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Attentional Sequence-Based Recognition:
Markovian and Evidential Reasoning

Çăgatay Soyer, H. Is¸ıl Bozma, and YorgȯIstefanopulos, Member, IEEE

Abstract—Biological vision systems explore their environment
via allocating their visual resources to only the interesting parts of
a scene. This is achieved by a selective attention mechanism that
controls eye movements. The data thus generated is a sequence of
subimages of different locations and thus a sequence of features
extracted from those images—referred to as attentional sequence.
In higher level visual processing leading to scene cognition, it
is hypothesized that the information contained in attentional
sequences are combined and utilized by special mechanisms—al-
though still poorly understood. However, developing models of
such mechanisms prove out to be crucial—if we are to understand
and mimic this behavior in robotic systems. In this paper, we
consider the recognition problem and present two approaches
to using attentional sequences for recognition: Markovian and
evidential reasoning. Experimental results with our mobile robot
APES reveal that simple shapes can be modeled and recognized
by these methods—using as few as ten fixations and very simple
features. For more complex scenes, longer attentional sequences
or more sophisticated features may be required for cognition.

Index Terms—Active vision, attentional sequence classification,
Dempster–Shafer theory, Markov models, selective attention.

I. INTRODUCTION

B IOLOGICAL vision systems have the capability of allo-
cating their visual resources to different parts of a scene in

time by shifting their attention [29], [32], [33], [36], [46]. This
shift of attention is obtained mechanically by eye and head mo-
tions and also by higher level cognitive mechanisms in a con-
tinual loop of pre-attention and attention [10], [11], [30], [31],
[33], [36], [47]. The incoming stream of subimages is then uti-
lized to generate a related sequence of features extracted from
different spatial locations at different times, referred to as the at-
tentional sequence. The termattentional sequenceis intended to
convey two important characteristics of this data: First, at each
instant only a small part of the scene is attended through a fovea-
fixation mechanism. Second, and perhaps more fundamentally,
the sequential relations between attentive behavior stress the
temporal nature of the vision data. Visual understanding be-
comes a problem of properly interpreting the attentional se-
quences that are being generated when looking at an object or
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a scene. There has been a lot of work in vision science and ac-
tive vision on the generation of attentional sequences. However,
the next step of linking the attentional sequences to visual tasks
and the responsible higher level mechanisms are poorly under-
stood. Yet, developing models of such mechanisms prove out
to be crucial—if robotic vision systems are to make use of at-
tentional sequences—as they need to do in many applications
[1], [2], [4], [5], [39], [42]. In this paper, we consider two-di-
mensional (2-D) recognition tasks and propose two approaches
regarding how to use attentional sequences for this problem:
Markovian and evidential reasoning. The two approaches—al-
though seemingly different from each other—have underlying
common themes. First, they can be used with different pre-at-
tentive and attentive features (color, edge, brightness, texture,
etc.) without modification. Second, the approaches are capable
of handling variations with regards to scanpaths taken. To under-
stand the implication of this, consider the possibility of looking
at a rectangular blob. Then, we might look at each edge con-
secutively or we may first look at the top and bottom edges and
then the left and right edges. Thus, even with a single scene,
the sequence of observed features may change depending on
the scanpath taken. Finally, these approaches have mechanisms
for learning under external supervision. These approaches have
been implemented in our mobile robot APES, which has both
physical and mental attention capabilities.

In the remainder of this section, we present a very brief
overview of the physiology of human vision in order to point
out the key features integral to biological vision and discuss
how work on active vision has made use of it. In the next
section, two approaches to using attentional sequences, Markov
and evidential models, are presented. We then describe APES,
its vision system, and selective attention mechanism. Compar-
ative experimental results performed on simple and complex
scenes demonstrate the efficacy of these approaches.

