Gool [44], Heyden ands&am [45], Triggs [46]
and Bougnoux [47] will be reviewed, but first we will make
some remarks that are common to most of the methods.

plane (given bya) allows to compute the Euclidean
structure up to an affine transformation, that is affine
reconstruction

From affine to EuclideanAnother useful observation is,
if Hy is known and the intrinsic parameters are constant, the
intrinsic parameter matrixA can easily be computed
[8,14,18,48].

Let us consider the case of two camerasAli= A, then
H. is exactly known (with the right scale), since

detH,,) = detARA 1} = 1. (32)

We can choose the first Euclidean-calibrated camera to be

&0

Peuc = A[1|0], thereby fixing arbitrarily the rigid trans-
formation:
Peui=AlI0] Pl = ARt 24

With this choice, it is easy to see thal,, = ﬁgrojf implies

+ A O
T os

wherer " is an arbitrary vector of three elemeits, r,, r3].
Under this parametrizatioil is clearly nonsingular, and

(25

From Eq. (17) we obtaiR = A’ *H_A, and, sinceRR" =
[, it is easy to obtain:

H,KHL =K (33

whereK = AAT is the Kruppa coefficients matrix. As Eq.
(33) is an equality between>33 symmetric matrices, we
obtain a linear system of six equations in the five unknown
ki, ko, ks, K4, ks. In fact, only four equations are independent
[14,48], hence at least three views (with constant intrinsic
parameters) are required to obtain an over-constrained
linear system, which can be easily solved with a linear

being defined up to a scale factor, it depends on eight least-squares technique.

parameters (let = 1).
Substituting Eq. (22) in Eg. (23) one obtains

Peuet = PoroT = [Q'A +q'rIq], (26)
and from Eq. (24)

Peue = AIR'[t'] = [ARAL'], @7
hence

QA+’ = AR (28)

This is the basic equation, relating the unknowgfive
parameters) and(three parameters) to the available data
andg'. R is unknown, but must be a rotation matrix.

Note that two views would be sufficient under the usual
assumption that the image reference frame is orthogonal
(v = 0), which gives the additional constraikgks = k.

If points at infinity (in practice, sufficiently far from the
camera) are in the scend,, can be computed from point
correspondences, like any ordinary plane homography [48].
Moreover, with additional knowledge, it can be estimated
from vanishing points or parallelism [33,49], or constrained
motion [8].

In the rest of the section, some of the most promising
stratification techniques will be reviewed.

5.2.1. Hartley
Hartley [18] pioneered this kind of approach. Starting
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from Eq. (28), we can write In particular it holds for the infinity plane homography, so
@ +gahA = AR'. (34  HE=HLH, =@ +da)Q +da) ™ (40
By taking the QR decomposition of the left-hand side we In this way we obtain a constraint on the plane at infinity for
obtain an upper triangular matriBi “such that (Qi + each pair of views. Let us write the characteristic polynomial:
gahA = B'R', so Eq. (34) rewrite8'R' = A'AR' or del(@ + ga")(@Q +qa’) T — Ay =0 a1
FAE =L @9 de((@ +ga) - AQ +qa) =0 42

The scale factor/A' can be chosen so that the sum of the Writing the constraint (38) for the three views, a system of
squares of the diagonal entries of X)A 'B' equals 3. We  three polynomials of degree four in three unknowns is

seekA anda that minimizes obtained. Here, like in the solution of Kruppa equations,
) homotopy continuation methods could be applied to compute
5 1 a-1gi |H ' @36  allthe £ =64 solutions.
A In practice more than three views are available, and we

i>0
_ _ _ _ ~ must solve a nonlinear least-squares problem: Levenberg—

Each camera excluding the first, gives six constraints in Mmarquardt minimization is used by the author.

eight unknowns, so three cameras are sufficient. In practice

there are more than three cameras, and the nonlinear least > 3. Heyden and sirom
squares problem can be solved with Levenberg—Marquardt The method proposed by Heyden andtam [45] is

