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Abstract

This paper deals with active-vision-based practical control schemes for collision avoidance as well as maintenance of
clearance in a-priori unknown textured environments. These control schemes employ a visual motion cue, called the visual
threat cue (VTC) as a sensory feedback signal to accomplish the desired tasks. The VTC provides some measure for
a relative change in range as well as clearance between a 3D surface and a moving observer. It is a collective measure
obtained directly from the raw data of gray level images, is independent of the type of 3D surface texture. It is measured in
[time~1] units and needs no 3D reconstruction. The control schemes are based on a set of If}Then fuzzy rules with almost
no knowledge about the vehicle dynamics, speed, heading direction, etc. They were implemented in real-time using
a 486-based Personal Computer and a camera capable of undergoing 6-DOF motion. ( 1999 Pattern Recognition
Society. Published by Elsevier Science Ltd. All rights reserved.
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1. Introduction

The problem of automating vision-based navigation is
a challenging one and has drawn the attention of several
researchers over the past few years (see for example Refs.
[1}18]). When dealing with a camera-based autonomous
navigation system, a huge amount of visual data is cap-
tured. For vision-based navigation tasks like obstacle
avoidance, maintaining safe clearance, etc., relevant vis-
ual information needs to be extracted from these visual
data and used in real-time closed-loop control system.
Several questions need to be answered, including:
(1) What is the relevant visual information to be extrac-
ted from a sequence of images? (2) How does one extract
this information from a sequence of 2D images? (3) How
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to generate control commands to the vehicle based on
the visual information extracted?

This paper provides answers to all three questions with
emphasis on the third one, i.e., generation of control
signals for collision avoidance and maintenance of clear-
ance using visual information only.

Vision-based autonomous navigation systems consist
of a vehicle (such as a car, golf cart), visual sensing devices
(camera, frame grabber for digitizing images) and other
mechanical actuators for braking/steering of the vehicle.
Relevant visual information is extracted from an image
sequence and serves as input(s) to the feedback control-
ler. The feedback controller generates appropriate signals
to the mechanical actuators to brake/steer the vehicle (as
shown in Fig. 1). Design of conventional feedback con-
trollers needs a mathematical model of the system (in-
cluding the vehicle as well as the mechanical actuators).
Mathematical models for such systems are usually com-
plex and may be di$cult to de"ne in some cases. On the
other hand fuzzy logic control, which is closer in spirit to
human thinking, can implement linguistically expressed
heuristic control policies directly without any knowledge
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Fig. 1. Proposed controller.

about the mathematical model of a complex process.
This paper presents two practical control schemes for
vision-based autonomous navigation tasks such as colli-
sion avoidance and maintenance of clearance. The
control schemes are based on a set of If}Then fuzzy rules
and need almost no information about the vehicle kin-
ematics, dynamics, speed, heading direction, etc. Also no
a-priori information about the relative distances between
the camera and the surfaces is necessary.

The main focus of this paper is to present details of the
controllers to accomplish the above-mentioned tasks.
The input to these controllers is the visual threat cue
(VTC) that can be extracted from a sequence of images
(see Refs. [24}26] for details on the VTC) and the output
is appropriate braking/steering commands to the mobile
robot (see Fig. 1). These control schemes were imple-
mented in textured environments and are almost inde-
pendent upon the type of texture in the scene. These
approaches can be extended to texture-less environments
as well [27].

1.1. Related work in vision-based autonomous navigation

Autonomous intelligent robots play an important role
in many applications including industrial automation,
space exploration, autonomous driving/#ying, handling
of hazardous materials, etc. Over the past few decades
several researchers have been exploring approaches to
build intelligent, goal driven robotic systems which can
interact with the environment autonomously (see for
example Refs. [1}18]). In the absence of a-priori informa-
tion about the environment, such an intelligence in the
robots may be imparted by using external sensors such as
tactile, visual, audio, etc., to sense the environment and
interact with it in an intelligent manner. Since our ap-
proach is based on visual sensing, we restrict our atten-
tion to vision-based intelligent robots only.