A. Biological Visual Attention

Physiological and psychological studies suggest four key
properties of biological vision:Fovea-periphery distinction
on the retina, occulomotion, image representation, and serial
processing. First, biological vision systems process only a
small part of their visual field in detail. Unlike traditional
cameras, the distribution of receptor cells on the retina is like a
Gaussian with a small variance, resulting in a loss of resolution
as we move away from the optical axis of the eye [11], [31].
The small region of highest acuity around the optical axis is
called the fovea, and the rest of the retina is called periphery.
Second, as a consequence of this fovea-periphery distinction,
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saccades—very rapid jumps of optical axis—are used to bring
images of chosen objects to fovea where resolution of fine
visual detail is at its best [10], [33]. Saccadic eye movements
are one of the capabilities of the oculomotor system which
is involved in controlling the eye movements. Saccades take
place at very high speeds up to 600–700 /s and there is a
delay of about 0.2 s between detecting a target and making a
saccade. Saccadic eye movements require the computation of
the relative position of a visual feature of interest with respect
to the fovea in order to determine the direction and amplitude
of the saccade. A third feature is that cells in the visual path
from retina to the primary and other cortical regions respond
to increasingly more complex stimuli, accompanied by larger
receptive fields on the retina [9], [23], [24], [28], [30], [31],
[47]. This finding implies that image representations in higher
visual centers are related to levels of abstraction. For example,
in the primary visual cortex, simple cells respond to lines of
a particular orientation, more common complex cells respond
to motion, and some cells both simple and complex respond
to specified corners and curvatures. In other cortical regions,
collectively called the visual association cortex or prestriate
cortex, cells respond to color, motion, and orientation. Finally,
although the human visual system is massively parallel in
structure, most visual tasks also require serial processing as
the oculomotor activity results in the perception of a series of
images in time [12], [13], [15], [29]. Especially in counting or
comparison experiments, more complex scenes lead to longer
processing times in human subjects because of increased
number of fixations or eye movements required to solve the
task. This implies that information is collected and somehow
combined after each fixation until there is enough information
to make a decision. Thus, approaches to using the attentional
sequence thus generated must be developed.

B. Relation to Previous Work

Machine vision systems endowed with selective percep-
tion—motivated by biological vision—allocate their limited
resources to process only the most relevant parts of the
incoming data [1], [2]. This is done by first implementing
a simple retina model, where a periphery and fovea can be
defined and processed at different resolutions or levels of detail.
The fovea is defined to be a small region around the center of
the visual field while the remaining region of the visual field is
referred to as the periphery. Periphery-fovea distinction leads
to a loop of pre-attentive to attentive processing. Active vision
research has mostly concentrated on generating fixations and
controlling camera movements [1], [4], [41], [42]. Early on,
the problem of locating a fovea has been solved by data-driven
saliency operators, where a sequence of camera movements
emerges from a specific image data [12], [13]. An alternative
approach based on simplified visual search mechanisms such
as using attractive forces has been presented in [48] and
[49]. A third type of mechanism based on augmented hidden
Markov models—modeling eye movements explicitly while
incorporating feedback from visual cues—has been presented
in [39]. A generalization of these ideas to Bayes networks and
decision theory is presented in [40]. A maximum-likelihood
strategy for directing attention has been applied in recognition

tasks [50]. All of these approaches have provided different
mechanisms of fixation generation by specifying a set of points
on the image and work well in many applications. The use of
resulting attentional sequences for making decisions about the
current task remained relatively unexplored [7], [45].

Our aim is quite different from these studies. We do not want
to implement a specific attentional sequence generating mech-
anism. Rather, we ask how to use the data thus collected for
recognition purposes. In particular, we are interested in rea-
soning that is independent of the pre-attentive and attentive cues
used.

C. Mathematical Formulation: Pre-Attention and Attention

We assume that the visual processing is composed of a loop of
pre-attentive and attentive stages which generate an attentional
sequence.

In the pre-attention stage, simple attentive features are com-
puted from the periphery region in order to select the next fixa-
tion point and thus the next fovea to be fixated. Letrepresent
the visual field image and represent the fovea image at time
. Let denote the set of candidate foveas determined from

the visual field. For each candidate fovea an attention
criteria —a scalar valued function of interest based
on the presence of simple features with low computational re-
quirements—is computed. The candidate fovea maximizing this
criteria is then selected as the next fovea

(1)

When a selection is made, the optical axis of the camera is
directed to bring that area into fovea. Such camera movements
correspond to saccadic eye movements in humans. As a result,
a sequence of foveas is generated. Let be the
stream of foveas looked at as of theth fixation.

In the attentive stage, each fovea is subjected to detailed
analysis in order to make an observationabout the state of the
fovea. In general, this analysis is much more computational than
the pre-attentive stage and the visual primitives that are used can
be rather complex. Consider different visual primitives and
let the set of values of th visual primitive be denoted by .
The value of each visual primitive is obtained via an operator

acting on the fovea .
If is a finite set with elements, then let

denote the set of values that

can take. Let denote the feature space as .
Note that

(2)

Each observation then becomes a vector of visual
primitive values

(3)

Thus, as a stream of foveas is generated,
so is an attentional sequence . Hence, an at-
tentional sequence can be visualized to be a set of values of vi-
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sual primitives observed at different locations at different times,
containing the critical visual data. Obviously, the choice of the
visual primitives is of utmost importance if we are to use atten-
tional sequences in visual tasks. The cognition stage then oper-
ates on the observation sequencein order to solve the given
visual task.

