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Motion

Eppur si muove.!
Galileo

This chapter concerns the analysis of the visual motion observed in time-varying image se-
quences.

Chapter Overview

Section 8.1 presents the basic concepts, importance and problems of visual motion.

Section 8.2 introduces the notions of motion field and motion parallax, and their fundamental
cquations.

Section 8.3 discusses the image brightness constancy equation and the optical flow, the approxi-
mation of the motion field which can be computed from the changing image brightness pattern.

Section 8.4 presents methods for estimating the motion field, divided in differential and feature-
matching/tracking methods.

Section 8.5 deals with the reconstruction of 3-D motion and structure.
Section 8.6 discusses motion-based segmentation based on change detection.

What You Need to Know to Understand this Chapter

¢ Working knowledge of Chapters 2 and 7.

« Eigenvalues and eigenvectors of a matrix.

e Least squares and SVD (Appendix, section A.6).

¢ The basics of Kalman filtering (Appendix, section A.8).

' And yet it is moving.
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Introduction

Until now, we have studied visual computations on single images, or two images ac-
quired simultancously. In this chapter, we broaden our perspective and focus on the
processing of images over time. More precisely, we are interested in the visual informa-
tion that can be extracted from the spatial and temporal changes occurring in an image
sequence.

Definition: Image Sequence

An image sequence is a serics of N images, or frames, acquired at discrete time instants f =
fy+ kAr, where Aris a fixed time interval. and k =0.1, ..., N - 1.

8¢ Inorder toacquire an image sequence, you need a frame grabber capable of storing frames

ata fast rate. Typical rates are the so calied frame rate and field rate, corresponding to a time
interval Ar of 1/24sec and 1/30sec respectively, If you are allowed to choose a different time
interval, or simply want to subsample an image sequence, make sure that At is small enough
to guarantee that the discrete sequence is a representative sampling of the continuous image
evolving over time; as a rule of thumb, this means that the apparent displacements over the
image plane between frames should be at most a few pixels.

Assuming the illumination conditions do not vary, image changes are caused bya
relative motion between camera and scene: the viewing camera could move in front of
a static scene, or parts of the scene could move in front of a stationary camera, or, in
general, both camera and objects could be moving with different motions.

8.1.1 The Importance of Visual Motion

The temporal dimension in visual processing is important primarily for two reasons,
First, the apparent motion of objects onto the image plane is a strong visual cue for
understanding structure and 3-D motion. Second, biological visual systems use visual
motion to infer properties of the 3-D world with little a priori knowledge of it. Two
simple examples may be useful to illustrate these points.

Example I: Random Dot Sequences. Consider an image of random dots, gener-
ated by assigning to each pixel a random grey level. Consider a second image obtained
by shifting a squared, central region of the first image by a few pixels, say, to the right,
and filling the gap thus created with more random dots. Two such images are shown in
Figure 8.1. If you display the two images in sequence on a computer screen, in the same
window and one after the other at a sufficiently fast rate, you will unmistakably see a
square moving sideways back and forth against a steady background. Notice that the
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Figure 8.1 A sequence of two random dot images: a square has been
displaced between the two frames.

visual system bases its judgement on the only information available in the sequence;
that is, the displacement of the square in the two images.?

Example 2: Computing Time-to-Impact. Visual motion allows us to compute
useful properties of the observed 3-D world with very little knowledge about it. Con-
sider a planar version of the usual pinhole camera model, and a vertical bar perpendic-
ular to the optical axis, travelling towards the camera with constant velocity as shown in
Figure 8.2. We want to prove a simple but very important fact: It is possible to compute
the time, t, taken by the bar to reach the camera only from image information; that is,
without knowing either the real size of the bar or its velocity in 3-D space.?

Asshown in Figure 8.2, we denote with L the real size of the bar, with V its constant
velocity, and with f the focal length of the camera. The origin of the reference frame is
the projection center. If the position of the bar on the optical axis is D(0) = Dy at time
t =0, its position at a later time r willbe D = Dy — Vi. Note that L, V, f, Dy, and the
choice of the time origin are all unknown, but that r can be written as

14
=5 (8.1)
From Figure 8.2, we see that I(1), the apparent size of the bar at time 1 on the image
plane, is given by

L

ncidentally, you can look at the two images of Figure 8.1 as a random-dot stereogram (o perceive a square
floating in the background. Stand a diskette (or a sheet of paper of the same size) between the two images
and touch your nose against the diskette, so that each eye can see only one image. Focus your eyes behind
the page. After a while, the two images should fuse and produce the impression of a square floating against
the background.

