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Attentional Sequence-Based Recognition:
Markovian and Evidential Reasoning

Cajatay Soyer, H. IsBozma, and YorgdstefanopulosMember, IEEE

Abstract—Biological vision systems explore their environment a scene. There has been a lot of work in vision science and ac-
via allocating their visual resources to only the interesting parts of - tjve vision on the generation of attentional sequences. However,

a scene. This is achieved by a selective attention mechanism thalTK‘he next step of linking the attentional sequences to visual tasks
controls eye movements. The data thus generated is a sequence o

subimages of different locations and thus a sequence of featuresand the responS|bIg higher level mechanisms ar_e poorly under-
extracted from those images—referred to as attentional sequence. Stood. Yet, developing models of such mechanisms prove out
In higher level visual processing leading to scene cognition, it to be crucial—if robotic vision systems are to make use of at-
is hypothesized that the information contained in attentional tentional sequences—as they need to do in many applications
sequences are combined and utilized by special mechanisms—al-[lly 121, [4], [5], [39], [42]. In this paper, we consider two-di-

though still poorly understood. However, developing models of h | (2-D ition task d W h
such mechanisms prove out to be crucial—if we are to understand mensional (2-D) recognition tasks and propose two approaches

and mimic this behavior in robotic systems. In this paper, we regarding how to use attentional sequences for this problem:
consider the recognition problem and present two approaches Markovian and evidential reasoning. The two approaches—al-
to using attentional sequences for recognition: Markovian and though seemingly different from each other—have underlying

evidential reasoning. Experimental results with our mobile robot . \\mon themes. First they can be used with different pre-at-
APES reveal that simple shapes can be modeled and recognizedt fi d att t f ’ ¢ | d bright text
by these methods—using as few as ten fixations and very simple (€NtiVe and attentive features (color, edge, brightness, texture,

features. For more complex scenes, longer attentional sequencestC.) without modification. Second, the approaches are capable

or more sophisticated features may be required for cognition. of handling variations with regards to scanpaths taken. To under-
Index Terms—Active vision, attentional sequence classification, stand the implication of this, Consid_er the possibility of looking
Dempster—Shafer theory, Markov models, selective attention. at a rectangular blob. Then, we might look at each edge con-

secutively or we may first look at the top and bottom edges and
then the left and right edges. Thus, even with a single scene,
the sequence of observed features may change depending on
IOLOGICAL vision systems have the capability of allo-the scanpath taken. Finally, these approaches have mechanisms
cating their visual resources to different parts of a scenefi@r learning under external supervision. These approaches have
time by shifting their attention [29], [32], [33], [36], [46]. This been implemented in our mobile robot APES, which has both
shift of attention is obtained mechanically by eye and head mphysical and mental attention capabilities.
tions and also by higher level cognitive mechanisms in a con-In the remainder of this section, we present a very brief
tinual loop of pre-attention and attention [10], [11], [30], [31]overview of the physiology of human vision in order to point
[33], [36], [47]. The incoming stream of subimages is then utbut the key features integral to biological vision and discuss
lized to generate a related sequence of features extracted fitgw work on active vision has made use of it. In the next
different spatial locations at different times, referred to as the &ection, two approaches to using attentional sequences, Markov
tentional sequence. The teattentional sequende intended to and evidential models, are presented. We then describe APES,
convey two important characteristics of this data: First, at eaith vision system, and selective attention mechanism. Compar-
instant only a small part of the scene is attended through a foveéive experimental results performed on simple and complex
fixation mechanism. Second, and perhaps more fundamentagiggnes demonstrate the efficacy of these approaches.
the sequential relations between attentive behavior stress the
temporal nature of the vision data. Visual understanding ba: Biological Visual Attention
comes a problem OT properly interpreting th_e attentlonql se_Physiological and psychological studies suggest four key
guences that are being generated when looking at an object or 7. . . Y . T
properties of biological visionFovea-periphery distinction
on the retina, occulomotion, image representation, and serial
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saccades—very rapid jumps of optical axis—are used to britagks [50]. All of these approaches have provided different
images of chosen objects to fovea where resolution of fimeechanisms of fixation generation by specifying a set of points
visual detail is at its best [10], [33]. Saccadic eye movemenis the image and work well in many applications. The use of
are one of the capabilities of the oculomotor system whigksulting attentional sequences for making decisions about the
is involved in controlling the eye movements. Saccades takerrent task remained relatively unexplored [7], [45].

place at very high speeds up to 6600C/s and there is a Our aim is quite different from these studies. We do not want
delay of about 0.2 s between detecting a target and makingpamplement a specific attentional sequence generating mech-
saccade. Saccadic eye movements require the computatioardém. Rather, we ask how to use the data thus collected for
the relative position of a visual feature of interest with respecognition purposes. In particular, we are interested in rea-
to the fovea in order to determine the direction and amplitudening that is independent of the pre-attentive and attentive cues
of the saccade. A third feature is that cells in the visual pattsed.

from retina to the primary and other cortical regions respond

to increasingly more complex stimuli, accompanied by largér. Mathematical Formulation: Pre-Attention and Attention

receptive fields on the retina [9], [23], [24], [28], [30], [31], e assume thatthe visual processing is composed of a loop of
[47]. This finding implies that image representations in highgjre-attentive and attentive stages which generate an attentional
visual centers are related to levels of abstraction. For exam@gquence.