D. Problem Statement

Suppose that the visual task is defined as follows. The vision
system is looking at a scene in an attentive manner and thus
generating an attentional sequence. Furthermore, the system
knows about different scenes to which the scene currently
being looked could or could not belong. Then find that
best explains the observed attentional sequence.

II. USING ATTENTIONAL SEQUENCES

A. Markov Models and Reasoning

In this approach, the attentional sequence
is considered as a discrete Markov process [38] with an alphabet

. This process is associated with the transition probability ma-
trix of dimension

where

and

(4)

Here, denotes the proba-
bility of getting a feature value after having observed . In a
Markov process, each observationat time is called astate.
In our case, each observationrepresents the state of the fovea
with respect to the attentive features.

The transition probability matrix is a probabilistic model of
expected fixation sequences that can be generated while looking
at an object. Thus, if we have a library ofobjects or scenes,
each can be represented by a different transition probability ma-
trix . These matrices are learned after looking at these ob-
jects or scenes in a repeated manner, based on the attentional
sequences generated. The learning procedure is explained in de-
tail in Section III-C.

When presented with a new object or a scene, the system
starts looking at it and an attentional sequence emerges.
Let denote the probability of observing after
having observed with the transition probability matrix .
The conditional observation probability of this se-
quence by model is given by

where

(5)

Hence, the correct classificationof an unknown scene can
then designated as the the library model maximizing

(6)

It must be noted that as more information is collected and thus
the attentional sequence becomes longer, the value of
decreases and must therefore be scaled accordingly [38].

B. Evidential Models and Reasoning

In this approach, the attentional sequence
is considered as a sequenced body of evidence, which can then
be used to support competing propositions concerning the cor-
rect classification of a scene to different degrees [43], [45]. The
basic idea is to use a number between zero and one to indi-
cate the degree of support a body of evidence provides for each
proposition. Different bodies of evidence are then combined to
find the proposition which is most supported.

Let be the correct classification of the scene. Suppose the
set of its possible values are given by, the frame of discern-
ment. Then, propositions of interest are precisely those of the
form “the true value of is in ” where and hence are in 1-1
correspondance with the subsetsof . Thus, we use
to denote a proposition. In classification, we are in particular in-
terested in propositions of the form

where (7)

Now suppose for each proposition, we have a transition
frequency matrix . Each entry
represents the weight of evidence attested to observingafter
having observed .

Now let be an observation at time. This observation
attests evidence for each proposition. Let

represent the weight of evidence function. Then

(8)

In evidential reasoning, the degrees of support for various
propositions discerned by is determined by the weights of
evidence attesting to these propositions. Let
define a simple support function focused on. Then can be
defined as

if
if
if

where

(9)

Note that is a belief function with basic probability number
for all

other that does not contain .
However, each evidence points to a set of propositions

with different degrees of support . Since
, each proposition conflicts with the other. Hence, the
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effect of each is diminished by the other. The orthogonal sum
of the simple support functions fo-

cused on are given with basic probability numbers (10)–(12),
shown at the bottom of the page.

The effect of is to provide instantaneous support for each
proposition . In order to find the total support for each
proposition , the so-far total cumulated support has to be
combined with the instantaneous support. This is the case of
homogeneous evidence—evidence strictly supporting a single
proposition.

Let denote the cumulative support
function for an attentional sequence. Suppose a new fixation
is made and observation is made. Based on the evidence
provided by this observation, instantaneous evidence is
generated for each proposition. Bernoulli’s rule of combina-
tion provides a reasonable way of combiningfocused on
with and focused on with . The cumulative
support is defined recursively as the
orthogonal sum (see (13), shown at the bottom
of the page).

Then, the result of classification is given by

(14)

The combined total supports are checked at the end of each
fixation to find a proposition supported sufficiently higher than
the others. The scene corresponding to this proposition is se-
lected as describing the current scene best.