Kruppa equations, a good initial guess for the unknowns

: . . . TA _
A andais peeded in order for the algorithm to converge Bl ~ AR (43)
to the solution. A T

Given that fromH), the computation ofA is straight- ) T ) _
forward, a guess foa (that determinesd’) is sufficient. ~ SINCERR" =1 it follows that:
Thg cheirality_cqn_straints[SO] are exploited by Hartley to S [TATTA T~iT o [AAT Ar T
estimate the |nf|n|ty plane hqmo_graphy, thereby obtaining Py 1| Poroi = Poroif 1 1 |Peroj
an approximate affine (auasi-affing reconstruction. r r rA°

~ AR'R'AT = AAT, (44)

5.2.2. Pollefeys and Van Gool

In this approach [44], a projective reconstruction is first The constraints expressed by Eq. (44) are called the Kruppa
updated to affine reconstruction by the use of itihedulus constraints [45]. Note that Eq. (44) contains five equations,
constraint[14,51]: since the left-hand part of Eq. (29) is because the matrices of both members are symmetric, and
conjugated to a (scaled) rotation matrix, all eigenvalues the homogeneity reduces the number of equations with one.
must have equal moduli. Note that this holds if and only if Hence, each camera matrix, apart from the first one, gives
intrinsic parameters are constant. To make the constraintfive equations in the eight unknowas, ay, v, Uy, Vo, I1, f2,

explicit we write the characteristic polynomial: rs. A unique solution is obtained when three cameras are
: - 3 ) available. If the unknown scale factor is introduced expli-
detfQ' +ga’ — Al) =I3A° + LA“+ 1A+ . 37 citly, Eq. (44) rewrites:

The equality of the roots of the characteristic polynomial is g T i AAT Ar T
not easy to impose, but a simple necessary condition holds:0 = fi(A,r, ) = AFAA" — Pproj[ TAT T :|Pproj' (45
r r'r

1513 = 131, (38) . . o
Therefore, three cameras yield 10 equations in eight

This yields a fourth order polynomial equation in the Unknowns.
unknown a for each camera except the first, so a finite
number of solutions can be found for four cameras. Some 5-2.4. Triggs
solutions will be discarded using the modulus constraint, ~ Tr9gs [46] proposed a method based on #issolute
that is more stringent than Eq. (38). quadric and, independently from Heyden angt&m, he

As discussed previously, autocalibration is achievable derived an equation closely related to Eq. (44). The absolute
with only three views. It is sufficient to note that, given duadric2 consists of planes tangent to the absolute conic
three cameras, for every plane homography, the following [10], and in a Euclidean frame, is represented by the matrix
holds [14]: )

euc — [ ]

(46)
H13 — H23ql2. (39) 00
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If T is a projective transformation acting as in Eq. (23), then
it can be verified [46] that it transform&,,. into Q& =
'T'QeucTT. Since the projection of the absolute quadric yields
the dual image of the absolute conic [46], one obtains

The nonlinear minimization required to solve the
resulting system is rather unstable and must be started
close to the solution: an estimate of the focal length and
is needed. Assuming known principal point, no skew, and
unit aspect ratio, the focal length, can be computed from
the Kruppa equations in closed form [47]. Then, given the
intrinsic parameter4, an estimate of can be computed by
solving alinear least-squares problem. From Eq. (44) the
following is obtained:

i
proj

PorojPproj = K 47

from which, using Eq. (25), Eq. (44) follows immediately.
Triggs, however, does not assume any particular forrd for
hence the unknowns aé and €2. Note that both these
matrices are symmetric and defined up to a scale factor.
Let k be the vector composed by the six elements of the
lower triangle oK, andw be the vector composed by the six

elements of the lower triangle ﬁpmjﬂﬁgmj, then Eq. (47)

is tantamount to saying that the two vectors are equal up to a

NAAT.
(52)

Since [AAT]3,3 =Kz3=1, then A is fixed. After some
algebraic manipulation [47], one ends up with four linear