In the animate world visual information plays a key
role in controlling animal behavior in the environment
(see for example Refs. [22,23]). Several psychologists
have suggested that vision is the primary source of in-
formation about the surroundings and is responsible for
controlling visual behavior of humans in the environ-
ment (see for example Refs. [19}23]). These observations
have motivated many researchers to employ visual in-

formation as the primary source of sensory feedback
in building intelligent robotic systems. A brief review of
related work in vision-based autonomous navigation is
described in the following paragraphs.

1.1.1. Vision-based autonomous navigation using a-priori
information

Papanikolopoulos and Khosla [1] presented algo-
rithms for real-time visual tracking of arbitrary 3D ob-
jects moving at unknown velocity in a plane whose depth
information is assumed to be known a-priori. They pro-
posed an optical #ow-based approach to compute the
vector of discrete displacements each instant of time. In
Ref. [2], they described a vision sensor in the feedback
loop within the framework of controlled active vision.
This approach requires partial knowledge of the relative
distance of the target with respect to the camera which
obviates the need for o!-line calibration of the eye-in-
hand robotic system.

Feddema and Lee [3] proposed an adaptive approach
for visual tracking of an a-priori known moving object
with a monocular mobile camera. They employed a geo-
metrical model of the camera to determine the linear
di!erential transformation from image features to the
camera position and orientation. Computer simulations
were provided to verify the proposed algorithms.

Reid et al. [4] described an active vision system to
perform a surveillance task in a dynamic scene. These
ideas were implemented in a special purpose high perfor-
mance robotic head/eye platform. The controller was
divided into two parts namely the high-level control
which has some knowledge about vision and behaviors
and the low-level control had information about head
kinematics and dynamics, via joint angles and velocities
from the encoders and the motor torques.

Han and Rhee [5] describe a navigation method for
a mobile robot that employs a monocular camera and
a guide mark. They instruct the robot by means of a path
drawn on a monitor screen. The images of the guide
mark obtained by the camera provides information re-
garding the robot's position and heading direction. It
adjusts the heading direction if any deviation in the speci-
"ed path is detected. This approach was implemented on
a real system with average speeds of 2.5 feet/s. with devi-
ations of less than one foot in an indoor environment.

Turk et al. [6] described an approach to distinguish
road and non-road regions by employing color images.
They generate a new trajectory by minimizing a cost
function based on the current heading of the vehicle,
curvature of the road scene model, attraction to a goal
location, and changes in the road edges. It is then sent to
the pilot module which controls vehicle motion using
lateral position, heading, and velocity error signals. They
successfully implemented this approach to drive an
autonomous land vehicle (ALV) at speeds up to 20 km/h.
The vehicle motion is assumed to be known.
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1.1.2. Autonomous navigation using conventional feedback
control approaches

Feng and Krogh [7] describe a general approach for
local navigation problems for autonomous mobile robots
and its applications to omnidirectional and conven-
tionally steered wheel-bases. They formulate the problem
of driving an autonomous mobile robot as a dynamic
feedback control problem in which local feedback in-
formation is employed to make steering decisions. A class
of satis"cing feedback strategies is proposed to generate
reasonable collision-free trajectories to the goal by em-
ploying robot dynamics and constraints. This approach
was tested in simulations.

Krotkov and Ho!man [8] present a terrain mapping
system that constructs quantitative models of surface
geometry for the Ambler, an autonomous walking robot
designed to traverse terrains as on Mars. It employs a
laser range "nder to construct elevation maps at arbit-
rary resolutions. A PI control scheme that employed the
elevation error as an error signal to increase the accuracy
of the elevation maps was implemented to adjust the
elevation values.

1.1.3. Optical yow-based autonomous navigation
In Ref. [9], Olson and Coombs outlined a general

approach to vergence control that consisted of a control
loop driven by an algorithm that estimates the vergence
error. Coombs and Roberts [10] demonstrated the
centering behavior of a mobile robot by employing the
peripheral optical #ow. The system employs the max-
imum #ow observed in left and right peripheral visual
"eld to indicate obstacle proximity. A steering command
to the robot is generated on the basis of left and right
proximities extracted using optical #ow information.

Santos-Victor et al. [11] presented a qualitative ap-
proach to vision-based autonomous navigation on the
basis of optical yow. It is based on the use of two cameras
mounted on a mobile robot and with the optical axis
directed in opposite directions such that there is no
overlap between the two visual "elds. They implemented
these schemes on a computer controlled mobile platform
TRC Labmate.