in the primary visual cortex, simple cells respond to lines of | the pre-attention stage, simple attentive features are com-
a particular orientation, more common complex cells respoghted from the periphery region in order to select the next fixa-
to motion, and some cells both simple and complex respofigh point and thus the next fovea to be fixated. L&represent

to specified corners and curvatures. In other cortical regionge visual field image and represent the fovea image at time
collectively called the visual association cortex or prestriageLetO( I') denote the set of candidate foveas determined from
cortex, cells respond to color, motion, and orientation. Finallyye visual field. For each candidate fovksae (I!) an attention
although the human visual system is massively parallel §iteriaq : 7¢ — R*—a scalar valued function of interest based
structure, most visual tasks also require serial processinggsthe presence of simple features with low computational re-
the oculomotor activity results in the perception of a series gfjirements—is computed. The candidate fovea maximizing this

images in time [12], [13], [15], [29]. Especially in counting Oreriteria is then selected as the next fovea
comparison experiments, more complex scenes lead to longer

processing times in human subjects because of increased I}*l =arg max a(lf). (2)
number of fixations or eye movements required to solve the Tpecs(Iy)

task. This implies that information is collected and somehow When a selection is made, the optical axis of the camera is
combined after each fixation until there is enough informatiog, ’
to make a decision. Thus, approaches to using the attentiog
sequence thus generated must be developed.

cted to bring that area into fovea. Such camera movements
respond to saccadic eye movements in humans. As a result,
a sequence of foveas is generated.Let (I7,..., I} ) be the
stream of foveas looked at as of tffiéh fixation.
_ o ) ) In the attentive stage, each fov&a is subjected to detailed
Machine vision systems endowed with selective percegnalysis in order to make an observatiérmbout the state of the
tion—motivated by biological vision—allocate their limitedfoyea. In general, this analysis is much more computational than
resources to process only the most relevant parts of 4 pre-attentive stage and the visual primitives that are used can
incoming data [1], [2]. This is done by first implementingse rather complex. Considét different visual primitives and
a simple retina model, where a periphery and fovea can R the set of values ofith visual primitive be denoted b,,,.
defined and processed at different resolutions or levels of detgihe value of each visual primitive is obtained via an operator
The fovea is defined to be a small region around the center]o"fl . It — Q,, acting on the foved;'

the visual field while the remaining region of the visual fieldis |t ()~ is a finite set with N,, elements, then let

referred to as the periphery. Periphery-fovea distinction leads — (v, v, . ... V., } denotethe setofvalues that

to a loop of pre-attentive to attentive processing. Active vision " A
2 can take. Lef) denote the feature spacefas= Qq x --- x Q.

research has mostly concentrated on generating fixations A that

controlling camera movements [1], [4], [41], [42]. Early on,

the problem of locating a fovea has been solved by data-driven M

saliency operators, where a sequence of camera movements 1] = H Nop,. 2)

emerges from a specific image data [12], [13]. An alternative m=1

approach based on simplified visual search mechanisms sUCR5-h opservation! € Q then becomes a vector of visual

as using attractive forces has been presented in [48] aﬁ}‘#rnitive values

[49]. A third type of mechanism based on augmented hidden

B. Relation to Previous Work

Markov models—modeling eye movements explicitly while ot = [fl [[}] Y, [[}]] ) (3)
incorporating feedback from visual cues—has been presented

in [39]. A generalization of these ideas to Bayes networks andThus, as a stream of foveds = (I}, ... 7£fT) is generated,
decision theory is presented in [40]. A maximum-likelihoodo is an attentional sequencé = (o',...,o"). Hence, an at-

strategy for directing attention has been applied in recognititentional sequence can be visualized to be a set of values of vi-
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sual primitives observed at different locations at different times, Hence, the correct classificatiéh of an unknown scene can
containing the critical visual data. Obviously, the choice of thihen designated as the the library modeE L maximizing
visual primitives is of utmost importance if we are to use atted?(O7 |/)

tional sequences in visual tasks. The cognition stage then oper-

ates on the observation sequentein order to solve the given I* = argmax P(O™ |1). (6)
visual task. tel

It must be noted that as more information is collected and thus
D. Problem Statement the attentional sequence becomes longer, the valir¢@f | /)

Suppose that the visual task is defined as follows. The visi8]|’:'fcre‘r°‘seS and must therefore be scaled accordingly [38].

system is looking at a scene in an attentive manner and thus ) )
generating an attentional sequeri®. Furthermore, the system B- Evidential Models and Reasoning
knows aboutL different scenes to which the scene currently In this approach, the attentional sequetde= (o', ..., 07)
being looked could or could not belong. Then fiide L that is considered as a sequenced body of evidence, which can then
best explains the observed attentional sequénce be used to support competing propositions concerning the cor-
rect classification of a scene to different degrees [43], [45]. The
basic idea is to use a number between zero and one to indi-
IIl. USING ATTENTIONAL SEQUENCES cate the degree of support a body of evidence provides for each
proposition. Different bodies of evidence are then combined to
find the proposition which is most supported.
In this approach, the attentional sequece= (o', ..., 0") Let [* be the correct classification of the scene. Suppose the
is considered as a discrete Markov process [38] with an alphabgt of its possible values are given bythe frame of discern-
§2. This process is associated with the transition probability Marent. Then, propositions of interest are precisely those of the
trix A of dimension|©2| x (] form “the true value of* is in A” where and hence are in 1-1
correspondance with the subsgtsof L. Thus, we usel € 2%
to denote a proposition. In classification, we are in particular in-

A. Markov Models and Reasoning

A={P(o"™! =07 o' =v")} = {ai;} terested in propositions of the form
where
vl €Q Ay={l}, 1l=1,....,L  whereL = |L]. (7
and " -
. Now suppose for each propositiohy, we have a transition
Z aij =1, Vi€l 4 frequency matrixtj : Q x 2 — [0, 0o]. Each entryl} (v, v7)
JeQ represents the weight of evidence attested to obsewviradter

having observead’.

Now leto’ € Q2 be an observation at tinte This observation
attests evidence for each propositidp Letw : 2F x Q —
ELO, oo] represent the weight of evidence function. Then

Here, P(o'*! = v/ |o' = v') = a;; denotes the proba-
bility of getting a feature value’ after having observed . In a
Markov process, each observatignat timet is called astate
In our case, each observatiehrepresents the state of the fove
with respect to the attentive features.