C. Learning Scene Models

In creating a model for each scene , which may corre-
spond to an object image or a complex scene, the robot starts
observing the scene in an attentive manner. We assume that the
vital processing is composed of a loop of pre-attentive and atten-
tive stages which generated an attentional sequence, as shown

Fig. 1. General flow of processing.

in Fig. 1. As it is consecutively fixating and forming observa-
tions, the transition between two consecutive ob-
servations in this scanpath is recorded by incrementing the fre-
quency of that particular transition by one. Hence, for any li-
brary model, the number of transitions between any pair of fea-
ture vectors forms a matrix. In the Markov approach,
these matrices are converted into transition probabilities by nor-
malizing them row by row and adding a small offset value to
cope with nonexisting transitions. In evidential reasoning, these
matrices serve directly as weights of evidence. The modeling
stage is critical to performance of the two approaches in recog-
nition. To obtain a perfect model all parts of a scene must be ob-
served equally during learning fixations. Therefore, the learning
period as determined by the length of the attentional sequence
must be long enough to allow different scanpaths to be taken.
A partial model that does not include all possible scanpaths and
thus all possible feature transitions will mean that the scene is
incompletely modeled.

III. APES—ACTIVE PERCEPTIONSYSTEM

APES is a simple mobile robot with an active vision system
[44], as shown in Fig. 2. Its body is a mobile vehicle with two
driven conventional wheels, and one freely rotating support
wheel. Using four stepping motors it can translate and rotate
its body and direct its cameras to the visual stimuli by pan and
tilt motions. Body rotation and camera pan axes have been

(10)

(11)

if contains none
of
if contains but
does not contain

if contains some
of
if

(12)

if does not contain
if contains
if

(13)
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Fig. 2. APES robot and its 2-DOF camera base.

Fig. 3. Schematic of APES.

TABLE I
TECHNICAL SPECIFICATIONS OFAPES

designed to be cocentered, in order to simplify transformations
during combined body and camera motions, and are not the
same as the centerline of the cylindrical body for mechanical
stability reasons. APES is a research platform where different
selective attention algorithms are implemented and used.

Fig. 3 and Table 1 show the hardware configuration, and
Fig. 4 shows the simplified selective attention mechanism and
basic vision process, respectively. The main visual processing
module running on a workstation performs vision processor
setup, frame grabbing, pre-attentive and attentive processing,
and serial communications. The on-board PC104 computer
is responsible for serial communications, motor control, and
camera control. All camera features including zoom angle can
be controlled by the on-board computer. During operation new
fixation point in the periphery is determined by visual pro-
cessing and this information is sent to the on-board computer
which moves the camera accordingly. The new visual field is
then processed by the vision system.

The vision system of APES is inspired by the key properties
of biological vision as follows.

Fig. 4. Simplified selective attention mechanism of APES.

1) Fovea–Periphery Distinction:APES can simulate the
nonuniform photoreceptor density of the human retina in
three ways:

a) by varying complexity of features extracted from
foveal and peripheral regions;

b) by processing foveal and peripheral images at dif-
ferent resolutions;

c) by using a two-camera retina model, which uses
separate camera angles and pixel densities for
foveal and peripheral images.

In this paper, the first retina model is used, as explained
in Sections II-A and II-B.

2) Oculomotion:The two degrees of freedom (DOF) step
motor-based head assembly and the motion of the camera
cannot be compared to the highly developed and poorly
understood occulomotor system of mammals. However,
APES can effectively control the optical axis of the
camera and the fixation point with an accuracy of 1.8
due to its step motor-based drive system. Camera motions
correspond to large and fast saccadic motions of the eye,
which are used for fixating different spatial targets.

3) Levels of Representation:The attention criteria (also
called salient features) guide peripheral processing and
is used to determine the next fixation point. APES can
use either edge content (computed by the gradient) or
brightness. Currently, we are working on enrichening
this set to include Cartesian and non-Cartesian filters.

4) Serial Processing:Finally, the selective attention mech-
anism employed by APES guarantees that only the most
important parts of a scene are fixated and processed in de-
tail, and relevant information is collected and integrated
in time to solve the given task.

A. APES’s Active Vision

Within this framework, visual processing consists of three
basic stages of operation: pre-attention, attention, and cognition,
as shown in Fig. 4. The visual field components are shown in
Fig. 5. APES finds a new fovea by considering overlapping
candidate foveas within its visual field, computing their salien-
cies using an attention function and designating
the center of the most salient fovea as the next fixation point
as explained previously. In addition, APES has two mecha-
nisms—inhibition and memory—that get activated before a
saccade is made in order to avoid processing the same areas
twice or going into infinite fixation loops. These are motivated
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Fig. 5. APES’s visual field and its components.

by vision science findings that indicate the presence of spatial
inhibition mechanisms that delay fixations on an area that has
just been fixated.

