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Abstract

This paper provides a review on techniques for computing a three-dimensional model of a scene from a single moving camera, with
unconstrained motion and unknown parameters. In the classical approach, calledautocalibrationor self-calibration, camera motion and
parameters are recovered first, using rigidity; then structure is easily computed. Recently, new methods based on the idea ofstratification
have been proposed. They upgrade theprojectivestructure, achievable from correspondences only, to theEuclideanstructure, by exploiting
all the available constraints.q 2000 Elsevier Science B.V. All rights reserved.
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1. Introduction

The goal of Computer Vision (see Ref. [1] for an intro-
duction) is to compute properties (mainly geometric) of the
three-dimensional (3D) world from images. One of the
challenging problems of Computer Vision is toreconstruct
a 3D model of the scene from a moving camera. Possible
applications include: navigation of autonomous vehicles,
object recognition, reverse engineering and synthesis of
virtual environments.

Most of the earlier studies in the field assume that the
intrinsic parameters of the camera (focal length, image
center and aspect ratio) are known. Computing camera
motion in this case is a well-known problem in photo-
grammetry, calledrelative orientation [2,3], for which
several methods are available (see Ref. [4] for a review).
Given all the parameters of the camera, reconstruction is
straightforward.

However, there are situations wherein the intrinsic
parameters are unknown or off-line calibration is impractic-
able. In these cases the only information one can exploit is
contained in the video sequence itself.

Yet, some assumptions are necessary to make the
problem tractable. We will focus on the classical case of a
single camera with constant but unknown intrinsic
parameters and unknown motion. Other approaches restrict
the motion [5–8] or assume a rigidly moving stereo rig [9].

The contribution of this paper is to give a critical, unified

view of some of the most promising techniques. Such a
comparative account sheds light on the relations between
different methods, presented in different ways and formal-
isms in the original research articles.

In Section 2 some necessary notation and concepts are
introduced. Then (Section 3) the reconstruction problem is
formulated. In Section 4 the classical autocalibration
approach is briefly outlined. Stratification methods are
described in some details in Section 5. Applicability of
the methods is discussed in Section 6. Finally (Section 7),
conclusions are drawn.

2. Notation and basics

This section introduces the mathematical background on
perspective projections necessary for our purposes. Our
notation follows Faugeras [10].

A pinhole camera is modeled by itsoptical centerC and
its retinal plane (or image plane) R. A 3D point W is
projected into an image pointm given by the intersection
of R with the line containingC andW.

Let w � �x; y; z� be the coordinates ofW in the world
reference frame (fixed arbitrarily) andm the pixel coordin-
ates ofm. In homogeneous (or projective) coordinates

~m �
u

v

1

2664
3775 ~w �

x

y

z

1

26666664

37777775; �1�
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the transformation from~w to ~m is given by the matrix~P:

k ~m � ~P ~w; �2�
wherek is a scale factor calledprojective depth. If ~P is
suitably normalized,k becomes the true orthogonal distance
of the point from the focal plane of the camera.

The camera is therefore modeled by itsperspective
projection matrix (henceforthsimply camera matrix) ~P;
which can be decomposed, using the QR factorization,
into the product

~P� A�Rut�: �3�
The matrixA depends on theintrinsic parametersonly, and
has the following form:

A �
au g u0

0 av v0

0 0 1

2664
3775; �4�

where au � 2fku; av � 2fkv are the focal lengths in
horizontal and vertical pixels, respectively (f is the focal
length in millimeters,ku and kv are the effective number
of pixels per millimeter along theu- and v-axes),�u0; v0�
are the coordinates of theprincipal point, given by the inter-
section of the optical axis with the retinal plane (Fig. 1), and
g is the skew factor.

The camera position and orientation (extrinsic parameters),
are encoded by the 3× 3 rotation matrixR and the trans-
lation t, representing the rigid transformation that aligns the
camera reference frame (Fig. 1) and the world reference
frame.