1.1.4. Non-optical yow-based autonomous navigation
Romano and Ancona [12] present a visual sensor to

obtain information about time-to-crash based on the
expansions or contractions of the area without any ex-
plicit computation of the optic #ow "eld. This informa-
tion extracted from images was fed to an opto-motor
re#ex, operating at 12.5 Hz. This controller was able to
keep a constant distance between a frontal obstacle and
itself. The whole approach was implemented and tested
on a mobile platform.

Joarder and Raviv [13] describe a looming-based al-
gorithm [14] for autonomous obstacle avoidance. Visual
looming is extracted from relative temporal variations of

projected area in the image and employed it as a sensory
feedback to accomplish obstacle avoidance. In Ref. [15],
they have implemented a similar algorithm for obstacle
avoidance by measuring looming from relative temporal
variations of the edge density in a small window around
the "xation point. Both the algorithms were implemented
on a 6DOF #ight simulator in indoor environment.

In Ref. [16], Broggi presented a vision-based road
detection system that is implemented on a land vehicle
called the MOB-LAB. It is assumed that the road is yat
and the complete acquisition parameters (camera optics,
position, etc.) are known. The system is capable of detect-
ing road markings on structured roads even in extremely
severe shadow conditions.

In Ref. [17], Leubbers describes a neural-network-
based feature extraction system for an autonomous
high-mobility multi-wheeled vehicle application
(HMMWV). A video camera is employed to obtain the
images of the road and a neural network is employed to
extract visual features from image sequences. The road
following task was posed as a regulatory control task and
an expert system was used to improve the robustness of
the control system.

Yakali [18] describe several 2D visual cues for auton-
omous landing and road following tasks. Using these
visual cues road following tasks were successfully tested
on a US army land vehicle HMMWV equipped with a
video camera in outdoor environments and also on a
Denning mobile robot in indoor environments. The
autonomous landing task was implemented on a 6-DOF
#ight simulator in indoor environment.

The above-mentioned references indicate that some
autonomous vision-based navigation systems need a-
priori information about the environment [1}6]. In-
formation about the environment may not be known
a-priori in some situations. Some approaches employ
conventional feedback controllers [7,8]. The design of
conventional controller needs mathematical models of
the navigation system. The navigation systems are usu-
ally complex and may be di$cult to obtain their math-
ematical models. The reliability of optical #ow-based
approaches depends upon the reliability of measurement
of optical #ow from a sequence of images. Reliable ex-
traction of optical #ow may be di$cult in some outdoor
scenarios such as variations in lighting, vehicular vibra-
tions, wind, etc. The non-optical #ow-based approaches
need information about image features such as areas,
centroids, edges, texture, etc. These image features usu-
ally depend upon the type of texture in the environment,
the camera used to capture the image and the camera
parameters such as focus, zoom, etc.

This paper describes control schemes for collision
avoidance as well as maintenance of clearance tasks in
a-priori unknown textured environments (it is possible to
extend these approaches to texture-less environments
also). These control schemes employ a visual motion cue,
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called the visual threat cue (VTC) as a sensory feedback
signal to accomplish the desired tasks. The VTC is a col-
lective measure that can be obtained directly from the raw
data of gray level images, is independent of the type of 3D
surface texture. It is measured in [time~1] units and
needs no 3D reconstruction. The VTC is described in the
following section.

2. Overview of the visual threat cue (VTC)

Mathematically the VTC is de"ned (for R'R
0
) as

follows [24}27]:

<¹C"!R
0

(d/dt)(R)

R(R!R
0
)
,

where R is the range between the observer and a point on
the 3D surface, d(R)/dt is the di!erentiation of R with
respect to time and R

0
is the desired minimum clearance.