The inhibition mechanism works as follows: An pixel
region around thecurrently fixated fovea,at thecenterof the
current visual field , is defined as the inhibition region. During
pre-attentive processing, all candidate foveas falling
within the inhibition region are inhibited and cannot be chosen as
the next fixation fovea. In this manner, the inhibition mechanism
also enables the control of saccade magnitudes.

The memory mechanism works via keeping track of previ-
ously fixated foveas in terms of camera joint angles and pre-
venting fixations on these targets even if they are not within the
current inhibition region. Since APES has finite precision in pan
and tilt directions, , there is a finite set of fix-
ation points in camera coordinates, given by

, where and are integers.
In order to keep track of previously fixated coordinates ,

we use a first-in-first-out memory of size . Then, the cor-
responding set of foveas is . All
foveas in this memory are inhibited during pre-attention. At the
end of each new fixation, is removed from while is
added to this memory.

In summary, pre-attentive processing together with inhibition
and memory mechanisms are merged to form an augmented at-
tention function as

if
if

if
(15)

Note that APES can use any simple image feature as low-level
attention criteria in the pre-attentive stage, and these criteria
can be varied in order to generate fixation behaviors with dif-
ferent characteristics. In the experiments presented in this paper,

.
In the attentive stage the fixation fovea is subjected to more

detailed processing. APES can extract various complex features
during attention. In general, the complexity of attentive pro-
cessing is proportional to the size of the feature spaceand
the computational complexity of the features involved. In the
experiments reported in this paper, a very simple feature set

is considered. The set is defined as
where each value indicates an edge ori-

ented and each value indicates an edge
oriented .

Attentive processing strongly affects the performance of any
further computation in the cognitive stage, where the visual task
is being solved, as the feature vector strictly determines the in-
formation content of the observation sequence. For example, re-
gardless of recognition methods being used, consider an object
recognition task based on the sequence generated in the above
example. The eight edge types in are already 45rotated ver-
sions of the same edge, therefore rotation invariance can only be
expected up to 22.5 even if edge detection is noiseless.

Each observation is added to the attentional sequence
, thus generating a data sequence. The

cognitive stage works with the incoming attentional sequence
in order to achieve given visual tasks. At each time step in
this sequence, the cognitive stage uses collected information
to improve the system’s knowledge and attempts to make a
decision about the task being performed. If a decision can
be made, the task is solved, otherwise the selective attention
process continues to collect information. In the next section we
introduce mathematical methods developed for modeling and
recognition of attentional sequences.

IV. EXPERIMENTS

In order to study the efficacy of attentional sequence-based
recognition, APES has taken part in more than 500 experiments.
Our aims in these experiments are as follows:

1) demonstrate the performance of Markov and evidential
reasoning as sequence classification methods using
simple and complex scenes;

2) study how variations in the learning period—the length
of the attentional sequences used for learning affect the
performance;

3) understand the effects of modeling on classification per-
formance.

In these experiments, APES used a 200200 pixel visual
field and a 40 40 pixel fovea. The overlap between candidate
foveas was 50% and a fixation memory depth is used
to inhibit the last ten fixated foveas. The pre-attentive attention
criterion for each candidate fovea is . Inhi-
bition and memory mechanisms are employed to form the at-
tention function, as explained in Section II-B. In the attentive
stage, the feature space consists of corresponding to
eight different orientations of a simple edge feature computed
by the operator where is the
3 3 operator for detecting edges with an orientation of. In
these experiments selection of simple pre-attentive and attentive
features is intended to remove ambiguity in feature extraction
stages and understand the exact capability of an attentional se-
quence as a tool for object recognition and scene classification.
All experiments are performed under normal lighting conditions
with both ceiling mounted fluorescents and daylight from win-
dows. Typically, two fixation sequences generated by our robot
while looking at the same scene are never identical even if there
is no variation in the scene. This is caused by the following:

1) slight variations in the first fixation point;
2) small positioning errors in the camera head assembly;
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Fig. 6. Simple scenes containing “rectangle” and “polygon.”

Fig. 7. Scene 1: Learning using attentional sequences of length 10.

Fig. 8. Scene 2: Learning using attentional sequences of length 10.

3) frame grabber noise;
4) variations in lighting conditions.

Even a one pixel wide difference in the fixation point can lead to
a new visual field image for the next fixation, which results in a
completely different attentional sequence as fixations proceed.

A. Simple Scenes

The first set of experiments was performed on simple 2-D
shapes hanging on a black background, as shown in Fig. 6. The
system is expected to decide which scene is being viewed by an-
alyzing the generated sequences using the Markov and eviden-
tial reasoning methods developed above. The shapes are chosen
such that Scene 1 of a rectangle, contains only horizontal and
vertical edges, while Scene 2 of polygon, contains only two ver-
tical edges and more diagonal edges.