2.1. Epipolar geometry

Let us consider the case of two cameras (see Fig. 2). If we
take the first camera reference frame as the world reference
frame, we can write the two following general camera
matrices:

~P� A�I u0� � �Au0�; �5�
~P0 � A 0�Rut�: �6�
A 3D point w is projected onto both image planes, to points
~m � ~P ~w and ~m 0 � ~P0 ~w; which constitute aconjugate pair.
From the left camera we obtain:

k 0 ~m 0 � A 0�Rut� ~w � A 0�Rut�

x

y

z

0

26666664

37777775�
0

0

0

1

26666664

37777775

0BBBBBB@

1CCCCCCA
� A 0R

x

y

z

2664
3775� A 0t: �7�

From the right camera we obtain:kA21 ~m � �I u0� ~w �
�x; y; z�T: Substituting the latter in Eq. (7) yields:

k 0 ~m 0 � kA 0RA21 ~m� A 0t � kH∞ ~m� ~e0 �8�
where H∞ � A 0RA21 and ~e0 � A 0t (the reason for this
notation will be manifested in the following).

Eq. (8) means that~m 0 lies on the line going through~e0 and
the pointH∞ ~m: In projective coordinates the collinearity of
these three points can be expressed with the external
product: ~m 0T�~e0 ∧ H∞ ~m� � 0; or

~m 0TF ~m � 0; �9�
where F � �~e0�∧H∞ is the fundamental matrix, relating
conjugate points, and�~e0�∧ is a matrix such that~e0 ∧ x �
�~e0�∧x: From Eq. (9) we can see that~m 0 belongs to the line
F ~m in the second image, which is called theepipolar lineof
~m: It is easy to see that~e0TF � 0; meaning that all the
epipolar lines contain the point~e0; which is called the
epipole (Fig. 2). SinceF~e� FT ~e0 � 0 the rank ofF is in
general 2 and, being defined up to a scale factor, it depends
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Fig. 1. The pinhole camera model, with the camera reference frame(X,Y,Z)
depicted.Z is also called theoptical axis.

Fig. 2. Epipolar geometry. The epipole of the first camerae is the projection
of the optical centerC 0 of the second camera (and vice versa).



upon seven parameters. In the most general case, the only
geometrical information that can be computed from pairs of
images is the fundamental matrix. Its computation requires a
minimum of eight point correspondences to obtain a unique
solution [11,12].

It can be seen that Eq. (9) is equivalent to

�A 021 ~m 0�T�t�∧R�A21 ~m� � 0: �10�
Changing to normalized coordinates,~n � A21 ~m; one can
obtain the original formulation of the Longuet-Higgins [13]
equation

~n 0TE ~n � 0 �11�
involving theessential matrix

E � �t�∧R; �12�
which can be obtained when intrinsic parameters are known.
E depends upon five independent parameters (rotation and
translation up to a scale factor). From Eq. (10) it is easy to
see that

F � A 02TEA21
: �13�

2.2. Homography of a plane

Given two views of a scene, there is a linear projective
transformation (ahomography) relating the projectionm of
the point of a planeP in the first view to its projection in the
second view,m 0

: This application is given by a 3× 3
invertible matrixHP such that

~m 0 � HP ~m: �14�
It can be seen that, given the two projection matrices,

~P� A�I u0�; ~P0 � A 0�Rut� �15�
(the world reference frame is fixed on the first camera) and a
planeP of equationnTx � d; the following holds [14]:

HP � A 0 R� t
nT

d

 !
A21

: �16�

HP is the homography matrix for the planeP . If d! ∞;

H∞ � A 0RA21
: �17�

This is the homography matrix for theinfinity plane, which
maps vanishing points to vanishing points and depends only
on the rotational component of the rigid displacement. It can
be easily seen that

HP � H∞ � ~e0
nT

d
A21 �18�

where~e0 � A 0t:

3. The reconstruction problem

Consider a set of 3D points viewed byN cameras with

matrices ~Pi
i�1;…;N: Let ~mi

j . ~Pi
~wj be the (homogeneous)

coordinates of the projection of thejth point onto theith
camera. Thereconstruction problemcan be cast in the
following way: given the set of pixel coordinates~mi

j ; find
the set of camera matrices~Pi and the scene structure~wj such
that

~mi
j . ~Pi

~wj : �19�

Without further restrictions we will, in general, obtain a
project [15–17] defined up to an arbitrary projective trans-
formation. Indeed, if~Pi and ~wj satisfy Eq. (19), also~Pi ~T and
~T21

~wj satisfy Eq. (19) for any 4× 4 nonsingular matrix~T:
A projective reconstruction can be computed starting

from point correspondences only, without any a priori
knowledge [18–25]. Despite that it conveys some useful
information [26,27], we would like to obtain aEuclidean
reconstruction, a very special one that differs from the true
reconstruction by an unknown similarity transformation.
This is composed by a rigid displacement (due to the
arbitrary choice of the world reference frame) plus a
uniform change of scale (due to the well-known depth-
speed ambiguity: it is impossible to determine whether a
given image motion is caused by a nearby object with
slow relative motion or a distant object with fast relative
motion).