The transition probability matrix is a probabilistic model of

expected fixation sequences that can be generated while Iookin? idential ) he d ; ‘ .
at an object. Thus, if we have a library bfobjects or scenes, 11" €vidential reasoning, the degrees of support for various

each can be represented by a different transition probability npéppositions discerned by is determined by the weights of

. ) " I
trix A, These matrices are learned after looking at these dp/dence attesting to these propositions.d,e2” x €2 — [0, 1]
fpe a simple support function focused.4n Thens; can be
Ined as

w(Ag,0") = Ti(0" 1, 0). (8)

jects or scenes in a repeated manner, based on the attentigﬁ
sequences generated. The learning procedure is explained indtﬁE

tail in Section 11I-C. 0. if 4, ¢ A
When presented with a new object or a scene, the system si(A,0f) = sl’(Al_Ot) if A, CAA£L
starts looking at it and an attentional sequente emerges. ' 1 T ifA— I '
Let P(o"*! |0, 1) denote the probability of observingt' after o '
having observea’ with the transition probability matrix4’. B "
SI(A17Ot) —1—¢ cw(Ay,0"). (9)

The conditional observation probabilit#(OT | 1) of this se-

quence by moddlis given by . . . . . .
Note thats; is a belief function with basic probability number

m(A;) = s1(A;,0t),m(L) =1 — s1(A, o), m(A) = 0 for all
T-1 1 otherA C L that does not contaid;.
POT|1) = P(o") - H P(o"]0",1), whereP(o') = —. However, each evidence points to a set of propositions =
t=1 ] 1,..., L with different degrees of supporit( A;, o'). Since4; N
(5) A, = ), each proposition conflicts with the other. Hence, the
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effect of each is diminished by the other. The orthogonal sur Stare st
si 0 2L x @ — [0,1] of the simple support functiong fo- |
cused oy, are given with basic probability numbers (10)—(12), A
shown at the bottom of the page.

The effect ofs{ is to provide instantaneous support for eact
proposition 4;. In order to find the total suppor for each New visual field 13
proposition 4,;, the so-far total cumulated support has to be )
combined with the instantaneous suppgrtThis is the case of "9 1+ General flow of processing.

homogeneous evidence—evidence strictly supporting a single_ o . . .
proposition. in Fig. 1. As it is consecutively fixating and forming observa-

i it t—1 t ;
Let st : 28 x Qf — [0,1] denote the cumulative supportt'ons’ the transitior?;(o'~*, o) between two consecutive ob-

function for an attentional sequen@é. Suppose a new fixation servations in this scanpath is recorded by incrementing the fre-

is made and observatiarit! is made. Based on the evidenc&Uency of that particular transiti(_)r_l by one. Hence, for. any li-
provided by this observation, instantaneous evidesitd, ) is brary model, the number of transitions between any pair of fea-

generated for each proposition. Bernoulli's rule of combina- tUré vectors forms g2| x |2 matrix. In the Markov approach,
tion provides a reasonable way of combinisjdocused ond; thes_,e_ matrices are converted into tra_msmon probabilities by nor-
with s¢(A;) andst focused ond; with s (A;). The cumulative mahzmg them row by row g_nd addlng_a small oﬁset_value to
Supports;t+1 - 2L % Qt+1 [0, 1] is defined recursively as the cope with nonexisting transitions. In evidential reasoning, these

orthogonal Sum’,§+1 = st @ s! (see (13), shown at the bottommatnges s.e.rvei dlrect;y as welghftshof evidence. Trr:e n_10del|ng
of the page). stage is critical to performance of the two approaches in recog-

Then, the result of classification is given by nition. To obtain a perfect model all parts of a scene must be ob-
’ served equally during learning fixations. Therefore, the learning
I+ = argmax s' 71 (A, OtF1). (14) period as determined by the length of the attentional sequence
L 5

New favea l?/

l h
le must be long enough to allow different scanpaths to be taken.

The combined total supports are checked at the end of edtRartial model that does not include all possible scanpaths and
fixation to find a proposition supported sufficiently higher tha,ﬁhus all possible feature transitions will mean that the scene is
the others. The scene corresponding to this proposition is §&ompletely modeled.

lected as describing the current scene best.
Ill. APES—ACTIVE PERCEPTIONSYSTEM

C. Learning Scene Models APES is a simple mobile robot with an active vision system
In creating a model for each sceh€ L, which may corre- [44], as shown in Fig. 2. Its body is a mobile vehicle with two
spond to an object image or a complex scene, the robot staltiven conventional wheels, and one freely rotating support
observing the scene in an attentive manner. We assume thattheel. Using four stepping motors it can translate and rotate
vital processing is composed of a loop of pre-attentive and attéts-body and direct its cameras to the visual stimuli by pan and
tive stages which generated an attentional sequence, as shtilvmotions. Body rotation and camera pan axes have been

s1(An o) T (1= 55(45,01)

m(Ay,o') = 7 (10)
1 - Hj:l sj(Aj,0")
1= (1= s5(A5,0%)
m(L7 0t> = ] I 1 " (11)
1 - H]:l s]( 7 0 )
( 0 if C contains none
: of A,l=1,...,L
5’(‘4’7&)“?:1 (1—s;(Aj,0") if C containsA4; but
; . —T — o , does not containt ;,
ST o) = [T Ae) J=1r L £ (12)
4 L t
2cne Ao [N 530500 i o contains some
1—]‘[]’,‘:1 s5;(A;,0) " of A,C#£L
(1, if C = L.
0 if C does not containt;

st (C, 0™ = { 1- (1= si(Ag,0h)) (1 = sj(A,0Y)), i; C containsA, (13)
1, if O = L.
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- Periphery processing (crde)

- Target selection
New visual ficld l

A

ATTENTION
- Camera movement {saceide)
- Fovea processing (detailed)

!

COGNITION
- Anentiona) Sequence provessing
- Degision making

Fig. 4. Simplified selective attention mechanism of APES.

1) Fovea—Periphery DistinctionAPES can simulate the
nonuniform photoreceptor density of the human retina in
three ways:

a) by varying complexity of features extracted from
foveal and peripheral regions;
b) by processing foveal and peripheral images at dif-
ferent resolutions;
¢) by using a two-camera retina model, which uses
separate camera angles and pixel densities for
foveal and peripheral images.
In this paper, the first retina model is used, as explained
in Sections 1I-A and 11-B.