In the first set of experiments, sequences are of length 10. The
observed feature transition frequencies are shown in Figs. 7 and
8. Even with attentional sequences of length 10, these matrices
start to become differentiable. The matrix for Scene 1 favors no
transitions between diagonal features 4–6, and 7, as compared

Fig. 9. Results after ten fixations on Scene 1 with ten fixation learning on
Scene 1 and Scene 2. Recognition rate is 65% with Markov models and 90%
with evidential reasoning.

Fig. 10. Results after ten fixations on Scene 2 with ten fixation learning on
Scene 1 and Scene 2. Recognition rate is 100% with Markov models and 90%
with evidential reasoning.

to that of Scene 2. For recognition experiments, 20 experiments
with attentional sequences of length 10 are conducted. Figs. 9
and 10 show the generated sequencesand recognition re-
sults for both approaches. Probability values for the Markov
approach are given on a log scale. Using as low as ten fixa-
tions during both learning and classification, different feature
sequences can be recognized as belonging to the correct shape
with a fairly good rate.

Note that the fixation camera is not following a pre-defined
boundary or trajectory; therefore, the 20 sequences generated
during these experiments are completely different. Our clas-
sification methods are sensitive to favored transitions in the
sequences based on the apriori generated models. Sequences,
which include these highly favored transitions, are immediately
recognized with a high margin. Others which do not include
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Fig. 11. Scene 1: 30 fixation learning.

Fig. 12. Scene 2: 30 fixation learning.

them are either incorrectly classified or return only a slightly
better result compared to the competing model. Another reason
for incorrect classification is the possibility of generating
very similar or even identical sequences on two different
scenes. However, correct classification rates indicate that this
intersection region is small, and both methods work.

In the next set of experiments, we increased the learning pe-
riod to 30 fixations. Differences between the two shapes are
expected to become more announced. However, as observed
in feature frequency matrices in Figs. 11 and 12, this may not
be the case. The discriminating transitions 4–6, and 7 between
Scene 1 and Scene 3 were better modeled in the previous ten
fixation models. This result shows that increasing learning se-
quence size does not necessarily lead to better models and im-
proved recognition performance due to the above-mentioned
variations in sequences.

Results of recognition experiments using models learned
from 30 fixations for Scene 1 and Scene 2 are shown in Figs. 13
and 14, respectively. Although an improvement in modeling
and classification perfomance cannot be guaranteed by in-
creasing the learning period, an improvement in consistency
of results is observed in these results. For example, in Fig. 14,
we had significantly bad results in Experiments 11–14 with
both methods. Furthermore, in Fig. 13, where recognition
rate was good, both methods returned wrong results in the
same two experiments out of 20. The remaining one sequence,
which could not be classified correctly by Markov models, was
classified correctly by support functions only by a very small
margin.

For the last set of experiments, a learning sequence size of
50 is used. Figs. 15 and 16 list models generated by a 50 fixa-
tion learning run. Once again, the diagonal edges of Object 2 are
poorly modeled. Recognition results are shown in Figs. 17 and
18. Results for Object 1 are 100% correct as its model dominates

Fig. 13. Results after ten fixations on Scene 1 with 30 fixation learning on
Scene 1 and Scene 2. Recognition rate is 85% with Markov models and 90%
with evidential reasoning.

Fig. 14. Results after ten fixations on Scene 2 after 30 fixation learning on
Scene 1 and Scene 2. Recognition rate is 50% with Markov models and 60%
with evidential reasoning.

Fig. 15. Object 1: 50 fixation learning.

over Object 2 even more than in 30 fixation models. Sequences
from Object 2 are poorly recognized with the same rates as be-
fore. Consistency of results using the two approaches are again
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Fig. 16. Object 2: 50 fixation learning.

Fig. 17. Results after ten fixations on Scene 1 after 50 fixation learning on
Scene 1 and Scene 2. Recognition rate is 85% with Markov models and 95%
with evidential reasoning.

Fig. 18. Results after ten fixations on Scene 2 after 50 fixation learning on
Scene 1 and Scene 2. Recognition rate is 50% with Markov models and 60%
with evidential reasoning.

very good and in general much better than experiments with ten
fixation learning.

Fig. 19. Wide-angle ten fixations on Scene 1, Scene 2, and Scene 3, as viewed
from left to right. Squares represent the visual field and fovea.

Fig. 20. Sample sequence of visual field imagesI = (I ; . . . ; I )on Scene
1.