Note that the units of the VTC are [time~1].
There are imaginary 3D iso-VTC surfaces attached to

an observer in motion and are moving with it [24}27].
A qualitative shape of the iso-VTC surfaces is presented
in Fig. 2a. A positive value of the VTC corresponds to the

Fig. 2. (a) Visual "eld of VTC. (b) Qualitative demarcation of
space into threat zones by the VTC.

space in front of the observer and a negative value corres-
ponds to the region back of the observer. The points that
lie on a relatively smaller surface corresponds to a
relatively larger value of VTC, indicating a relatively
higher threat of collision. The VTC information can be
used to demarcate the region around an observer into
safe, high risk, and danger zones (Fig. 2b). Based on this
knowledge one can take an appropriate control action to
prevent collisions or maintain clearance [28].

A practical method to extract the VTC from a se-
quence of images of a 3D textured surface obtained by
a xxated, xxed-focus monocular camera in motion has
been presented in Refs. [24}27]. This approach is inde-
pendent of the type of 3D surface texture and needs
almost no camera calibration. For each image in such a
2D image sequence of a textured surface, a global variable
(which is a measure for dissimilarity) called the image
quality measure (IQM) is obtained directly from the raw
data of the gray-level images. The VTC is obtained
by calculating relative temporal changes in the IQM.
This approach by which the VTC is extracted can be
seen as a sensory fusion of focus, texture and motion
at the raw-data level. The algorithm to extract this
cue works better on natural images including fractal-
like images, where more details of the 3D scene are
visible in the images as the range shrinks and also can
be implemented in parallel hardware. The VTC can
be used to directly maintain clearance in unstructured
environments.

2.1. Image quality measure (IQM)

Mathematically, the IQM is de"ned as follows [24}26]:
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). The IQM is a measure for the dis-

similarity of gray level intensity in the image.
The advantages of using this measure are: (1) It gives a

global measure of quality of the image, i.e., one number
which characterizes the image dissimilarity is obtained,
(2) It does not need any preprocessing, i.e., it works dir-
ectly on the raw gray level data without any spatio-
temporal smoothing or segmentation, (3) It does not need
a model of the texture and is suitable for many textures
and (4) It is simple and can be implemented in real time on
parallel hardware.
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Fig. 3. (a) Images of D110, d is the relative distance. (b) Comparison of theoretical and measured values of the VTC.

2.2. Extraction of the VTC from IQM

Based on experimental results (indoor as well as out-
door) [26], we observed that the relative temporal
changes in the IQM behave in a very similar fashion to
the VTC, i.e.,

d(IQM)/dt

IQM
+!R

0

d(R)/dt

R(R!R
0
)
.

This means that the VTC can be measured using the
IQM. The VTC is independent of the magnitude of the
IQM. A sample set of four images (out of 71) that corres-
ponds to a texture from Brodatz's album [30] as seen by
a visually "xating, moving, "xed-focus camera is shown
in Fig. 3a. A comparison of the measured as well as
theoretical values of the VTC is shown in Fig. 3b. Very
similar results were reported in Ref. [25] for 12 di!erent
textures of the same album [30].

2.3. Qualitative view of Md(IQM)/dtN/MIQMN

As shown in the previous sections the VTC is de"ned
only in a region beyond a certain desired minimum
clearance R

0
and is not de"ned when the distance be-

tween the camera is less than R
0
. Though we restrict

ourselves to regions beyond the desired minimum clear-
ance there might be situations when one is in the region
for which the distance between the camera and the sur-
face is less than R

0
. Since the VTC is unde"ned in this

region it cannot be employed when the robot is in this

region. However the IQM and relative temporal vari-
ations in IQM (Md(IQM)/dtN/MIQMN) can be used since it
is an image measure and is de"ned irrespective of the
distance between the camera and the surface. Note that
the VTC is very similar to the relative temporal vari-
ations of the IQM (see Fig. 4a}c).

3. Control objectives

Two vision-based control schemes have been imple-
mented on a six DOF #ight simulator using the VTC as
a sensory feedback signal. This section describes the
desired control tasks, the constraints and the motivation
for the choice of the control schemes employed.

3.1. Control task I: Collision avoidance

The objective of this control task is to stop a moving
robot in front of an a-priori unknown textured obstacle
when the distance between the camera and the obstacle is
equal to a certain desired clearance R

0
(see Fig. 5a),

employing visual information only.

