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Abstract: Binocular robots whose cameras can be
independently directed require some mechanism for
verging; i.e. aiming both cameras at a fixation point.
Since the desired vergence angle is directly related to
target distance, some sensory cue to give depth infor-
mation is required to the vergence system. The estima-
tion of binocular disparity is a fundamental precursor
to the depth estimation. Algorithms using phase pro-
vide a new promising method for example based on
the output of Gabor filters for disparity estimation. In
this article, at first, we give a brief description of the
phase-based algorithm, including an extension to han-
dle the “wrap-around” problem, and a coarse-to-fine
strategy “the hierarchical method with pixel-shift” is
presented. For binocular tracking, computational time
isrestricted. Nevertheless, generally heavy calculations
are required to get an output through Gabor filters.
For that reason, a step-wise fast filter is examined and
it is shown to be a substitute for the Gabor filter. Fi-
nally the algorithm with the fast filter is applied to a
tracking control on the KTH head-eye system.

Keywords: phase-based algorithm, Gabor filter, dis-
parity, vergence, wrap-around, coarse-to-fine strategy,
head-eye system, binocular tracking

1 Introduction

Disparity is defined as the angle of correspon-
dence of two associating patterns in the left and
the right image, respectively, and many different
approaches have been suggested for this measure-
ment, including the two main approaches; correlation-
based techniques and correspondence-based tech-
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Figure 1: KTH head-eye System

niques [JJT91]. But although many of them give
good results they appear less satisfactory for track-
ing control, which requires both high robustness
and low cost “direct” computations. A new method
which is promising in this aspect based on the out-
put phase of bandpass Gabor filters has recently
been described[San88][BCGI0][JITI1][WWK92]. The
objective of this article is to adapt the phase-based
approaches to depth reconstruction and to implement
the scheme to dynamic tracking control for binocular
robot heads. The contents of the article has the follow-
ing outline.

In the next chapter, we briefly describe the general idea
of the phase-based algorithm and the Gabor filter. As
an extension to handle the “wrap-around” problem,
we propose a coarse-to-fine strategy, “the hierarchical
method with pixel-shift”. A step-wise fast filter is also
presented as a substitute for the Gabor filter. After in-
troducing the concept of the binocular vergence in Sec-
tion 3, the experimental results with the phase-based
algorithm are shown in Section 4. There we make a
comparison of the results from a Gabor filter and the
fast filter, and show the fast filter is competitive and
even has an advantage concerned with the normaliza-
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tion problem. The algorithm involving the improved
methods is finally applied to real-time tracking con-
trol on the KTH head-eye system.

2 The Phase-Based Algorithm

The basic concept of the phase-based algorithm is to
convolve the left and right stereo images with a com-
plex filter, such as a Gabor filter, and to use the com-
plex phase difference of the filter output. As the local
shift between two images is linearly proportional to
the local phase difference, the disparity is obtained at
each point with an approximation.

2.1 Description of the Algorithm

Noting that the stereo cameras are located on a hor-
izontal axis, we describe the algorithm on the basis
of 1-dimensional(horizontal) disparity estimation. At
first, {(z,y) and r(z,y) are defined as a stereo image
pair from the left and right respectively. And we con-
sider about the case that a constant horizontal dispar-
ity (Az) is found across some part of the scene then
in that region we have a relation:

z,y) = r(z + Az, y). (1)

We recover the value Az from the products which are
obtained by convolving {(z, y) and r(z, y) with a com-
plex filter f(z), that is:

/r(a:, yo)f(x — xg)de (2)
/l(a:, yo)f(x — zo)de
= /r(m + Az, y0)f(z — zo)da.(3)

conv,(xo, yo) =

convi(zo, Yyo) =

These products can be calculated at any point (zg, yo)
and a particular complex filter(see Section 2.2).

Disparity Measurement

Practically the calculations above can also be done in
Fourier domain considering the Wiener-Khintchine’s
theorem. And regarding the integral range in the
Fourier domain as the neighborhood of the filter fre-
quency wg[radian/pixel], we get a relation in frequency
shift between conv, (2o, yo) and convi(zo, yo):

6jw0A:c

convi(zo,yo) = conv,(zo, Yo). 4)

Now the disparity Az is approximated by computing
the complex phase difference AP:
Az =
Ad =

A(I)/(.do (5)

arglconv;] — arglconv,]. (6)

This is strictly valid only for filters of infinitesimal
bandwidth, arising directly from the Fourier shift
theorem[San88§].