2) Oculomotion:The two degrees of freedom (DOF) step
motor-based head assembly and the motion of the camera
cannot be compared to the highly developed and poorly
understood occulomotor system of mammals. However,

Fig. 3. Schematic of APES.

TABLE |
TECHNICAL SPECIFICATIONS OFAPES

oht- f . R ) )
Hod e APES can effectively control the optical axis of the
Wheel span: 52cm. camera and the fixation point with an accuracy of°1.8
Lv:_mun mxm;x: é Sem. ( due to its step motor-based drive system. Camera motions
rive method: St g MOtors . .
T uef\)/pB:lm) cor_respond to Iarge_anq fast_saccadlc m_otlons of the eye,
Pan accuracy: | 1.8 degrees which are used for fixating different spatial targets.
Tilt accuracy: .8 degrees _ 3) Levels of Representatiorithe attention criteria (also
Video format: CCIR composite i X X X
Tmage size; 512312 pixels called salient features) guide peripheral processing and
Camera fens: 4-47 degree zo0m is used to determine the next fixation point. APES can

use either edge content (computed by the gradient) or
brightness. Currently, we are working on enrichening
this set to include Cartesian and non-Cartesian filters.

) Serial ProcessingFinally, the selective attention mech-
anism employed by APES guarantees that only the most
important parts of a scene are fixated and processed in de-
tail, and relevant information is collected and integrated
in time to solve the given task.

designed to be cocentered, in order to simplify transformations
during combined body and camera motions, and are not the
same as the centerline of the cylindrical body for mechanical 4
stability reasons. APES is a research platform where different
selective attention algorithms are implemented and used.

Fig. 3 and Table 1 show the hardware configuration, and
Fig. 4 shows the simplified selective attention mechanism and
basic vision process, respectively. The main visual processing . )
module running on a workstation performs vision processbr APES'S Active Vision
setup, frame grabbing, pre-attentive and attentive processingyVithin this framework, visual processing consists of three
and serial communications. The on-board PC104 compubsic stages of operation: pre-attention, attention, and cognition,
is responsible for serial communications, motor control, ara$ shown in Fig. 4. The visual field components are shown in
camera control. All camera features including zoom angle c&ig. 5. APES finds a new fovea by considering overlapping
be controlled by the on-board computer. During operation nesandidate foveas within its visual field, computing their salien-
fixation point in the periphery is determined by visual proeies using an attention functian: 1% — R* and designating
cessing and this information is sent to the on-board computbe center of the most salient fovea as the next fixation point
which moves the camera accordingly. The new visual field & explained previously. In addition, APES has two mecha-
then processed by the vision system. nisms—inhibition and memory—that get activated before a

The vision system of APES is inspired by the key propertiesccade is made in order to avoid processing the same areas
of biological vision as follows. twice or going into infinite fixation loops. These are motivated
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ented: x 90° and each value¢ = 4,5,6,7 indicates an edge
Periphery orientedi x 90° 4 45°.
/ — Attentive processing strongly affects the performance of any
/ : Fovea further computation in the cognitive stage, where the visual task
1\ | Inhibition Region is being solved, as the feature vector strictly determines the in-
Candidate ~ \ formation content of the observation sequence. For example, re-

i",}ﬁ\ ol gardless of recognition methods being used, consider an object
overlapping ’ recognition task based on the sequence generated in the above
\ ‘ example. The eight edge type<in are already 45rotated ver-
Fixation Point sions of the same edge, therefore rotation invariance can only be
expected up ta- 22.5 even if edge detection is noiseless.

Each observation; is added to the attentional sequence
OT = (o!,...,07), thus generating a data sequence. The
by vision science findings that indicate the presence of spatignitive stage works with the incoming attentional sequence
inhibition mechanisms that delay fixations on an area that higSorder to achieve given visual tasks. At each time step in
just been fixated. this sequence, the cognitive stage uses collected information

The inhibition mechanism works as follows: &h x lexel to improve the System’s know|edge and attempts to make a
region[,ﬁ aroundthecurrentlyfixatedfové%, atthe centerofthe decision about the task being performed. If a decision can
current visual field, is defined as the inhibition region. Duringbe made, the task is solved, otherwise the selective attention
pre-attentive processing, all candidate fovEas C(I} ) falling  process continues to collect information. In the next section we
within the inhibition region are inhibited and cannot be chosen gfroduce mathematical methods developed for modeling and
the next fixation fovea. In this manner, the inhibition mechanisfgcognition of attentional sequences.
also enables the control of saccade magnitudes.

The memory mechanism works via keeping track of previ- IV. EXPERIMENTS
ously fixated foveas in terms of camera joint angles and pre- i )
venting fixations on these targets even if they are not within the!n order to study the efficacy of attentional sequence-based
currentinhibition region. Since APES has finite precision in pai§c0gnition, APES has taken partin more than 500 experiments.

and tilt directions A# = Ay = 1.8°, there is a finite set of fix- OUr &ims in these experiments are as follows:

Fig. 5. APES's visual field and its components.

ation points in camera coordinates, given by= {(6,¢) € 1) demonstrate the performance of Markov and evidential

R2|0 =1i-A,p=j Ap}, wherei and; are integers. reasoning as sequence classification methods using
In order to keep track of previously fixated coordingt@sp), simple and cor_np_lex scenes; _ _

we use a first-in-first-out memory of sizB. Then, the cor-  2) study how variations in the learning period—the length

responding set of foveas §; = {];7];*17 . 7];70}, All of the attentional sequences used for learning affect the

foveas in this memory are inhibited during pre-attention. Atthe ~ performance;

end of each new fixation[,;—D is removed from whild}“ is 3) understand the effects of modeling on classification per-

added to this memory. formance.