3.2. Control task II: maintenance of clearance

The objective of this control task is to maintain a con-
stant clearance between an a-priori unknown textured
surface and a mobile robot using visual information only
(see Fig. 5b).
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Fig. 4. (a) Qualitative behavior of IQM vs. relative range.
(b) Qualitative behavior of the relative temporal variations of
IQM vs. relative range. (c) Qualitative behavior of the VTC vs.
relative range. Note: for R'R

0
VTC is very similar to relative

temporal variations of IQM.

3.3. The constraints

The above-mentioned control tasks have to be ac-
complished with the following constraints:

f The input to the controllers is visual information only.
f No information about the vehicle speed or dynamics is

available.
f The controllers have no a-priori information about the

distance between the camera and the obstacles or the
type of the texture on the obstacles.

f Obstacles must have texture on them.

3.4. Choice of control schemes

In the absence of vehicle dynamics conventional con-
trol schemes such as PID schemes are di$cult to imple-
ment. On the other hand, Fuzzy Logic Control which

Fig. 5. (a) Control objective I. (b) Control objective II.

consists of a set of collection of rules seems to be more
appropriate for the control tasks with the above men-
tioned constraints.

Research in the area of fuzzy control was initiated by
Mamdani's pioneering work [31], which had been moti-
vated by Zadeh's seminal papers on fuzzy algorithms
[32] and linguistic analysis [33]. In the past few years
several researchers have addressed the use of fuzzy con-
trol for various ill-de"ned processes for which it is di$-
cult to model the dynamics (see for example Refs.
[34}36]). Fuzzy control is closer in spirit to human
thinking and can implement linguistically expressed heu-
ristic control policies directly without any knowledge
about the dynamics of the complex process.

Several collision avoidance schemes based on fuzzy
approaches have been suggested for autonomous navi-
gation tasks [37}41]. These approaches required many
parameters such as the range between the camera and the
surface, slant of the surface, heading angle of the robot,
width of the road, shape of the road, etc. Usually these
control schemes are simulated on a computer without
real implementations.

The VTC mentioned in Section 2 provides an indica-
tion for relative variations in ranges as well as clearances.
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Fig. 6. Block diagram of control scheme I.

In other words, if the VTC values increase one can say
that the vehicle is moving forward and vice-versa. In
order to judge whether the vehicle is moving far away or
close to the desired clearance it may not be necessary to
know the mathematical model of the vehicle. Autonomous
navigation tasks such as collision avoidance and mainten-
ance of clearance can be accomplished by a set of heuristic
rules based on the VTC, without vehicle models. This is
the main motivation for choosing fuzzy control schemes
among several possible conventional control schemes.

4. Fuzzy approach to task I: collision avoidance

This section describes the fuzzy logic control scheme
employed to accomplish task I, namely to stop a moving
robot in front of a textured surface when the distance
between the surface and the robot equals a desired range
R

0
. No a-priori information such as the relative distance,

type of texture, etc., about the obstacle is available to the
robot. The design of this controller assumes no math-
ematical model of the robot and is based on a set of
simple IF}THEN rules. A block diagram of the proposed
control scheme is shown in Fig. 6.

The camera is initially focused to the distance which is
equal to R

0
which is the desired stopping gap between

the robot and the textured surface. For ranges R greater
than R

0
, as the range increases the VTC value decreases

and vice-versa. Based on the VTC values, we divide the
space in front of the mobile robot into three di!erent
regions as shown in Fig. 7a and b. Region I can be seen as
a safe region and regions II and III can be seen as danger
zones. If the VTC value is greater than a certain positive
threshold say VTCTh then the textured surface is in the
danger zone of the robot. When the measured VTC is
smaller compared to the threshold VTCTh then the tex-

tured surface is in the safe zone (region I in Fig. 7a). If the
measured value of the VTC is greater than the threshold
VTCTh then the textured surface is in the danger zone of
the robot. Finally when the VTC values change from
positive to negative it provides an indication that the
textured surface has entered the desired clearance zone
and the robot has to stop moving forward to avoid
a collision with the textured surface.

Based on the heuristic information about the behavior
of the VTC as a function of the range between the robot
and the textured surface, we formulate the following rules
suitable for achieving the desired control task. It should
be noted that we try to demonstrate the use of the VTC
as sensory feedback information for collision avoidance
and these set of the rules are not the only possible set of
rules to accomplish the desired task. Alternative set of
rules could be formulated for better control.