* In the biologically-oriented community of computer vision,  is called, rather pessimistically, time-to-collision
or even time-to-crash!
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Figure 8.2 How long before the bar reaches the camera?

If we now compute the time derivative of /(r),

I’m-‘”m _ . LdD ,,LV
T dr T prar T pr

take the ratio between /() and F(r). and use (8.1). we obtain

()
=7 8.2
' r 4.2)

This is the equation we were after: since both the apparent size of the bar, /(r). and its
time derivative, I'(1). are measured from the images. (8.2) allows us to compute r in the
absence of any 3-D information. like the size of the bar and its velocity.

8.1.2 The Problems of Motion Analysis

It is now time to state the main problems of motion analysis. The analogies with stereo
suggest to begin by dividing the motion problem into two subproblems.

Two Subproblems of Motion

Correspondence: Which clements of a frame correspond to which clements of the next frame of
the sequence?
Reconstruction: Given a number of corresponding elements. and possibly knowledge of the

camera’sintrinsic parameters, what can we say about the 3-D motion and structure of the observed
world?

Main Differences between Motion and Stereo

Correspondence: As image sequences are sampled temporally at usually high rates. the spatial
differences (disparities) between consecutive frames are. on average. much smaller than those of
typical stereo pairs.

Reconstruction: Unlike sterco, in motion the relative 3-D displacement between the viewing
camera and the scene is not necessarily caused by a single 3-D rigid transformation.
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Figure 8.3 Three frames from a long image sequence (left o right and top 1o hottom) :ln(! the
optical flow computed from the sequence, showing that the plant in the foreground is moving
towards the camera. and the soft toys away from it.

Regarding correspondence. the fact that motion sequences make many, cl()ssf-ly
sampled frames available for analysis is an advantage over the sterco casc for at Fgfnsl
two reasons. First. feature-based approaches can be made morc cffccllv‘c hy. """f""”_
techniques, which exploit the past history of the features’ motion to predict (!mpnnll‘c#
in the next frame. Second, due 1o the generally small spatial and temporal differences
between consecutive frames. the correspondence problem can also be cast as the prob-
tem of estimating the apparent motion of the image brightness pattern, usually g:nllcd
optical flow (see¢ Figure 8.3).
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We shall use two strategies for solving the correspondence problem.

Differential methods (section 8.4.1) lead to dense measures: that is, computed at each
image pixel. They use estimates of time derivatives, and require therefore image
sequences sampled closely.

Matching methods (section 8.4.2) lead to sparse measures: that is, computed only at a
subset of image points. We shall place emphasis on Kalman filtering as a technique
for matching and tracking efficiently sparse image features over time.

Unlike correspondence, and perhaps not surprisingly, reconstruction is more diffi-
cult in motion than in stereo. Even in the presence of only one 3-D motion between the
viewing camera and the scene. frame-by-frame recovery of motion and structure turns
out to be more sensitive to noise. The reason is that the baseline between consecutive
frames, regarded as a stereo pair, is very small (see Chapter 7). 3-D motion and struc-
ture estimation from both sparse and dense estimates of the image motion is discussed
in sections 8.5.1 and 8.5.2. respectively.

This chapter discusses and motivates methods for solving correspondence and
reconstruction under the following simplifying assumption.

Assumption

There is only one. rigid. refative motion between the camera and the observed scene. and the

illumination conditions do not change.

This assumption of single. rigid motion implies that the 3-D objects observed cannot
move of different motions. This assumption is violated. for example, by sequences of
football matches, motorway traffic or busy strects. but satisfied by. say. the sequence of a
building viewed by a moving observer. The assumption also rules out flexible (nonrigid)
objects: deformable objects like clothes or moving human bodies are excluded.

If the camera is looking at more than one moving object. or you simply cannot
assume a moving camera in a static environment. a third subproblem must be added.

The Third Subproblem of Motion

The scgmentation problem: What are the regions of the image plane which correspond to different
moving objects?