In summary, pre-attentive processing together with inhibition In these experiments, APES used a 20000 pixel visual
and memory mechanisms are merged to form an augmentediatd and a 40x 40 pixel fovea. The overlap between candidate

tention functiona : 1§ — R* as foveas was 50% and a fixation memory depth= 10 is used
to inhibit the last ten fixated foveas. The pre-attentive attention

0, if 19 € O (1) Cl.‘IT{eI‘IOI’] for each candldate. foved is ZPGI; VI(p)|. Inhi-
a(re) =40 if 1% € Cy bition and memory mechanisms are employed to form the at-
a( f) = tention function, as explained in Section II-B. In the attentive

stage, the feature space consistf20& 2; corresponding to
) ) (15)  eight different orientations of a simple edge feature computed
Note that APES can use any simple image feature as low-leygl e operatof; = arg max;cq, 51(1}) whereSi(I}) is the
attention criteria in the pre-attentive stage, and these critegg 3 operator for detecting edges with an orientatior®ofin
can be varied in order to generate fixation behaviors with difnese experiments selection of simple pre-attentive and attentive
ferent gharacteristics. In the experiments presented in this pagesiyres is intended to remove ambiguity in feature extraction
a(I$) = 3¢ 1 [VI(p)]. stages and understand the exact capability of an attentional se-
In the attentive stage the fixation fovea is subjected to mogeience as a tool for object recognition and scene classification.
detailed processing. APES can extract various complex featufdlexperiments are performed under normal lighting conditions
during attention. In general, the complexity of attentive prawith both ceiling mounted fluorescents and daylight from win-
cessing is proportional to the size of the feature sga@nd dows. Typically, two fixation sequences generated by our robot
the computational complexity of the features involved. In thehile looking at the same scene are never identical even if there
experiments reported in this paper, a very simple feature $&to variation in the scene. This is caused by the following:
Q = Q; is considered. The sét; is defined af); 2 {i|i = 1) slight variations in the first fixation point;
0,...,7} where each value= 0, 1,2, 3 indicates an edge ori-  2) small positioning errors in the camera head assembly;

a (1;) , it I8 e C(It).I5 ¢ C(IL), Ca.
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Fig. 6. Simple scenes containing “rectangle” and “polygon.” 'lg :;;":ﬁ:ﬂ'ﬂ'}g 08 ’* v o g
18 0033311110 gﬁ L \ =
19 1211200003 0'2
0i11(12|3{4{5{6|7 20 0313331012 P . ) ‘
0:110(0/1{0;0{0]0 - oL~ e - ®mw N
11010(0(2(0;0{0{0] Attentional Sequence No
2i0(0lololo]olo]o
3111111210010 OE Fig. 9. Results after ten fixations on Scene 1 with ten fixation learning on
4/0i0)0)0]0/0/0]0 Scene 1 and Scene 2. Recognition rate is 65% with Markov models and 90%
5:010{010{0{0({0{0 with evidential reasoning.
6:010{0(0]010{0]|0
7 0 O 0 0 0 0 0 0 No OIU QlOgP(Om;AI) -IOgP(OMjA:)
Fig. 7. Scene 1: Learning using attentional sequences of length 10. ; Z?f::if’:?’: 71,005‘02 o
3 7142111133 1.00E+00 - :
3 1161111473 ’ e o~ 0 .m © oa
0l112131als]6!7 5 12733111142 1008B2 o 1L o
6 1177331111 1.00E-04 } ?
010101010101010/0 7 1313711122 LOOEOGWW/
1101100011100 8 1477331111 1.00€-08
) 9 31E1123117 )
210(010(0{0[0({010 10 0142111511 Aftentional Sequence No
3/0/0{0]1/0]0]0}1 11 1333371173
410111010111010:0 12 7702333371 40 10 10 10
5/010/0/110101070 13 4211111121 e A0 e (0T
b 14 1677331111
6/0/010]0}0!0]010 1S 1121411333 1.2 o
olotolo 1 16 7012311112 ~ VA
71010]010]110]9 17 1147733511 O’MJJ\
18 1082111117 02 vg
Fig. 8. Scene 2: Learning using attentional sequences of length 10. 19 4117331161

20 1112214003 030 10 20 30

Attentional Sequence No
3) frame grabber noise;

4) variations in lighting conditions. ) o ) o )
. . . . .. . Fig. 10. Results after ten fixations on Scene 2 with ten fixation learning on
Even a one pixel wide difference in the fixation point can lead §ene 1 and Scene 2. Recognition rate is 100% with Markov models and 90%

a new visual field image for the next fixation, which results in @ith evidential reasoning.
completely different attentional sequence as fixations proceed.

to that of Scene 2. For recognition experiments, 20 experiments
with attentional sequences of length 10 are conducted. Figs. 9
The first set of experiments was performed on simple 2-8nd 10 show the generated sequen@&s and recognition re-
shapes hanging on a black background, as shown in Fig. 6. Buéts for both approaches. Probability values for the Markov
system is expected to decide which scene is being viewed by approach are given on a log scale. Using as low as ten fixa-
alyzing the generated sequences using the Markov and evidigons during both learning and classification, different feature
tial reasoning methods developed above. The shapes are chasgpuences can be recognized as belonging to the correct shape
such that Scene 1 of a rectangle, contains only horizontal anith a fairly good rate.
vertical edges, while Scene 2 of polygon, contains only two ver- Note that the fixation camera is not following a pre-defined
tical edges and more diagonal edges. boundary or trajectory; therefore, the 20 sequences generated
In the first set of experiments, sequences are of length 10. Td&ing these experiments are completely different. Our clas-
observed feature transition frequencies are shown in Figs. 7 aifttation methods are sensitive to favored transitions in the
8. Even with attentional sequences of length 10, these matrisegjuences based on the apriori generated models. Sequences,
start to become differentiable. The matrix for Scene 1 favors mdnich include these highly favored transitions, are immediately
transitions between diagonal features 4-6, and 7, as compamazbgnized with a high margin. Others which do not include