Rule I: This rule corresponds to the case when the
robot is in the safe zone (region I in Fig. 7a). In this zone,
no control action should be taken, i.e., no change in speed is
necessary. The sensing and action corresponding to this
region can be expressed in the IF}THEN format as follows:

If the measured VTC value is less than the threshold
VTCTh then take no action.

Rule II: This rule corresponds to region II in Fig. 7a. If
the textured surface is in this region then the value of the
value of the measured VTC is greater than the threshold
and the robot has to be prepared to stop any time the
measured VTC values changes from positive to negative.
The condition can be expressed in an IF}THEN format
as follows:

If the measured VTC is greater than the threshold
VTCTh then be prepared to stop anytime the measured
VTC value becomes negative.
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Fig. 7. (a) Qualitative plot of relative temporal variations of
IQM. (b) Fuzzy demarcation of space around the mobile robot
for control task I.

Rule III: This rule corresponds to region III in Fig. 7a.
In this region the robot is required to stop if it is mov-
ing towards the surface. Note that in this region VTC
is negative. This condition can be expressed in the
IF}THEN format as follows:

If the measured VTC is negative then Stop.

Rule IV: When the robot is either stationary or moving
away from the surface, none of the above conditions are
satis"ed and hence no control action is taken. This condi-
tion can be expressed in IF}THEN format as follows:

IF none of the above situations occur THEN take no
action.

5. Fuzzy approach to task II: maintenance of clearance

This section describes the fuzzy logic control scheme
employed to accomplish task II, i.e., maintenance of
clearance (refer to Fig. 8a and b). A block diagram of the
proposed control scheme is shown in Fig. 9.

In Fig. 8a the left region (region A) is closer to the
camera than the right region (region B). The camera is

Fig. 8. (a) Control task II. Note: Region A corresponds to the
left of the camera and region B corresponds to the right of the
camera. (b) Regions of interest in images for control task II.

Fig. 9. Block diagram of the control scheme II.

initially focused at a desired minimum clearance R
0
.

When the distance between the camera and the surface is
greater than the desired minimum clearance, the points
located at a greater distance have relatively smaller
values of the VTC than those located at a relatively
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smaller distance. In other words, the di!erence between
the VTC values of the left window (denoted as region A)
and the VTC value of the right window (denoted as
region B) can be used to generate appropriate control
action to maintain a safe clearance between the textured
surface and the mobile robot. The di!erence in the mea-
sured VTC values of the left and the right windows is
the only information that is fed to the controller and the
controller generates appropriate control action to the
mobile robot to accomplish the desired task.

Based on the heuristic information about the behavior
of the VTC as a function of the range between the robot
and the textured surface, we formulate the following rules
suitable for achieving the desired control task. It should
be noted that we try to demonstrate the use of the VTC
as sensory feedback information for collision avoidance
and these set of the rules are not the only possible set of
rules to accomplish the desired task. Alternative set of
rules could be formulated for better control.

For the sake of simplicity let the di!erence between
VTCA and VTCB be denoted as Err}AB. In other words,
Err}AB " VTCA ! VTCB.

Rule I: This rule is formulated to take care of the
control when the Err}AB is almost equal to zero. In such
a situation the motion to the right (see Fig. 8a) is almost
zero. This can be expressed in an IF}THEN format as
follows:

IF Err}AB is approximately zero THEN motion to the
right is approximately zero.

Rule II: This rule is formulated to take care of the
control when the Err}AB small. In such a situation the
motion to the right is small (see Fig. 8a). This can be
expressed in an IF}THEN format as follows:

IF Err}AB is positive small THEN motion to the right
is small.

Rule III: This rule is formulated to take care of the
control when the Err}AB is medium. In such a situation
the motion to the right medium (see Fig. 8a). This can be
expressed in an IF}THEN format as follows:

IF Err}AB is positive medium THEN motion to the
right is medium.

Rule IV: This rule is formulated to take care of the
control when the Err}AB is big. In such a situation the
motion to the right is big (see Fig. 8a). This can be
expressed in an IF}THEN format as follows:

IF Err}AB is positive big THEN motion to the right is
big.