Fig. 21. Second sample sequence of visual field imagesI =
(I ; . . . ; I )on Scene 1.

B. Experiments on Complex Scenes

In the next set of experiments, three complex scenes from our
laboratory were used (see Fig. 19). Fixation points and foveas
are at the center of each visual field image. Figs. 20 and 21
show visual fields of APES for two sample fixation sequences,
looking at Scene 1. The complexity of our problem can be
observed in these sample sequences. For example, in the fifth
fovea, a boundary caused by a shadow is fixated, and in some
foveas, like those numbered 4, 8–10, the image is distorted
by small camera or body motion, making edge-based features
quite hard to detect correctly. Note that these are problems
common to any practical implementation outside controlled
environments. Our methods are expected to cope with such
distortions. Also note that in the two sequences, although
starting points are close and the first visual fields are almost
identical, the two sequences are quite different. However,
spatial and temporal relations of observed features remain the
same. One of the main contributions of our work is to develop
methods for detecting these invariant relations.

We then compared responses using pairs of models using
these complex scenes. Their models were learned using atten-
tional sequences of length 30. Figs. 22, 23–24 give the feature
transition frequencies for the three scenes. Simply looking at the
generated model matrices, it can be observed that Scene 3 has
unique features as compared to both Scene 1 and Scene 2. There-
fore, any sequence generated on Scene 3 is likely to be identi-
fied correctly. On the other hand Scene 1 and Scene 2 models
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Fig. 22. Scene 1 model.

Fig. 23. Scene 2 model.

Fig. 24. Scene 3 model.

are very similar making classification almost impossible. These
results are justified in Figs. 25–30. Scene 3 is recognized with a
rate of 100% in all cases as it has a dominating model. In exper-
iments on Scene 1 and Scene 2, results of the two approaches
are inconsistent.

C. Experiments on Similar Complex Scenes

The method of evidential reasoning was also tested using
three similar scenes with small variations and one unrelated
scene. Changes in the scene are not very small at all, such as
missing chairs, but a human viewer tends to overlook these
changes. APES is expected to perform similarly and “under-
stand” that the three scenes belong to the same part of the world
and the fourth scene to a different part. The four scenes are
shown in Fig. 31.

In Fig. 32, results of experiments on the original training
scenes are shown. Scene 1 can be recognized easily with a high
margin, while Scene 2 is recognized in 80% of the experiments
with a very low margin. In Fig. 33, results of experiments on
the two variants of Scene 1, Scene 3, and Scene 4 are shown.
Both scenes can easily be recognized as Scene 1 except in a few
experiments.

Although these experiments show that scene recognition
based on attentional sequences can compensate for small

Fig. 25. Results after 30 fixations on Scene 1 with 30 fixation learning on
Scene 1 and Scene 3. Recognition rate is 100% with Markov models and 100%
with evidential reasoning.

Fig. 26. Results after 30 fixations on Scene 3 with 30 fixation learning on
Scene 1 and Scene 3. Recognition rate is 80% with Markov models and 100%
with evidential reasoning.

Fig. 27. Results after 30 fixations on Scene 1 with 30 fixation learning on
Scene 1 and Scene 2. Recognition rate is 100% with Markov models and 50%
with evidential reasoning.

changes in the environment, the low margins in Scene 2
recognition results in Fig. 32 are confusing. This result may
suggest that the model of Scene 1 may be dominating over
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Fig. 28. Results after 30 fixations on Scene 2 with 30 fixation learning on
Scene 1 and Scene 2. Recognition rate is 40% with Markov models and 100%
with evidential reasoning.

Fig. 29. Results after 30 fixations on Scene 2 with 30 fixation learning on
Scene 2 and Scene 3. Recognition rate is 70% with Markov models and 70%
with evidential reasoning.

Scene 2 and correct classification of Scene 3 and Scene 4 is a
result of this dominance.

D. Summary

In summary, our experiments on simple and complex scenes
revealed the following important results about the use atten-
tional sequences for scene classification.

1) Both Markov models and evidential reasoning are
promising for classification of attentional sequences.

2) even by using very simple edge-based features, we can de-
duce invariant relations from the seemingly varying fovea
image sequences generated while looking at the same
scene;

3) Using as low as ten fixations during learning and recog-
nition, good classification performance can be achieved
using both methods.

4) Results on complex real-world scenes, which are hard
to classify using classical methods, show that attentional
sequence-based classification is promising to solve such
problems.