A. Simple Scenes
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K 2 5 3101211230 |
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slofofejololol0f0 K 2300033313 i’
) } 9 1111222112 '
(7, 8 8 318 g 8 8 8 10 0000333311 Attentional Sequence No
11 1121130003
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Fig. 11. Scene 1: 30 fixation learning. 13 0000313110 0.‘-'. (A, O7) ush (A,.0)
14 1211200003
15 0103223011 :é o
; 16 2231200003 : .V'"V.;”"‘
0/1/2/31415/6,7 17 3330221110 0s AR i
6{0}1{1{0]1]{0]010 I8 1211130000 0. | /
19 0033311110 ’
111 ? 01310101010 0 1211200003 85‘
21012121010/0/010 0 5 10 15 20 25
310(0[0{3(0{0{0(3 Attentional Sequence No
4(010{1]0(0]0]0|0
sloiolololotololo Fig. 13. Results after ten fixa;i_ons on Scenelwith 30 fixation learning on
sol1ololololoio Scene 1 and Scene 2. Recognition rate is 85% with Markov models and 90%
T3 ToToToToTo with evidential reasoning.
No 0] | i
Fig. 12. Scene 2: 30 fixation learning. 0 .IogP(O"';;A,) .}ogP(O"’gA:)

’2 e

them are either incorrectly classified or return only a sllghtl 3
better result compared to the competing model. Another reas s
for incorrect classification is the possibility of generating?
very similar or even identical sequences on two differerg
scenes. However, correct classification rates indicate that tI°®
intersection region is small, and both methods work. i

In the next set of experiments, we increased the learning [ 2
riod to 30 fixations. Differences between the two shapes a :‘4
expected to become more announced. However, as obser 15
in feature frequency matrices in Figs. 11 and 12, this may n | '(’
be the case. The discriminating transitions 4—-6, and 7 betwe m
Scene 1 and Scene 3 were better modeled in the previous j(’)
fixation models. This result shows that increasing learning s
guence size does not necessarily lead to better models and
proved recognition performance due to the above-mention
variations in sequences.

7021135374
0133311111
INEEREEE N
7142111133
1161111473
1273311112
1177331111
1313711122
1477335111

) 3Ti1i121117

0142111511
1333371173

3 7702333371

42311108121
1077331111
12141133337
0123111121
1477335111
0121111174
1173311611

1,00E+01

100E-01

1.00€-03
1.00E-05
1.00E-07

"’f*.%fﬁvm

Attentional Sequence No

¢51%(AL0")

L T w\/

Attentional Sequence No

#5) (A5, 0)

1.2
1
08 -
06
04
0,2
0

Results of recognition experiments using models learné&ld. 14. Results after ten fixations on Scene 2 after 30 fixation learning on
ne 1 and Scene 2. Recognition rate is 50% with Markov models and 60%
from 30 flxat|ons.for Scene 1 and chne 2 are shovyn in FIgS..@ evidential reasoning.
and 14, respectively. Although an improvement in modeling
and classification perfomance cannot be guaranteed by in-

: . . . : . 0(1{2/3(4|5/6]7
creasing the learning period, an improvement in consistency ololziT1210l0l0l0
of results is observed in these results. For example, in Fig. 14, 1iletilelolololo
we had significantly bad results in Experiments 11-14 with 21131210l 0l0l0]0
both methods. Furthermore, in Fig. 13, where recognition 314(31114/0]0]0]0
rate was good, both methods returned wrong results in the alolotolololololo
same two experiments out of 20. The remaining one sequence, slolotolololololo
which could not be classified correctly by Markov models, was 6{0/0/0[{0]0]0}0|0
classified correctly by support functions only by a very small 710(0(0{0/0{0]0]|0

margin.

For the last set of experiments, a learning sequence size~gf 15. Object 1: 50 fixation learning.
50 is used. Figs. 15 and 16 list models generated by a 50 fixa-
tion learning run. Once again, the diagonal edges of Object 2 areer Object 2 even more than in 30 fixation models. Sequences
poorly modeled. Recognition results are shown in Figs. 17 afrdm Object 2 are poorly recognized with the same rates as be-
18. Results for Object 1 are 100% correct as its model dominafese. Consistency of results using the two approaches are again
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0/1]2{3/4/5/6]|7
Q[0 1 101010{0:0]0
1{0{17]{3{4]0(0/0]0
210[ 4 14{0/0/0]0]0
3(010(11410{0/0]3
4/010]0j0{1{0;0]0
510 010j0j0]0:0]0
6{0]01]0{0{0]0/0]0
7i1{2]0{0{1]0/0|3 Fig. 19. Wide-angle ten fixations on Scene 1, Scene 2, and Scene 3, as viewed
from left to right. Squares represent the visual field and fovea.
Fig. 16. Object 2: 50 fixation learning.
No 0" o log P(O"]A,) ulog (0" A,)
I 3000333111
2 1220123000 1,00E+01
3 0333301111 ke \o.
4 1133000333 1 00E-01 "/JI"M ° /E‘
5 3101211230 1.008:03 .77/ e o 1§
6 0033311012 1.008-05 W ',‘. /
71112300013 1 00E-07 / VERY
8 2300033313 : E
9 E111222112 1,00£-09 1
10 0000333311 Attentional Sequence No
I 1121130003
12 0021212323 QSP(A“OM) .s?(ApOm)

13 0000313110
14 1211200003
15 0103223011
16 2231200003
17 3330221110
IS 1211130000
19 0033311110
20 1211200003

o T | PR

g 5 10 15 20 25
Attentional Sequence No Fig. 21. Second sample sequence of visual field imades =
(It,...,I'")on Scene 1.