Maybank and Faugeras [28,29] proved that, if intrinsic
parameters are constant, Euclidean reconstruction is
achievable. The procedure is known asautocalibration.

In this approach, the internal unchanging parameters of
the camera are computed from at least three views. Once the
intrinsic parameters are known, the problem of computing
the extrinsic parameters (motion) from point correspon-
dences is the well-known relative orientation problem, for
which a variety of methods have been developed [4,30,31].
In principle, from the set of correspondences~mi one can
compute the fundamental matrix, from which the essential
matrix is immediately obtained with Eq. (13). Motion
parametersR and the direction of translationt are obtained
directly from the factorization (12) ofE. In Ref. [32] direct
and iterative methods are compared.

Recently, new approaches based on the idea ofstratifi-
cation [14,33] have been introduced. Starting from a
projective reconstruction, which can be computed from
the set of correspondences~mi

j only, the problem is comput-
ing theproper ~T that upgrades it to a Euclidean reconstruc-
tion, by exploiting all the available constraints. To this
purpose the problem is stratified into different
representations: depending on the amount of information
and the constraints available, it can be analyzed at a
projective, affine,1 or Euclidean level.
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1 An affine reconstruction differs from the true one by an affine transfor-
mation.



4. Autocalibration

In the case of two different cameras, the fact that for any
fundamental matrixF there exist two intrinsic parameter
matricesA andA 0 and a rigid motion represented byt and
R such that F � A 02T��t�∧R�A21 is called the rigidity
constraint.

The seven parameters of the fundamental matrix are
available to describe the geometric relationship between
the two views; the five parameters of the essential matrix
are needed to describe the rigid displacement, thus at most
two independent constraints are available for the computa-
tion of the intrinsic parameters from the fundamental
matrix. Indeed, Hartley [30] proposed an algorithm to factor
the fundamental matrix that yields the five motion parameters
and the two different focal lengths. He also noticed that no
more information could be extracted from the fundamental
matrix without making additional assumptions.

In the case of a moving camera with constant intrinsic
parameters, it is possible to obtain a Euclidean reconstruc-
tion by cumulating constraints over different displacements.
There are five unknowns (the intrinsic parameters), each
displacement yields two independent constraints, hence
three views are sufficient (between three views there are
three independent displacements: 1–2, 1–3 and 2–3).

4.1. Kruppa equations

With a minimum of three displacements, we can obtain the
internal parameters of the camera using a system of poly-
nomial equations due to Kruppa [34], which are derived
from a geometric interpretation of the rigidity constraint
[28,35].

The unknown in the Kruppa equations is the matrixK �
AAT

; called theKruppa coefficients matrix, that represents
the dual of the image of theabsolute conic(see Ref. [10] for
details). From K one can easily obtain the intrinsic
parameters by means of Cholesky factorization (K is
symmetric and positive definite), or in closed form:

if K �
k1 k2 k3

k2 k4 k5

k3 k5 1

2664
3775

then A �

�����������������������������
k1 2 k2

3 2
�k2 2 k3k5�2

k4 2 k2
5

s
k2 2 k3k5���������

k4 2 k2
5

q k3

0
���������
k4 2 k2

5

q
k5

0 0 1

2666666664

3777777775
:

�20�

Kruppa equations were rediscovered and derived by
Maybank and Faugeras [28]. Recently Hartley [36]
provided a simpler form, based on the Singular Value

Decomposition of the fundamental matrix. LetF be written
asF � UDVT (with SVD), and

U �
uT

1

uT
2

uT
3

26664
37775 V �

vT
1

vT
2

vT
3

26664
37775 D � diag�r ; s;0�:

Then the Kruppa equations write (the derivation can be
found in Ref. [36])

vT
2Kv 2

r2uT
1Ku1

� 2vT
2Kv1

rsuT
1Ku2

� vT
1Kv 1

s2uT
2Ku2

: �21�

From Eq. (21) one obtains two independent quadratic equa-
tions in the five parameters ofK for each fundamental
matrix (i.e. for each displacement). Moreover, assuming
that g � 0; which is a good approximation for usual
cameras, one has the additional constraintk3k5 � k2 [32].
There are basically two classes of methods for solving the
resulting system of equations (assuming that more than
three views are available) [32,37]:

• Partition the equations set in groups of five and solve
each group with a global convergent technique for
systems of polynomial equations, like homotopy con-
tinuation methods [38,39]. Each system will give a set
of solutions and the solution common to all of them is
chosen. This method—presented in Ref. [32]—has the
great advantage of global convergence, but is computa-
tionally expensive. Moreover, the number of systems to
be solved rapidly increases with the number of displace-
ments.

• The over-constrained system of equations is solved with
a nonlinear least-squares technique (Levenberg–
Marquardt [40], or Iterated Extended Kalman Filter
[41]). The problem with nonlinear least-squares is that
a starting point close to the solution is needed. This can
be obtained by applying globally convergent methods to
subsets of equations (like in the previous case), or by
making the additional assumption that�u0; v0� is in the
center of the image, thereby obtaining (from just one
fundamental matrix) two quadratic equations in two
variablesk1, k4, which can be solved analytically [36].
This technique is used in Ref. [37].

5. Stratification

Let us assume that a projective reconstruction is avail-
able, that is a sequence~Pi

proj of camera matrices such that

~P0
proj � �I u0�; ~Pi

proj � �Qi uqi�: �22�
We are looking for a Euclidean reconstruction, that is a 4×
4 nonsingular matrix~T that upgrades the projective recon-
struction to Euclidean. If ~wj is the sought Euclidean
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structure,~T must be such that:~mi
j � ~Pi

proj
~T ~T21

~wj ; hence

~Pi
eucl . ~Pi

proj
~T; �23�

where the symbol. means “equal up to a scale factor”.

5.1. Using additional information

Projective reconstruction differs from Euclidean by an
unknown projective transformation in the 3D projective
space, which can be seen as a suitable change of basis.
Thanks to the fundamental theorem of projective geometry
[42], a collineation in space is determined by five points,
hence the knowledge of the true (Euclidean) position of five
points allows to compute the unknown 4× 4 matrix ~T that
transform the Euclidean frame into the projective frame. An
application of this is reported in Ref. [43].

Moreover, if intrinsic parametersA are known, then~T
can be computed by solving a linear system of equations
(see Eq. (52) in Section 5.2.5).

5.2. Euclidean reconstruction from constant intrinsic
parameters

The challenging problem is to recover~T without addi-
tional information, using only thehypothesis of constant
intrinsic parameters. The works by Hartley [18], Pollefeys
and Van Gool [44], Heyden and A˚ ström [45], Triggs [46]
and Bougnoux [47] will be reviewed, but first we will make
some remarks that are common to most of the methods.

We can choose the first Euclidean-calibrated camera to be
~P0

eucl� A�I u0�; thereby fixing arbitrarily the rigid trans-
formation:

~P0
eucl� A�I u0� ~Pi

eucl� A�Ri ut i�: �24�
With this choice, it is easy to see that~P0

eucl� ~P0
proj

~T implies

~T �
A 0

rT s

" #
�25�

wherer T is an arbitrary vector of three elements�r1; r2; r3�:
Under this parametrization~T is clearly nonsingular, and
being defined up to a scale factor, it depends on eight
parameters (lets� 1).

Substituting Eq. (22) in Eq. (23) one obtains

~Pi
eucl . ~Pi

proj
~T � �QiA � qirTuqi�; �26�

and from Eq. (24)

~Pi
eucl� A�Ri ut i� � �AR i uAt i�; �27�

hence

QiA � qirT . AR i
: �28�

This is the basic equation, relating the unknownsA (five
parameters) andr (three parameters) to the available dataQ i

andq i. R is unknown, but must be a rotation matrix.

Affine reconstruction.Eq. (28) can be rewritten as

Qi � qirTA21 . AR iA21 � H i
∞; �29�

relating the unknown vectoraT � rTA21 to the homography
of the infinity plane (compare Eq. (29) with Eq. (18)). It can
be seen that~T factorizes as follows:

~T �
I 0

aT 1

" #
A 0

0T 1

" #
: �30�

The right-hand side matrix is anaffine transformation, not
moving the infinity plane, whereas the left-hand one is a
transformation moving the infinity plane.