QAATQ" +Q'Arg" + QAT +|rldq =

scale. hence equations inAr. This method works also with varying
intrinsic parameters, although, in practice, only the focal
kAw=0 (48 length is allowed to vary, since principal point is forced to

the image center and no skew and unit aspect ratio are
assumed. The estimation of the camera parameters is
inaccurate, nevertheless Bougnoux proves that the recon-
struction is correct up to an anisotropic homotethy, which

he claims to be enough for the reconstructed model to be

in which the unknown scale factor is eliminated. For each
camera this amounts to 15 bilinear equations i 9
unknowns, since botk and o are defined up to a scale
factor. Since only five of them are linearly independent, at
least three images are required for a unique solution.
Triggs uses two methods for solving the nonlinear least- usable.
squares problem: sequential quadratic programming [40] on
N = 3_H cameras, and a quasi-linear method with SVD g piscussion
factorization onN = 4 cameras. He recommended to use
data standardization [52] and to enforce(@Bt= 3. The
sought transformatiofl is computed by taking the eigen-
decomposition of}.

The applicability of autocalibration techniques in the real
world depends on two issues: sensitivity to noise and
initialization. The challenge is to devise a method that
exhibits graceful degradation as noise increases and needs
5.2.5. Bougnoux only an approximate initialization. Several attempts have

This method [47] is different from the previous ones, been made, as reported in this survey, but the problem is
because it does not require constant intrinsic parametersfar from being solved yet.
and because it achieves only an approximate Euclidean As for the Kruppa equations, in Ref. [32] the authors
reconstruction, without obtaining meaningful camera compare three solving methods: the homotopy continuation
parameters as a by-product. method, and the Iterated Extended Kalman Filter. From the

Let us write Eq. (23) in the following form: simulations reported, it appears that all the methods give
comparable results. However, the homotopy continuation

T
il method is suitable for the case of few displacements, as it

Poue = qi2T q | = |5iproj-|- (49) would be difficult to use all the constraints provided by a
. long sequence, and its computational cost would be too

o[ high. Iterative approaches (Levenberg—Marquardt and

Iterated Extended Kalman Filter) are well suited to the
case where more displacements are available. The main
limitation of all these methods is the sensitivity to the
noise in the localization of points.

Methods based on stratification have appeared only
recently, and only preliminary and partial results are

i i i i available. In many cases they show a graceful degradation

a=ay < oz Agsl =gz A ol as noise increas)és, but theyissue ofginitializatiog is not
Thus each camera, excluding the first, gives two constraintsalways addressed.

whereqilT, q‘zT, qg are the rows o?’ieud. The usual assump-
tionsy = 0 ande, = &, are used to constrain the Euclidean
camera matrices:

y=0 & (1A (2Ady) =0, (50)

(31

of degree 4. Since we have six unknowns, at least four
cameras are required to comptiteIf the principal point
(ug, Vo) is forced to the image center, the unknowns reduce
to four and only three cameras are needed.

Hartley’s algorithm leads to a minimization problem
that requires a good initial guess; this is computed using a
quite complicated method, involving the cheirality con-
straints. Pollefeys—VanGool’s algorithm leads to an easier
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minimization, and this justifies the claim that convergence [S] M. Armstong, A. Zisserman, R. Hartley, Self-calibration from image
toward a global minimum is relatively easily obtained. It is triplets, in: Proceedings of the European Conference on Computer
unclear, however, how the initial guess has to be chosen. Vision, Cambridge, UK, 1996, pp. 5-16. . _

R. Hartley, Self-calibration from multiple views with a rotating
The method proposed by Heyden amtm was evaluated camera, in: Proceedings of the European Conference on Computer
only on one example, and was initialized close to the Vision, Stockholm, 1994, pp. 471-478.
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Triggs, suggest that his nonlinear algorithm is stable and _ head, Image and Vision Computing 12 (4) (1994) 227-237.

. . T [8] M. Armstong, A. Zisserman, P. Beardsley, Euclidean structure from
requires only approximate initialization (the author reports uncalibrated images, in: British Machine Vision Conference, 1994,
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