Fig. 17. Results after ten fixations on Scene 1 after 50 fixation learning g Experiments on Complex Scenes
Scene 1 and Scene 2. Recognition rate is 85% with Markov models and 95%

with evidential reasoning. In the next set of experiments, three complex scenes from our
laboratory were used (see Fig. 19). Fixation points and foveas
No o o log PO A)) log P(O"|A,) are at Fhe center of each visual field imag_e. Eigs. 20 and 21
\ 7621335374 ' show visual fields of APES for two sample fixation sequences,
2 0133311111 1,00E402 looking at Scene 1. The complexity of our problem can be
: ;:;;::::Z; 1008400 | \ v observed in these sample sequences. For example, in the fifth
S 1161111473 A fovea, a boundary caused by a shadow is fixated, and in some
g :f.’,;:i“:f 4 00804 \ foveas, like those numbered 4, 8-10, the image is distorted
8 1383711122 1.06E-06 by small camera or body motion, making edge-based features
o agrTaa Attentional Sequence No quite hard to detect correctly. Note that these are problems
I 0142111511 common to any practical implementation outside controlled
ﬁ ;gz;;z::;: +sl9(A,.0" asl(A,.0") environments. Our methods are expected to cope with such
4 4211111121 distortions. Also note that in the two sequences, although
PRSI 2 e . starting points are close and the first visual fields are almost
17 0123111121 08 A T \ { K [ identical, the two sequences are quite different. However,
SRR 0.4 L ] " \A V spatial and temporal relations of observed features remain the
0 1173311611 02 e same. One of the main contributions of our work is to develop
10 18 20 25

0 5 methods for detecting these invariant relations.

Attentional Sequence No We then compared responses using pairs of models using
these complex scenes. Their models were learned using atten-

Fig. 18. Results after ten fixations on Scene 2 after 50 fixation learning $iPnal sequences of length 30. Figs. 22, 23-24 give the feature

Scene 1 and Scene 2. Recognition rate is 50% with Markov models and 6@fansition frequencies for the three scenes. Simply looking at the

with evidential reasoning. generated model matrices, it can be observed that Scene 3 has

unique features as compared to both Scene 1 and Scene 2. There-
very good and in general much better than experiments with tkme, any sequence generated on Scene 3 is likely to be identi-

fixation learning. fied correctly. On the other hand Scene 1 and Scene 2 models
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Fig. 22. Scene 1 model. :.o L e
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21310{0(0/0]0(0}0
312(2{0]1{0[0{0}0 Fig. 25. Results after 30 fixations on Scene 1 with 30 fixation learning on
Scene 1 and Scene 3. Recognition rate is 100% with Markov models and 100%
4{0{0{0]0{0(0]0(0
slolololoololol0 with evidential reasoning.
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Altentional Sequence No
Fig. 24. Scene 3 model.
Fig. 26. Results after 30 fixations on Scene 3 with 30 fixation learning on

o _ - _ _ ti scene 3 v )
are very similar making classification almost impossible. Thesg f]n:\/ildzggalsfggsoﬁ'in%ecognmon rate is 80% with Markov models and 100%

results are justified in Figs. 25—-30. Scene 3 is recognized with a

rate of 100% in all cases as it has a dominating model. In expine o o log P(O*|4)

iments on Scene 1 and Scene 2, results of the two approac,
are inconsistent.

2
ki
4
C. Experiments on Similar Complex Scenes :
¢

The method of evidential reasoning was also tested usi,
three similar scenes with small variations and one unrelat
scene. Changes in the scene are not very small at all, sucr"
missing chairs, but a human viewer tends to overlook the
changes. APES is expected to perform similarly and “unde
stand” that the three scenes belong to the same part of the wc
and the fourth scene to a different part. The four scenes ¢
shown in Fig. 31.

In Fig. 32, results of experiments on the original trainin

scenes are shown. Scene 1 can be recognized easily with at..,

FHIOO00IOOGEHO0 110001 FTETHTTO0
T0101 11001 1000131030000 1 11T
11110001 10001001 1101104001 110
OOOOGEYELEVELERETRDIO20H EOHOO
HOMTOQOOTGTI3HEITLEA T HION
FEE60H1G0000001 | 200000001 60300
100101 FHOTOHILG 0000 L HEIOT3
GOOOCONOL TTLEZOTETIO0101 T 10000
HIDE4 11000 L1 00000060001 110
11010101 110001000001 11 1LO0 0D

nlog P(O™A,)

1.00E400
106021 2 3 4 5 6 7 B 9 10
1.006-04
1.00606
100608 4
100E-10 0 vy SN
© 100812 : i
1.00E-14
Attentionat Sequence No
.s:‘)(A,.O"") -s;"(A:,O':'“)
P12
1
RS SN W
L 08 ] Vo
04 I YA
02 )
Q 5 0 %

Atentinnal Sequence No

. . i . i 0 .
m_argm, while Scene 2 IS reC(_)gnlzed in 80% of the e_Xpe”me%. 27. Results after 30 fixations on Scene 1 with 30 fixation learning on
with a very low margin. In Fig. 33, results of experiments 0Bcene 1 and Scene 2. Recognition rate is 100% with Markov models and 50%
the two variants of Scene 1, Scene 3, and Scene 4 are showith.evidential reasoning.
Both scenes can easily be recognized as Scene 1 exceptin a few

experiments.

changes in the environment, the low margins in Scene 2

Although these experiments show that scene recogniticecognition results in Fig. 32 are confusing. This result may
based on attentional sequences can compensate for smadjgest that the model of Scene 1 may be dominating over
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Fig. 28. Results after 30 fixations on Scene 2 with 30 fixation learning on

Scene 1 and Scene 2. Recognition rate is 40% with Markov models and 109fg. 30. Results after 30 fixations on Scene 3 with 30 fixation learning on

with evidential reasoning. Scene 2 and Scene 3. Recognition rate is 100% with Markov models and 100%
with evidential reasoning.
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9 OFHIO4311301 1110033331201 10010 Attentionat Sequence No
10 100001 HEHITOHI0NETO0110012100 Fig. 31. Wide-angle images of Scene 1, Scene 2, Scene 3, and Scene 4, as
+57(A,,0™) as(A,,0") viewed from left to right.
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1 i T -
. 30 30 30 30
as | | ¢5) (AL,07) ms; (A,07)
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02
o 1,200E+00
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Attentional Sequence No 1 ,OOOE"'OO ® & - A “”“‘&&,\
J/ "‘\S / e *
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Fig. 29. Results after 30 fixations on Scene 2 with 30 fixation learning on 6,000E-01 T
Scene 2 and Scene 3. Recognition rate is 70% with Markov models and 70% 4 000E-01
with evidential reasoning. ' »
2,000E-01
0,000E+00 ~— e =