Confidence Value

While the convolution products have some responses
at any pixel in the image, the responses in areas where
little variance can be seen in the horizontal direction
are not reliable. Therefore it is significant to have a
confidence value as a threshold to see the reliability of
the disparity estimation. To handle this problem, we
define a confidence value as follows:

mag[conv;] X mag[conv,)

(7)

conf = mag|conv;] + mag[conv,|’
The definition of the confidence value(eq. 7) is based on
the magnitude value of the convolution product(eq. 4)
since the odd filter gives a response on the variance in
horizontal direction(e.g., vertical edge) and the even
filter on the vertical line. And the magnitude values
from left and right products are multiplied so as to
assure that both responses are high enough. At the
same time, the multiplied value is divided by the ad-
ditive product to make a compressing scaling.

2.2 Filters

Gabor Filters

In the phase-based algorithm, it is important that both
the spatial width of the filters and the spatial fre-
quency bandwidth are small. Nevertheless, the well-
known uncertainty theorem for spatial width and spa-
tial bandwidth dictates that a local filter must have
a nonzero bandwidth. One-dimensional filters which
minimize the product of spatial width and bandwidth
were first described in the time/frequency domain by
Gabor [D.46]. And these filters and their Fourier trans-
forms have the functional form:

—(z—xq)?

ge—zo) = A gl (g)
Glo—wo) = e ot mimlomn)  (g)

zo : The spatial location of the filter.
wo : The central frequency of the power spectrum.
o . The spatial half-width of the filter.
The half-width in frequency domain(or = 1).

These “Gabor filters” are thus produced by the mul-
tiplication of a Gaussian envelope and complex har-
monic function. As for the accuracy of a disparity es-
timation, it is very sensitive to the spatial frequency
of the filter. In our analysis, however, the parameters
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wo = 1.0 and wgo = 1.3 are found to keep the most
reliable performance to detect 1 pixel’s disparity.

Fast Filter

For our aim, real-time object tracking, the calculation
of disparity estimation should be quick. Though Ga-
bor filters are theoretically efficient, they usually re-
quire heavy computations especially for the calcula-
tion of the 2-dimensional Fourier transform. Thus, as
a substitute for the Gabor filter, we form a pixel-wise
complex filter p(n)[n:0,1,2,...].

-1, forn =ng—1
Imlp(n —ng)] = t, forn=mng+1 (10)
0, forn#ng+1
-1, forn =ng£2
, for n = ng (11)
0, for n £ no+2,ng

Il
[\~
o~

Re[p(n — ng)]

ng : The spatial location.

t : The amplitude scale.

The frequency of this filter is regarded as wg =
7/2[radian/pixel]. And both of the filters are adapted
for the algorithm and the results are compared each
other(Section 4.2).

2.3 Coarse-to-Fine Strategy

Problem from Wrap-Around

In the practical application of this algorithm, the phase
difference A®(eq. 6) will be modulated into the range
(—m, w]. This means disparity estimates are always ex-
pressed within the range (—A/2,X/2] (A: wavelength
of the filter). In other words, the maximum disparity
which a filter can accurately determine is one-half the
wavelength of filter due to the “wrap-around”.

A T
Ar< — = — 12
-2 wo ( )
For this reason, large filters are necessary to determine
large disparities and at the same time these large filters
will only give the information about the low frequen-
cies in the image.

The Hierarchical Method with Pixel-Shift

Faced with this problem, a couple of meth-
ods have been proposed to keep the performance
of the algorithm high, including a coarse-to-fine
strategy[JTJ89] [WWK92] [CM92]. Our procedure “hi-
erarchical method with pixel-shift” is also based on a
coarse-to-fine pyramid and described as follows:

1° Construct a coarse-to-fine Gaussian pyra-
mid. Levels are separated by an octave in
scale.

2° Begin to calculate the disparity estimation
at the coarsest level. The estimation ob-
tained is taken over to the next level as a
shift information.

3° At each level, make a disparity estima-
tion by the phase-based algorithm. The
pixel referred to is indicated by the shift
information with respect to the dispar-
ity estimation obtained at the former
level(Fig. 2).

4° Repeat 3° down to the fine level. The dis-
parity estimation at the base level is taken
as Az.

3 Binocular Vergence

The “vergence angle” of a binocular system is the an-
gle between the optic axes of its cameras at fixation.
The vergence angle, baseline and gaze direction of a
binocular system determine a particular fixation point
(Fig. 3). The function of the vergence system is in a
narrow sense to control the distance from the cameras
to the fixation point near some target object. Thus,
the vergence problem can be defined as that of con-
trolling the vergence angle to keep the fixation dis-
tance appropriate for the current gaze target [Coo92].
In the case of primates, fixation consists of two sepa-
rate classes of movements. These movements are ver-
gence and version. As far as the disparity is concerned,
the two movements associate with two kinds of dispar-
ities. Pure version associates with zero disparity and
pure vergence with symmetric disparity [UPE92]. The
phase-based algorithm gives information for both of
these disparities. Here we consider the condition that
the fixation point has a stereoscopic disparity of zero
and points nearby tend to have small disparities, re-
garding the correspondence problem as solved by pre-
categorical processing. In Section 4.3, an vergence ex-
periment on KTH head-eye system [PE92](Fig. 1) is
presented.