The main difficulty here is a chicken and egg problem: should we first solve
the matching problem and then determine the regions corresponding to the different
moving objects. or find the regions first, and then look for correspondences? This
question is addressed in section 8.6 in the hypothesis that the viewing camera is not

moving. Pointers to solutions to this difficult problem in more general cases are given
in the Further Readings.
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We now begin by establishing some basic facts.

8.2 The Motion Field of Rigid Objects

Definition: Motion Field

The motion ficld is the 2-D vector ficld of velocities of the image points, induced by the relative
motion hetween the viewing camera and the observed seene.

The motion field can be thought of as the projection of the 3-1) velocity field
on the image plane (10 visualize this vector field, imagine to project the 3-D velocity
vectors on the image). The purpose of this section is to get acquainted with the |.hcory
and geometrical properties of the motion ficld. We shall work in the camera rf{l('n'm'('
frame, ignoring the image reference frame and the pixclization.* The issue of camera
calibration will be raised in due time.

This section presents some essential facts of motion ficlds, compares dispur'ily
representations in motion and stereo, analyzes two special cases of rigid motion leading
1o generally uscful facts, and introduces the concept of motion parallax.

8.2.1 Basics

Notation. Welet P=|X.V, ZIT be a 3-D point in the usual camera reference
frame: The projection center is in the origin, the optical axis is the Z axis, and f denotes
the focal length. The image of a scene point, P, is the point p given by

p= _]';. (8.3)

As usual (see Chapter 2), since the third coordinate of p is always equal 1o f, we write
p=[x. v} instcadofp=|[x. v £1". The relative motion between P and the camera can
be described as

V=-T-wxP. (R.4)
where T is the translational component of the motion.® and @ the angular velocity. As
the motion is rigid, T and w arc the same for any P. In components, (8.4) reads

Vi=-T, -, 7 + oY
Vi=-T-o:X twZ (8.5)
V.= -T-~ oY + o, X.

1 Remember. this means that we consider the intrinsic parameters known.

SNote that T denotes a velocity vector only in this chapter. not a displacement vector as m the rest of the
hook.

4
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N NG 7= 2
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(a) (b) (©)

Figure 8.4 The three types of motion ficld generated by translational motion. The filled squarc
marks the instantancous epipole.

&  Notice that the point py retains its significance and many of its properties even in the
presence of a rotational component of 3-D motion (section 8.5.2).

If T. vanishes (a rather speciat case), (8.8) become

T,
n=-f3

T.
U‘=—f7".

Therefore, if T, = 0, all the motion field vectors are parallel (see Figure 8.4 (c)) and their
lengths are inversely proportional to the depth of the corresponding 3-D points.

¥ In homogeneous coordinates. there would be no need to distinguish between the two cases
T. #0and T. = 0: For all possibie values of T.. including T: = 0, py is the vanishing point of
the direction in 3-D space of the translation vector T. and the 3-D line through the center
of projection and py is parallel to T.

Following is a summary of the main properties of the motion field of a purely
translational motion.

Pure Translation: Properties of the Motion Field

1. I T #0.the motion field is radial (see (8.10)). and all vectors point towards (or away from)
a single point. py. given by (8.8). If 7. = 0. the motion field is parallel.

2. The length of motion field vectors is inversely proportional to the depth Z:if T. £ 0. it is
also inversely proportional to the distance (rom p to py.

3. pa is the vanishing point of the direction of translation (sec (8.10)).

4. py is the intersection of the ray parallel to the translation vector with the image planc.
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8.2.3 Special Case 2: Moving Plane

Planes are common surfaces in man-made objects and environments, so it is useful 1
investigate the properties of the motion field of a moving plane. Assume that the came
is observing a planar surface, n, of equation

nP=d 8.1

where n = [n,,n.‘., n,]T is the unit vector normal to ., and d the distance between
and the origin (the center of projection). Let 1 be moving in space with lranslali(.m
velocity T and angular velocity w, so that both n and d in (8.11) are functions of tim
By means of (8.3), (8.11) can be rewritten as

nex +nygy+n.f

Z=d. (8.
f

Solving for Z in (8.12), and plugging the resulting expression into (8.7), we have

Uy = —1-(a|x2 +axy+ayfx+asfy+ ¢:5f2)
fd (R
1
vy = ﬁ(mxy + az_vz +agfy+arfx+ (mfz)

where

a1 = —dw, + T:n,, ay=dw, + Ty,

ay=Tn, — Tyn,, ag=dw, — Tyn,,
as=—dw, - Tn,. aa=Tn, —Tny,

a1=—dw, - Tyn,, ag=dm—Tn..