Substituting the latter into Eq. (23) we obtain:

~Pi
eucl

A21 0

0T 1

" #
� ~Pi

affi . ~Pi
proj

I 0

aT 1

" #
� �H i

∞uqi� �31�

Therefore, the knowledge of the homography of the infinity
plane (given by a) allows to compute the Euclidean
structure up to an affine transformation, that is anaffine
reconstruction.

From affine to Euclidean.Another useful observation is,
if H∞ is known and the intrinsic parameters are constant, the
intrinsic parameter matrixA can easily be computed
[8,14,18,48].

Let us consider the case of two cameras. IfA 0 � A; then
H∞ is exactly known (with the right scale), since

det�H∞� � det�ARA21� � 1: �32�
From Eq. (17) we obtainR � A 021H∞A; and, sinceRRT �
I ; it is easy to obtain:

H∞KH T
∞ � K �33�

whereK � AAT is the Kruppa coefficients matrix. As Eq.
(33) is an equality between 3× 3 symmetric matrices, we
obtain a linear system of six equations in the five unknown
k1, k2, k3, k4, k5. In fact, only four equations are independent
[14,48], hence at least three views (with constant intrinsic
parameters) are required to obtain an over-constrained
linear system, which can be easily solved with a linear
least-squares technique.

Note that two views would be sufficient under the usual
assumption that the image reference frame is orthogonal
(g � 0), which gives the additional constraintk3k5 � k2:

If points at infinity (in practice, sufficiently far from the
camera) are in the scene,H∞ can be computed from point
correspondences, like any ordinary plane homography [48].
Moreover, with additional knowledge, it can be estimated
from vanishing points or parallelism [33,49], or constrained
motion [8].

In the rest of the section, some of the most promising
stratification techniques will be reviewed.

5.2.1. Hartley
Hartley [18] pioneered this kind of approach. Starting
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from Eq. (28), we can write

�Qi � qiaT�A . AR i
: �34�

By taking the QR decomposition of the left-hand side we
obtain an upper triangular matrixB i such that �Qi �
qiaT�A � BiRi

; so Eq. (34) rewritesBiRi � liAR i or

1
li A21Bi � I : �35�

The scale factor 1=li can be chosen so that the sum of the
squares of the diagonal entries of (1/l i)A21B i equals 3. We
seekA anda that minimizesX
i>0

1
li A21Bi 2 I




 



2

: �36�

Each camera excluding the first, gives six constraints in
eight unknowns, so three cameras are sufficient. In practice
there are more than three cameras, and the nonlinear least
squares problem can be solved with Levenberg–Marquardt
minimization algorithm [40]. As noticed in the case of
Kruppa equations, a good initial guess for the unknowns
A and a is needed in order for the algorithm to converge
to the solution.

Given that fromH i
∞ the computation ofA is straight-

forward, a guess fora (that determinesH i
∞) is sufficient.

The cheirality constraints[50] are exploited by Hartley to
estimate the infinity plane homography, thereby obtaining
an approximate affine (orquasi-affine) reconstruction.

5.2.2. Pollefeys and Van Gool
In this approach [44], a projective reconstruction is first

updated to affine reconstruction by the use of themodulus
constraint [14,51]: since the left-hand part of Eq. (29) is
conjugated to a (scaled) rotation matrix, all eigenvalues
must have equal moduli. Note that this holds if and only if
intrinsic parameters are constant. To make the constraint
explicit we write the characteristic polynomial:

det�Qi � qiaT 2 lI � � l3l
3 � l2l

2 � l1l� l0: �37�
The equality of the roots of the characteristic polynomial is
not easy to impose, but a simple necessary condition holds:

l3l31 � l32l0: �38�
This yields a fourth order polynomial equation in the
unknown a for each camera except the first, so a finite
number of solutions can be found for four cameras. Some
solutions will be discarded using the modulus constraint,
that is more stringent than Eq. (38).