Rule V: According to this rule when the region A is
within the desired clearance and region B is in the region
beyond the desired clearance, the desired control is to
move to the right and move backwards (see Fig. 8a). This

can be expressed in an IF}THEN format as follows:

IF VTCA(0 and VTCB'0 THEN motion to the right
is big and reverse the current direction of motion.

Rule VI: According to this region both region A and
region B are within the desired clearance region. The
desired control action is to move the robot backwards.

IF VTCA(0 and VTCB(0 THEN motion to the right
is big and reverse the current direction of motion.

Rule VII: When the textured surface is perpendicular
to the direction of motion of the mobile robot, Err}AB is
going to be zero irrespective of the distance between the
robot and the mobile robot. In such a case Rules I } VI
will fail and the robot might collide with the textured
surface instead of maintaining a safe clearance. This
situation may be overcome by the following IF}THEN
condition:

IF Err}AB is almost zero and VTCA(0 and VTCB
(0 THEN move sidewards (either right or left).

Rule VIII: When the robot is either stationary or mov-
ing away from the surface none of the above mentioned
conditions are satis"ed. This situation can be expressed
in an IF}THEN format as follows:

IF none of the above situations occur THEN take no
change in the velocity.

5.1. Membership functions employed

Simple linear membership functions are employed in
the fuzzy rule base (as shown in Fig. 10).

5.2. Defuzzixcation

Defuzzi"cation of the inferred fuzzy control action is
necessary in order to produce a crisp control action.
Since monotonic membership functions are used, we use
Tsukamoto's defuzzi"cation method [37], which is stated

Fig. 10. Qualitative membership functions for control scheme II.

S.R. Kundur, D. Raviv / Pattern Recognition 33 (2000) 295}308 303



Fig. 12. Block diagram of the simulator and setup.

Fig. 11. Evaluation of weight of a particular rule.

as follows:

ZH"
+n

i/1
a
i
y
i

+n
i/1

a
i

,

where ZH is the defuzzi"ed crisp control command and
a
i

is the weight corresponding to the rule i; y
i

is the
amount of control action recommended by rule i and n is
the number of rules.

The ratio of the shaded area to the area of the triangle
is used as the "ring strength (see Fig. 11) and is employed
as the weight corresponding to that particular rule:

a
i
"b

i
(2!b

i
),

when b
i
equals 1, the shaded area equals the area of the

triangle, hence a
i
is 1.

6. Implementation details

The control algorithms presented in the previous sec-
tions are implemented on a 6-DOF vision-based #ight

simulator controlled by a 486-based Personal Computer.
This section presents implementation details of the con-
trol schemes.

6.1. Experimental setup

The system used in the experiments include:

1. Six DOF miniature #ight simulator
2. CCD video camera
3. Imaging Technologytm Frame Grabber
4. 486-based personal computer
5. Photocopies of texture plates D9, D110 from

Brodatz's Album [30] pasted on a #at board em-
ployed as textured surface.

6.2. Six-DOF miniature yight simulator

An IBM gantry robot has been modi"ed such that all
the six motor controllers can accept velocity inputs. A
monocular camera is attached to the end e!ector of the
robot. This camera is capable of undergoing six-DOF
motion within the workspace of the robot (a block dia-
gram is shown in Fig. 12). Various types of miniature
environments (structured as well as unstructured) can be
simulated in the workspace by physical placing of objects
such as toy mountains, trees, etc.

A sequence of images is obtained by the camera and
the relevant image processing is done by the image pro-
cessing hardware/software housed in the 486-based Per-
sonal Computer. A single 486-based, 50 MHz, Personal
Computer is employed to control the robot as well
as perform the relevant image processing. Control
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Fig. 13. (a) Camera mounted on the robot. (b) Textures used in
the control experiments.

commands to the robot are generated on the basis of
relevant visual information extracted from the image
sequence.

6.3. Procedure

A CCD video camera is used to obtain the images of
the 3D textured environments. These images are digitized
by an image processing PC-board ITEX PC-VISION
PLUS. A block diagram of the experimental setup is
shown in Fig. 12. Textured pattern (D5, D110 from Ref.
[30], see Fig. 13b) pasted on a #at surface is presented as
the obstacle along the path of the robot (see Fig. 13a).
For both control schemes the camera is initially focused
to the desired minimum clearance (R

0
"200 mm.).