The (8.13) states, interestingly, that the motion field of a moving planar surface
any instant t, is a quadratic polynomial in the coordinates (x. v, ) of the image poini

The remarkable symmetry of the time-dependent cocfficients ay . . . ax IS not:
incidental. You can easily verify that the ¢; remain unchanged if 4. n. T ond w
replaced by

d =d
o' =T/IT
T =IITin

w=w+nxT/d
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This means that, apart from the special case in which n and T are parallel, the same

motion field can be produced by two different planes undergoing two different 3-D
ione

motions.

*¥  The practical conscquence is that it is usually impossible to recover uniquely the 3-D
structure parameters, n and d, and motion parameters, T and w. of a planar set of points
from the motion field alone.

You might be tempted to regard this discussion on the motion field of a planar
surface as a mere mathematical curiosity. On the contrary, we can draw at least two
important and general conclusions from it.

L. Since the motion field of a planar surface is described exactly and globally by a
polynomial of second degree (see (8.13)). the motion field of any smooth surface
is likely to be approximated well by a low-order polynomial even over relatively
large regions of the image plane (Exercise 8.1 ). The useful consequence is that
very simple parametric models enable a quite accurate estimation of the motion
field in rather general circumstances (section 8.4.1).

2. As algorithms recoverying 3-D motion and structure cannot be based on motion
estimates produced by coplanar points, measurements must be made at many
different locations of the image planc in order to minimize the probability of
looking at points that lie on planar or nearly planar surfaces.” We will return to
this point in sections 8.5.1 and 8.5.2.

We conclude this section with a summary of the main propertics of the motion
field of a planar surface.

Meoving Plane: Properties of Motion Field

L The motion ficld of a planar surface is. al any time instant, a quadratic polynomial in the
image coordinates.

[ad

Due to the special symmetry of the polynomial coeflicients. the same motion field can be
produced by two different planar surfaces undergoing different 3-D motions.

8.2.4 Motion Parallax

The decoupling of rotational parameters and depth in the (8.7) is responsible for what
is called motion parallax. Informally. motion parallax refers to the fact that he relative
motion field of two instantaneously coincident points does not depend on the rotational

*This result should not surprise you. Planar surfaces lack generality: The cight-point algorithm (Chapter 7).
for example, fails 1o vield a unique solution if the points are all coplanar in 3-D space.

A “nearly planar™ surfacc is a surface that can be approximated by a plane within a given tolerance. which
is typically proportional 1o the distance of the surface from the image plane.
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EPIPOLE , EPIPOLE
[ ] l

(a) (b)
Figure 8.5 Three couples of instantaneously coincident image points and their low vectors (a);
the difference vectors point towards the instantaneous epipole (b).

component of motion in 3-D space; this section makes this statement more precise.
Motion parallax will be used in section 8.5.2 to compute structure and motion from

optical flow. ) o . . _

P Let two points P=[X,Y,Z]" and P=[X, 7, Z]T be projected into the image
points p and p, respectively. We know that the corresponding motion field vectors can
be written as

ve=vl + o

— T "
vy =v, + v,
and
l_),=l-);r+l-):'
= =T sw
y=U, U

If, at some instant ¢, the points p and p happen to be coincident (Figure 8.5(a)), we have
| p=p=[x>",
and the rotational components of the observed motion, (v2, v%) and (¥, '), become
wxy  wx’
f / (8.14)

XY W)Y 2

s f

V=0 =-wf +ay+

u‘;‘:f;’\‘,‘:w,f—-w,x—



190

Chapter 8  Motion

Therefore, by taking the difference between v and ¥. the rotational components cancel
out, and we obtain

_ 11

Ave=v] — T =(Tx - Tz - 3)
1

Avy=v{ ~b] =(T.y - T, f)(= ~ 3)

The vector (Av,. Av,) can be thought of as the relative motion field. Other factors being
equal, Av, and Av, increase with the separation in depth between P and P.
Notice that the ratio between Av, and Ay, can be written as

Avy,  y—yy

Av, X =Xy

with [xg. y] " image coordinates of Po. the vanishing point of the translation direction
{Figure 8.5(b)).* Hence. for all possible rowtional motions, the vector el Av?y points
in the direction of p,). Consequently. the dot product between the motion field. v. and
the vector [y — Yoo — (v — .m)]T. which is perpendicular to P ~ po. depends neither on
the 3-D structure of the scene nor on the translational component of motion. and can
be written as

v =y = yo)ey — (x — aph,

We will make use of this result in section 8.5.2, where we will le

arn how to compute
motion and structure from dense estimates of the motion field.