4 Experiment

The phase-based algorithm involving the improved
methods are investigated in this section through the
experiments. The hierarchical method with pixel-shift
is first examined and then the performance of Gabor
filters and the fast filters is compared each other. The
experiment for a real-time vergence, the main contri-
bution of this article, is carried out in Section 4.3.
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Figure 2: Disparity estimation in the layer k-1. 7

Layer k: Disparity estimation d(i, j; k) is obtained at pixel(s, j).
Layer k-1: Corresponding to the pixel (4, 7), we calculate d(i, j; & — 1) by referring (i — d(3, j; k)/2, j)
and r(i 4+ d(7,j; k)/2, 7). Additive product of d(7, j; k — 1) and d(¢, j; k) is the disparity estimation in

this layer.

Target Object

Figure 3: Binocular Gaze Geometry

4.1 Hierarchical Method with Pixel-shift

The stereo image pair in Fig.4 is taken up as a sample.
The size of the images is 256 x 256 pixels along z- and
y-coordinate. Images are normalized; the average pixel
value is set to be 0 and average deviation 1. Several
objects are included in the image pair and disparities
can be seen in the horizontal and the vertical direc-
tion. Our interest is now in the horizontal disparities.
Disparity Estimation

Starting with the highest(coarsest) layer in the pyra-
mid, we have applied the 4-layered hierarchical method
with pixel-shift to the image pair. The Gabor filters
with the parameters wg = 1.0 and wgo = 1.3 are used
in each layer. Those filters are expected to cover rela-
tively wide range of disparity as detectable, since those
filters with variant scales give also reliable estimations.

(a)Left Image

Figure 4: The sample stereo image pair. Both cameras

(b)Right Image

are fixated at the center (left-upper corner of the box)
in the each image.

In our hierarchical method, this fact is especially sig-
nificant to give good initial estimations.

Fig. 5 shows the disparity map obtained at each layer
in the pyramid. Disparities are estimated first roughly
then finely. The gray level is corresponding to the dis-
parity(depth) estimation; positions at darker pixels are
estimated closer than the fixation point, the center of
the image, and positions at lighter pixels further. Note
that the reliable estimations are obtained in the re-
gions where vertical(or vertically slanted) edges exist.
And error estimations are detected in some regions
especially due to the vertical disparities. Those esti-
mations, however, will be eliminated by thresholding
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a)Layer 3(32x32)

i

b)Layer 2(64x64)

(c)Layer 0(256x256)

Figure 5: Dlsparlty Map by Gabor Filters

(a)Layer 3(32x32)

(b)Layer 2(64x64)

(c)Layer 0(256%256)

Figure 6: Confidence Map by Gabor Filters

with the confidence values.

Thresholding

To see the reliability of the estimations, we calculate
the confidence values as well. Fig. 6 shows the confi-
dence map obtained at each layer. Higher(lighter) gray
level at a pixel is corresponding to higher confidence
value. The confidence values obtained in one layer are
accumulated to the ones in the next layer. High con-
fidence values are observed where vertical edges exist
in the original images. Referring the confidence map,
the disparity map in Fig.5(c) is thresholded ! and the
result is shown in Fig.8(a). The precision of the dis-
parity estimationsis up to 0.5 pixels in this final stage.
In Fig.8(a), it should be also noted that the disparity is
not properly detected at the vertical edge in the center
of the box(see Fig.4). This is because the pixel values
across the edge are on both sides kept positive even af-
ter the normalization. In the case images include edges
in various gray levels, iterative normalizations and dis-
parity calculations may become necessary to complete

1The disparity map in Fig.8 is obtained, using a threshold
value investigated empirically.

the whole disparity map.
4.2 Gabor Filters and the Fast Filter

We have seen the performance of our coarse-to-fine
strategy, the hierarchical method with pixel shift. In
this section, the fast filters, as well as the Gabor fil-
ters, are applied to the algorithm and the results are
compared.

Performance of the Fast Filter

Replacing the Gabor filters with the fast filters, the hi-
erarchical method is adapted in the same manner as in
the former section, but without normalizing the sam-
ple images. The disparity estimation is shown in Fig.7,
corresponding to the result in Fig.5 obtained with Ga-
bor filters.