As discussed previously, autocalibration is achievable
with only three views. It is sufficient to note that, given
three cameras, for every plane homography, the following
holds [14]:

H1;3 � H2;3H1;2
: �39�

In particular it holds for the infinity plane homography, so

H i;j
∞ � H j

∞H i21

∞ . �Qj � qjaT��Qi � qiaT�21
: �40�

In this way we obtain a constraint on the plane at infinity for
each pair of views. Let us write the characteristic polynomial:

det��Qj � qjaT��Qi � qiaT�21 2 lI � � 0, �41�

det��Qj � qjaT�2 l�Qi � qiaT�� � 0 �42�
Writing the constraint (38) for the three views, a system of
three polynomials of degree four in three unknowns is
obtained. Here, like in the solution of Kruppa equations,
homotopy continuation methods could be applied to compute
all the 43 � 64 solutions.

In practice more than three views are available, and we
must solve a nonlinear least-squares problem: Levenberg–
Marquardt minimization is used by the author.

5.2.3. Heyden and A˚ ström
The method proposed by Heyden and A˚ ström [45] is

again based on Eq. (28), which can be rewritten as

~Pi
proj

A

rT

" #
. AR i

: �43�

SinceRiRiT � I it follows that:

~Pi
proj

A

rT

" #
A

rT

" #T

~PiT

proj � ~Pi
proj

AAT Ar

rTAT rTr

" #
~PiT

proj

. AR iRiTAT � AAT
: �44�

The constraints expressed by Eq. (44) are called the Kruppa
constraints [45]. Note that Eq. (44) contains five equations,
because the matrices of both members are symmetric, and
the homogeneity reduces the number of equations with one.
Hence, each camera matrix, apart from the first one, gives
five equations in the eight unknownsau; av; g , u0, v0, r1, r2,
r3. A unique solution is obtained when three cameras are
available. If the unknown scale factor is introduced expli-
citly, Eq. (44) rewrites:

0� fi�A; r ; li� � l2
i AAT 2 ~Pi

proj

AAT Ar

rTAT rTr

" #
~PiT

proj: �45�

Therefore, three cameras yield 10 equations in eight
unknowns.

5.2.4. Triggs
Triggs [46] proposed a method based on theabsolute

quadric and, independently from Heyden and A˚ ström, he
derived an equation closely related to Eq. (44). The absolute
quadricV consists of planes tangent to the absolute conic
[10], and in a Euclidean frame, is represented by the matrix

Veuc�
I 0

0 0

" #
: �46�
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If ~T is a projective transformation acting as in Eq. (23), then
it can be verified [46] that it transformsVeuc into V �
~TVeuc

~TT
: Since the projection of the absolute quadric yields

the dual image of the absolute conic [46], one obtains

~Pi
projV ~PiT

proj . K �47�
from which, using Eq. (25), Eq. (44) follows immediately.
Triggs, however, does not assume any particular form for~T;
hence the unknowns areK and V. Note that both these
matrices are symmetric and defined up to a scale factor.

Let k be the vector composed by the six elements of the
lower triangle ofK , andv be the vector composed by the six

elements of the lower triangle of~Pi
projV ~PiT

proj; then Eq. (47)
is tantamount to saying that the two vectors are equal up to a
scale, hence

k ∧ v � 0 �48�
in which the unknown scale factor is eliminated. For each
camera this amounts to 15 bilinear equations in 9� 5
unknowns, since bothk and v are defined up to a scale
factor. Since only five of them are linearly independent, at
least three images are required for a unique solution.

Triggs uses two methods for solving the nonlinear least-
squares problem: sequential quadratic programming [40] on
N > 3H cameras, and a quasi-linear method with SVD
factorization onN > 4 cameras. He recommended to use
data standardization [52] and to enforce det�V� � 3: The
sought transformation~T is computed by taking the eigen-
decomposition ofV.

5.2.5. Bougnoux
This method [47] is different from the previous ones,

because it does not require constant intrinsic parameters
and because it achieves only an approximate Euclidean
reconstruction, without obtaining meaningful camera
parameters as a by-product.