Scene 2 and correct classification of Scene 3 and Scene 4 is a
result of this dominance. 12 3 4567 8910
Attentional Sequence No

D. Summary
In summary, our experiments on simple and complex scenes . s?O(Al L0 msi'(4,,0%)
revealed the following important results about the use atten-
tional sequences for scene classification. 4 0000E-05
1) Both Markov models and evidential reasoning are 3,5000E-05
promising for classification of attentional sequences. 3,0000E-05
2) even by using very simple edge-based features, we cande-  2,5000E-05
duce invariant relations from the seemingly varying fovea ~ 2.0000E-05
image sequences generated while looking at the same 1,5000-05
scene: 1,0000E-05
i — . . 5,0000E-06
3) Using as low as ten fixations during learning and recog- 0.0000E+00 oo o .

nition, good classification performance can be achieved
using both methods. _
4) Results on complex real-world scenes, which are hard Attentional Sequence No

to classify using classical methods, show that attentional o
32. Results of 30 fixations on Scene 1 (top) and Scene 2 (bottom) after

e . Fig.
sequence-based classification is promising to solve Suéiﬁfixation learning on Scene 1 and Scene 2. Recognition rates are 100% and
problems. 80%, respectively.

12 3 4 56 6 7 8 9 10
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. _,-f'U(AP()-‘“) - Sém(Az L0 controlled effectively by using different attentional schemes in-
cluding top-down approaches, although how this should be done
1 2000E+00 is an open question [7], [45]. In general, the performance of se-
1 0000E+00  « . guence classification will be unaffected as long as the same de-
; terministic attention scheme is used during both modeling and
8,0000E-01 . - recognition. However, stochastic components in the attentional
6,0000E-01 Y e . scheme may change the performance as the classification algo-
4,0000E-01 o rithms rely on the observation of learned sequences or short seg-
2,0000E-01 ¢ j ments of learned sequences.
\ The use of only eight simple edge features in our experiments
0.0000E+00 1 2 3 4 5 6 7 8 9 10 is also restrictive. As seen in the experiments, different scenes
) may lead to similar models, which do not have any discrimi-
Attentional Sequence No nating ability. Instead, using many complex features in the at-
tentional sequence and the spatial locations of features can im-
¢s'(A,,0")  wsi(A,,0%) prove performance. Especially in complex scene experiments a
better model of the environment can be obtained. However, the
1,2000E+00 detailed scene models generated in this way may also be restric-
1.0000E+00 tive and the generalization behavior demonstrated in the exper-
y 4 iments of Section IV-C may not be achieved.
8,0000E-01 . . .

\ Asmentioned earlier, one of the main strengths of ourapproach
6,0000£-01 is the ability to change pre-attentive and attentive features as well
4,0000E-01 ; asthe attention scheme without changing the sequence modeling
2,0000E-01 and classification methods. Therefore, an adaptive system can
0,0000E+00 modify these subsystems based on the current task specification

1 2 3 4 5 6 7 8 9 10 while keeping the same decision system.

Attentional Sequence No

Fig. 33. Results of 30 fixations on Scene 3 (top) and Scene 4 (bottom) after V. CONCLUSION AND FUTURE WORK

gg%xa:gcs)g;sﬁ\;g:;g on Scene 1 and Scene 2. Recognition rates are 100% an%iological evider_lc_e su_ggest that, besif:ies being massively
parallel, human vision is also sequential especially when
) ] ] solving complex visual tasks. Information is collected in space
5) Increasing the leaming period does not necessarlijq time via attention mechanisms resulting in the attentional
improve performance. Good performance with a shogbquence. In order to better understand human vision and
learning period is possible depending on learning angiig robots that can parform similarly, we need to learn how
recognition fixations. o o _to manipulate and use space-time sequences, which are a
6) The two models performed similarly in simpler classificasg|atively new data type for vision scientists. In this paper,
tion tasks, where models were distinct. In hard_er tasks gjg propose two approaches to using attentional sequences
ther both methods generated very small margins betwe@n ecognition tasks: 1) Markov and 2) evidential models.
the two models and returned falsg results, or evidentighn, approaches are implemented and tested on a working
reasoning performed better. The differences between th&;,e vision system integrated into APES, a mobile robot
two methods are caused by the fact that unlike MarkQyasigned and developed in our laboratory. Experimental results
methods contributions from competing models are takepqy that both methods can be used as sequence modeling
into account by the combination rules used in evidentigl,q cassification tools in both simple and complex scenes.
reasoning. . However, the success of classification is also dependent on the
7) In order to achieve good performance, models (featUigiciency of learning and the feature space being used. These
transition frequency matrices) need to represent Unigyg, getermine the information content of library models and
features about the scene. How to generate fixatiQyhseryation sequences, respectively.
models with such property and how to compute their \, or future work, which is inspired largely by work in vision
representation capability are open problems on which Wejence investigating the orientation, texture, and frequency spe-
are working. cific detector cells in the primate visual cortex, APES will use
a higher dimensional and more complex feature space and pos-
sibly surfaces. This will enable APES to generate much more
The main objective of our work was to investigate whethe@omplicated observation sequence with richer content. In this
the attentional sequence can be used for scene classificatiortaye, we can also expect good recognition performance in the
applying the above methods. Therefore, in order to reduce thresence of more than two models. Using different approaches
effects of attention mechanism, the simple attention functiom simulating fovea-periphery distinction is another interesting
and simple attentive features discussed in Section Il are ustddy that is likely to improve the performance of feature ex-
in our experiments. However, the behavior of the system cantoaction.

E. Discussion
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