Fig. 30. Results after 30 fixations on Scene 3 with 30 fixation learning on
Scene 2 and Scene 3. Recognition rate is 100% with Markov models and 100%
with evidential reasoning.

Fig. 31. Wide-angle images of Scene 1, Scene 2, Scene 3, and Scene 4, as
viewed from left to right.

Fig. 32. Results of 30 fixations on Scene 1 (top) and Scene 2 (bottom) after
30 fixation learning on Scene 1 and Scene 2. Recognition rates are 100% and
80%, respectively.
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Fig. 33. Results of 30 fixations on Scene 3 (top) and Scene 4 (bottom) after
30 fixation learning on Scene 1 and Scene 2. Recognition rates are 100% and
80%, respectively.

5) Increasing the learning period does not necessarily
improve performance. Good performance with a short
learning period is possible depending on learning and
recognition fixations.

6) The two models performed similarly in simpler classifica-
tion tasks, where models were distinct. In harder tasks ei-
ther both methods generated very small margins between
the two models and returned false results, or evidential
reasoning performed better. The differences between the
two methods are caused by the fact that unlike Markov
methods contributions from competing models are taken
into account by the combination rules used in evidential
reasoning.

7) In order to achieve good performance, models (feature
transition frequency matrices) need to represent unique
features about the scene. How to generate fixation
models with such property and how to compute their
representation capability are open problems on which we
are working.

E. Discussion

The main objective of our work was to investigate whether
the attentional sequence can be used for scene classification by
applying the above methods. Therefore, in order to reduce the
effects of attention mechanism, the simple attention function
and simple attentive features discussed in Section III are used
in our experiments. However, the behavior of the system can be

controlled effectively by using different attentional schemes in-
cluding top-down approaches, although how this should be done
is an open question [7], [45]. In general, the performance of se-
quence classification will be unaffected as long as the same de-
terministic attention scheme is used during both modeling and
recognition. However, stochastic components in the attentional
scheme may change the performance as the classification algo-
rithms rely on the observation of learned sequences or short seg-
ments of learned sequences.

The use of only eight simple edge features in our experiments
is also restrictive. As seen in the experiments, different scenes
may lead to similar models, which do not have any discrimi-
nating ability. Instead, using many complex features in the at-
tentional sequence and the spatial locations of features can im-
prove performance. Especially in complex scene experiments a
better model of the environment can be obtained. However, the
detailed scene models generated in this way may also be restric-
tive and the generalization behavior demonstrated in the exper-
iments of Section IV-C may not be achieved.

Asmentionedearlier,oneof themainstrengthsofourapproach
is the ability to change pre-attentive and attentive features as well
as the attention scheme without changing the sequence modeling
and classification methods. Therefore, an adaptive system can
modify these subsystems based on the current task specification
while keeping the same decision system.

V. CONCLUSION AND FUTURE WORK

Biological evidence suggest that, besides being massively
parallel, human vision is also sequential especially when
solving complex visual tasks. Information is collected in space
and time via attention mechanisms resulting in the attentional
sequence. In order to better understand human vision and
build robots that can parform similarly, we need to learn how
to manipulate and use space-time sequences, which are a
relatively new data type for vision scientists. In this paper,
we propose two approaches to using attentional sequences
in recognition tasks: 1) Markov and 2) evidential models.
Both approaches are implemented and tested on a working
active vision system integrated into APES, a mobile robot
designed and developed in our laboratory. Experimental results
show that both methods can be used as sequence modeling
and classification tools in both simple and complex scenes.
However, the success of classification is also dependent on the
efficiency of learning and the feature space being used. These
two determine the information content of library models and
observation sequences, respectively.

In our future work, which is inspired largely by work in vision
science investigating the orientation, texture, and frequency spe-
cific detector cells in the primate visual cortex, APES will use
a higher dimensional and more complex feature space and pos-
sibly surfaces. This will enable APES to generate much more
complicated observation sequence with richer content. In this
case, we can also expect good recognition performance in the
presence of more than two models. Using different approaches
in simulating fovea-periphery distinction is another interesting
study that is likely to improve the performance of feature ex-
traction.
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Dr. İstefanopulos is the Vice Chairman of the IFAC National Member Organi-
zation and he was the General Chair of the 1997 IEEE International Symposium
on Intelligent Control and the General Chair of the 2001 Annual International
Symposium of the IEEE Engineering in Medicine and Biology Society. He is
currently a Partner Member of the Balkan and Eastern European Network of
Excellence for the Diffusion of Mathematics for Industry Expertise.


	Index: 
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index: 
	INDEX: 
	ind: 