In the disparity map in Fig.7 noticeable noise is
present. This is because both of the odd and even part
of the fast filters have zero average in the outputs.
That is, discontinuities occur in the phase where real
outputs have infinitesimal values while the imaginary
outputs have positive and negative values mutually,
and this results in noise in the disparity estimations.
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(a)Layer 3(32x32)

(b)Layer 2(64x64)

(c)Layer 0(256x256)

Figure 7: Disparity Map by Fast Filters
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Figure 8: 3-D Thresholded Disparity Map

The noise is, nevertheless, eliminated by thresholding
with the confidence values.

Thresholded disparity estimations are shown in
Fig.8(b). As for the precision, it is not completely
equivalent to that from the Gabor filters(compare with
Fig.8(a)) but still up to 1 pixel. On the other hand,
the disparity at the vertical edge in the center of the
box(see Fig.4) is successfully detected. This is what
the Gabor filters failed to estimate properly due to
the normalization problem. Here we can see the ad-
vantage of the “normalization-free” filters.

Computational Time

Another big advantage of the fast filters is literally
the fast calculation. Table.1 shows the computational
time to get the disparity estimation for each of Gabor
filters(Fig.5) and the fast filters(Fig.7). The computa-
tional cost for the normalization process, which is nec-
essary in the usage of the Gabor filters, is relatively
small. Yet, considering the disparity estimation itself,

Table 1: Computational Time

Gabor filters  Fast filters

Normalization 0.13 -
Disparity Estimation 16.06 8.29
Total 16.19 8.29

(CPU Time[sec]/SUN Spark Station 10 Model 20)

the cost with Gabor filters is nearly twice as much as
that with the fast filters. The dominant factor which
causes the difference exists in the convolution process.
In the case Gabor filters are used, heavy computations
for the calculation of the 2-dimensional Fourier trans-
form are required, while they are not involved in the
case of the fast filters. Taking the advantage of the nor-
malization process into account as well, the fast filters
are chosen in the application to binocular vergence in
the next section.
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()60 frame

4.3 Binocular Tracking

For real-time vergence, the calculation of the disparity
estimation is desired to be as fast as possible. From
this point of the view, the phase-based algorithm has
been implemented on a parallel computer and applied
to binocular vergence control.

In order to use the disparity estimate to control the
motors, the corresponding angle has to be computed.
The number of pixels shift in the image are trans-
formed into angle through the focal length (assuming
rotation about the optical center) with the simple re-
lationship

1 shift

angle = tan™" ——
I focallength’

(13)

(h)70 frame

Figure 9: Binocular Tracking; images from left and right are superimposed.(1 frame = 40 msec)

(1)80 frame

where the focal length is given in pixels. The correction
for disparity is equally divided between the two eyes
giving the angular correction to the tracker for each
eye of

1 disparity (14)
2 X focallength

This angle will be corrected by the tracker. Thus the
object is tracked while it is moving in depth by con-

angularcorrection = tan™

tinuously updating the measurement of disparity. A
predictor is used by the tracker to avoid that the time
lag from the image processing and control, results in
constantly lying behind the tracked object.

Fig. 9 shows how the stereo cameras track the object,
here a video camera held by a man. The initial fix-
ation point is at the center of the image. Disparity
is calculated around the fixation point; for the region
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50x 50 pixels around the center. The calculation is per-
formed in every frame(l frame = 40 msec). The ver-
gence fixation is kept at the center in the images while
the object is moving closer. The pictures are taken ev-
ery 10 frame and those from left and right cameras
are superimposed. As the fixation point moves closer,
the background gets blurred and there the convergence
movement is implied.

In Fig. 10, the pan movement of each camera is plot-
ted. A symmetrical movement can be seen in the left
and right pan angles. As a whole, the result shows that
the system combining the disparity estimation scheme
with the vergence control is working properly.

400

200

200 ... ... .. L

ft pan

[0} 50 100 150 200 250
Frame

Figure 10: Pan movement of both cameras
5 Summary and Discussion

As stated in the introductory chapter, our aim has
been to control the vergence mechanism of the KTH-
head. For this purpose, we have considered the essen-
tial problem to develop a robust and fast algorithm for
disparity estimation and proposed improved methods
for the phase-based algorithm:

e a hierarchical method with pixel-shift.
e 3 fast filter as a substitute for Gabor filter.

The phase-based algorithm and the proposed schemes
are investigated through the experiments and the fol-
lowing factors are admitted:

e High precision of the disparity estimation by
the hierarchical method.

e The advantage of the fast filter concerning
normalization.

Further, those methods have been applied to dynamic
vergence control. Through the experiment in coop-
eration with the tracking system, the whole scheme

turned out to work properly in real-time vergence.
Future efforts could take several directions, including:

e Investigations for more sophisticated bandpass
filters.

e Hierarchical methods for vertical disparity
detection.

e Robust methods in thresholding disparity.

Solutions for those problems will contribute to more
robust and integrated vergence and tracking control.
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