Qualitative measures for fuzzy sensing and action (small,
medium, big, etc.) are employed, rather than the exact
speeds.

6.4. Control scheme I

A window of size 51]51 pixels is chosen in the center
of the image to evaluate the visual feedback signal VTC.

According to the rules presented in the previous section
the crisp control action is (either move or stop) is gener-
ated (see Fig. 6). Two di!erent speeds were employed in
this control scheme (speed2'speed1).

6.5. Control scheme II

Two windows (left and right) each 50]50 pixels are
opened in the image. In each the visual parameter VTC is
evaluated and based on the di!erence between left and
right values an appropriate control signal is generated.
This control scheme was tested for four di!erent orienta-
tions of the texture surfaces used.

7. Results and analysis

7.1. Control scheme I

Two di!erent speeds were used to test the braking
capability of the control algorithm. We observed that the
greater the speed of the robot, the greater is the error
between the desired and actual values of the clearance
between the robot and the surface. The results are sum-
marized in Table 1.

From Table 1 it can be seen that there is an error
between the desired stopping point and the actual stop-
ping distance. This error is due to the inertia of the robot
and mainly depends upon the speed at which the robot is
traversing, in otherwords, at higher speeds the error is
high and at lower speeds the error is lower. This error can
be minimized by applying the brakes to the robot even
before it reaches the desired clearance point. The point
where it should start applying braking before reaching
the desired clearance may be determined by employing
additional visual motion cues (see Ref. [29] for addi-
tional visual motion cues).

7.2. Control scheme II

The lateral and longitudinal components of the head-
ing vector were recorded. The resultant was plotted man-
ually (see Figs. 14}17). Two sets of results using two
texture patterns (shown in Fig. 13b) are presented. Each

Table 1
Summary of vision-based collision avoidance results

No. Texture Speed Desired Actual Error

1 D5 Speed1 200 mm 180 mm 20 mm
2 D5 Speed2 200 mm 165 mm 35 mm
3 D110 Speed1 200 mm 180 mm 20 mm
4 D110 Speed2 200 mm 165 mm 35 mm

S.R. Kundur, D. Raviv / Pattern Recognition 33 (2000) 295}308 305



Fig. 14. Results of control scheme II for D110: Case 1.

Fig. 15. Results of control scheme II for D110: Case 2.

Fig. 16. Results of control scheme II for D5: Case 1.

Fig. 17. Results of control scheme II for D5: Case 2.
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texture pattern was tested under two di!erent orienta-
tions. All the four experiments in this control scheme
employed the same rule base. The error between the
desired path and the actual path is highly dependent
upon the choice of fuzzy membership functions, rule-base
and defuzzi"cation schemes used. Addition of more rules
to the existing ones may improve the error between the
desired and actual paths. Also by employing temporal
smoothing to the measured VTC values may improve the
error.

8. Conclusions and future work

This paper presented implementable active-vision-
based real-time closed-loop control schemes for collision
avoidance and maintenance of clearance tasks. The con-
trol schemes are based on a new measure called the VTC
that can be extracted directly from raw gray-level data
of monocular images. In other words, the VTC is the
relevant visual information used in the control tasks. The
VTC needs no optical #ow information, segmentation or
feature tracking. The control schemes are based on a set
of If}Then fuzzy rules and needs no information about
the robot dynamics, speed, heading direction, etc.

From the experimental results, it can be seen there is
some error between the desired trajectory and the actual
trajectory. Some possible sources of this error include:
slower computation of the VTC, no temporal smoothing
of the measured values of the VTC, choice of rules in the
rule base, etc. It is possible to obtain better performances
by using some temporal smoothing for the measured
values of the IQM as well as using high-speed computers
(may be parallel hardware implementations).

Currently we are working on the extensions of the
control schemes mentioned in this paper to unstructured
outdoor environments using a golf cart (known as
LOOMY) designed and built at Florida Atlantic Univer-
sity. Preliminary results in real outdoor environments are
highly encouraging.
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