W Be aware that the vanishing point of ranslation, Po. and the point at which v vanishes, call
it q. are in general different; they coincide only if the motion is purely translational. Any
rotational component about an axis not perpendicular to the image plane shifts the position
of q. whereas the position of Po remains unchanged, as it is determined by the translational
component only. Somewhat deceptively. the flow field in the neighborhood of g might siil)
look very much like a focus of expansion or contraction (see Figure 8.3).

And here is the customary summary of the main ideas,

Motion Parallax

The relative motion ficld of two instantancously coincident points:

L. does not depend on the rotational component of motion

2. points towards (away from) the point pq. the vanishing point of the translation direction

—_—

*Section 8.2.5 makes it clear that this point can be regarded as an instantaneous epipole.
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Figure 8.6 The point py as instantancous
cpipole.

8.2.5 The Instantaneous Epipole

We close this introductory section with an important remark. '!11(: point py. being
the intersection of the image plane with the direction of lrzmslmun! of the ccnlcr.n{
projection, can be regarded as the instantaneous epipole between pairs of C(msc}tm:t
frames in the sequence (Figure 8.6). The main consequence of thls property is { '.l!.
it is possible to locate py without prior knowledge of the camera intrinsic parameters
(section 8.5.2).

*%  Notice that, as in the case of stereo, knowing the epipole’s |ucnlion. in image cnordinu‘lcs
is not equivalent to knowing the direction of lruns:laliu'n (Ih.c hflschnc. .vcclnr fn: .slcrc.u':.
The refation between epipole location and transtation direction is specified hy.({i._)). wbu h
is written in the camera (not image) frame, and cunluinsﬂw I(')cul' Ic-nglh I IhL‘fL‘Il‘);\.‘.’
the epipole’s location gives the direction of translation only if the imtrinsic parameters of the
viewing camera are known.

8.3 The Notion of Optical Flow

We now move to the problem of estimating the mulim'n field _/'ru'm image 'u"r/umu';'f. |hu|‘
is. from the spatial and temporal variations of the image h{lghl!\css. o (fn ln\ :VL
must model the link between brightness variations and motion ficld. u.nd arrive .|W|
fundamental equation of motion analysis. the image hrighl.m'.\:v constancy (’q"-”,m”h c.’
want also to analyze the power and validity of this equation. llu!l |s..umlncr‘shnuv ‘ u.v.“"
much and how well it can help us to estimate the motion "IL‘M. For slmphclly, we .\;'.I
assume that the image brighiness is continuous and differentiable as many times as needes
in both the spatial and temporal domain.
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8.3.1 The Image Brightness Constancy Equation

It is common experience that, under most circumstances, the apparent brightness of
moving objects remains constant. We have seen in Chapter 2 that the image irradiance
is proportional to the scene radiance in the direction of the optical axis of the camera;
if we assume that the proportionality factor is the same across the entire image plane,
the constancy of the apparent brightness of the observed scene can be written as the
stationarity of the image brightness E over time:
dE
= 0. (8.15)
s In (8.15), the image brightness, E, should be regarded as a function of both the spatial
coordinates of the image plane, x and v, and of time, that is, E = E(x, v.1). Since x and
¥ are in turn {unctions of 1, the total derivative in (8.15) should not be confused with the
partial derivative 1 E /1.

Via the chain rule of differentiation. the total temporal derivative reads

dE(x(). ¥(.1) _dEdx JEdy + 9E

d Taxdt  dydt At

The partial spatial derivatives of the image brightness are simply the componeats of
the spatial image gradient, VE, and the tempora! derivatives, dx/dt and dy/dt, the

components of the motion field, v. Using these facts, we can rewrite (8.16) as the image
brightness constancy equation.