Let us write Eq. (23) in the following form:

~Pi
eucl�

266664
qiT

1

qiT
2

qiT

3

����������
qi

377775 . ~Pi
proj

~T �49�

whereqiT

1 ; qiT

2 ; qiT

3 are the rows of~Pi
eucl: The usual assump-

tionsg � 0 andau � av; are used to constrain the Euclidean
camera matrices:

g � 0 , �qi
1 ∧ qi

3�T�qi
2 ∧ qi

3� � 0; �50�

au � av , iqi
1 ∧ qi

3i � iqi
2 ∧ qi

3i: �51�
Thus each camera, excluding the first, gives two constraints
of degree 4. Since we have six unknowns, at least four
cameras are required to compute~T: If the principal point
�u0; v0� is forced to the image center, the unknowns reduce
to four and only three cameras are needed.

The nonlinear minimization required to solve the
resulting system is rather unstable and must be started
close to the solution: an estimate of the focal length andr
is needed. Assuming known principal point, no skew, and
unit aspect ratio, the focal lengthau can be computed from
the Kruppa equations in closed form [47]. Then, given the
intrinsic parametersA, an estimate ofr can be computed by
solving a linear least-squares problem. From Eq. (44) the
following is obtained:

QiAATQiT �QiArq iT � �QiArq iT �T � ir i2qiqiT � l2AAT
:

�52�
Since �AAT�3;3 � K 3;3 � 1; then l is fixed. After some
algebraic manipulation [47], one ends up with four linear
equations inAr . This method works also with varying
intrinsic parameters, although, in practice, only the focal
length is allowed to vary, since principal point is forced to
the image center and no skew and unit aspect ratio are
assumed. The estimation of the camera parameters is
inaccurate, nevertheless Bougnoux proves that the recon-
struction is correct up to an anisotropic homotethy, which
he claims to be enough for the reconstructed model to be
usable.

6. Discussion

The applicability of autocalibration techniques in the real
world depends on two issues: sensitivity to noise and
initialization. The challenge is to devise a method that
exhibits graceful degradation as noise increases and needs
only an approximate initialization. Several attempts have
been made, as reported in this survey, but the problem is
far from being solved yet.

As for the Kruppa equations, in Ref. [32] the authors
compare three solving methods: the homotopy continuation
method, and the Iterated Extended Kalman Filter. From the
simulations reported, it appears that all the methods give
comparable results. However, the homotopy continuation
method is suitable for the case of few displacements, as it
would be difficult to use all the constraints provided by a
long sequence, and its computational cost would be too
high. Iterative approaches (Levenberg–Marquardt and
Iterated Extended Kalman Filter) are well suited to the
case where more displacements are available. The main
limitation of all these methods is the sensitivity to the
noise in the localization of points.

Methods based on stratification have appeared only
recently, and only preliminary and partial results are
available. In many cases they show a graceful degradation
as noise increases, but the issue of initialization is not
always addressed.

Hartley’s algorithm leads to a minimization problem
that requires a good initial guess; this is computed using a
quite complicated method, involving the cheirality con-
straints. Pollefeys–VanGool’s algorithm leads to an easier
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minimization, and this justifies the claim that convergence
toward a global minimum is relatively easily obtained. It is
unclear, however, how the initial guess has to be chosen.
The method proposed by Heyden and A˚ ström was evaluated
only on one example, and was initialized close to the
ground-truth. Experiments on synthetic data reported by
Triggs, suggest that his nonlinear algorithm is stable and
requires only approximate initialization (the author reports
that initial calibration may be wrong up to 50%).

Bougnoux’s algorithm is quite different form the others,
since its goal is not to obtain an accurate Euclidean recon-
struction. Assessment of reconstruction quality is only
visual.

7. Conclusions

This paper presented a review of recent techniques for
Euclidean reconstruction from a single moving camera, with
unconstrained motion and unknown constant parameters.
Such unified, comparative discussion, which has not yet
been presented in the literature, sheds light on the relations
between different methods. Indeed, even though formula-
tions may be different, to all the methods reviewed, much of
the underlying mathematics is common. However, since
problems are inherently nonlinear, proper formulation is
very important to avoid difficulties created by the numerical
computation of the solutions.

Despite that this problem is far from being completely
solved, the more general one in which intrinsic parameters
are varying is gaining the attention of researchers. In fact,
Bougnoux’s method already copes with varying parameters.
Heyden and A˚ ström [53] proposed a method that works with
varying and unknown focal length and principal point.
Later, they proved [54] that it is sufficient to know any of
the five intrinsic parameters to make Euclidean recon-
struction, even if all other parameters are unknown and
varying. A similar method that can work with different
types of constraints has been recently presented in Ref. [55].
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