=0. (8.16)

The Image Brightness Constancy Equation
Given the image brightness. E = E(x, v, ). and the motion field. v,
(VE)TVv+E, =0. 8.17)

The subscript ¢ denotes partial differentiation with respect to time.

We shall now discuss the relevance and applicability of this equation for the
estimation of the motion field.

8.3.2 The Aperture Problem

How much of the motion field can be determined through (8.17)? Only its component

in the direction of the spatial image gradient,” v,,. We can see this analytically by isolating
the measurable quantities in (8.17):

E, _(VE)Tv

“ivEl - e @.18)

9 This component is sometimes called the normal component. because the spatial image gradient is normal to
the spatial direction along which image intensity remains constant.
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\4

(a) (®)

Figure 8.7 The aperture problem: the black and grey lines sho.w two p«rsiliuf\s of
the same image line in two consecutive frames. The image velocity [.wrccwcc? in ‘(n) .
through the small aperture, Vs, is only the component paraliel to the image gradicnt o
the truc image velocity. v, revealed in (b).

The Aperture Problem

The component of the motion field in the dircction orthogonal to the spatial image gradient is
not constrained by the image brightness constancy cquation.

The aperture problem can be visualized as follows. Imagine to ohser:’e a lhv'r.\, hI‘:’Iclz
rectangle moving against a white background through a small aperture. Small xrr;um..
that the corners of the rectangle are not visible lhrm!gh the aperture (Flgun. ) ::',”:
the small aperture simulates the narrow support of a dlffcrcnlm] mclh.ud. ( |L:ar|y. ( LLrt
are many, actually infinite, motions of the rcc!anglc c(‘)mpzmh.lc wn.h what y;;usm
through the aperture (Figure 8.7(h)); the visual information .a‘vmlal'»lc is only s‘u 'I(.It.l .
to determine the velocity in the direction nnlmgun.al to the visible side of the rectangie:
the velocity in the parallel direction cannot be estimated.

s Notice that the parallel between (8.17) and Figure RB.7 is r?ol pcrfcc!. Iiquation (Rl. 117:’;::‘-:::‘*'
the image gradient and the motion ficld at the same image ?mnl. lhcrchvy~ L; :l ! w“t
a constraint on an infinitely small spatial support: imlcad'. Figure 8.7 dcsc'rl 'u i '\i.|\|c
of affairs over a small but finite spatial region. This immcdungly suggests lh«'|l| .I”p(‘vf“""\
strategy for solving the aperture problem is to look at lI!c smmul and temporal vari
of the i’magc brightaess over a neighborhood of cach point.

——

W ncidentally. this strategy appears to he adopted by the visual system of primates.
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8.3.3 The Validity of the Constancy Equation: Optical Flow

How well does (8.17) estimate the normal component of the motion field? To answer
this question, we can look at the difference, Av, between the true value and the one
estimated by the equation. To do this, we must introduce a model of image formation,
accounting for the reflectance of the surfaces and the illumination of the scene.

For the purposes of this discussion, we restrict ourselves to a Lambertian surface,
S, itluminated by a pointwise light source infinitely far away from the camera (Chap-
ter 2). Therefore, ignoring photometric distorsion, we can write the image brightness,
E, as

E=pl"n, (8.19)

where p is the surface albedo, I identifies the direction and intensity of illumination,
and n is the unit normal to § at P.

Let us now compute the total temporal derivative of both sides of (8.19). The only
quantity that depends on time on the right hand side is the normal to the surface. If
the surface is moving relative 10 the camera with translational velocity T and angular
velocity w, the orientation of the normal vector n will change according to

7 =exn (8.20)
where x indicates vector product. Therefore, taking the total temporal derivative of
both sides of (8.19), and using (8.17) and (8.20), we have

VETv+E =pl"(w x n). (8.21)
We can obtain the desired expression for Av from (8.18) and (8.21):

Mw x n

Avl=p
IVE]

We conclude that, even under the simplifying assumption of Lambertian reflectance,
the image brightness constancy equation yields the true normal component of the
motion field (that is, |Av]| is identically O for every possible surface) only for (a) purely
translational motion, or (b) for any rigid motion such that the illumination direction is
parallel to the angular velocity.

Other factors being equal. the difference Av decreases as the magnitude of the
spatial gradient increases; this suggests that points with high spatial image gradient are
the locations at which the motion field can be best estimated by the image brightness
constancy equation.

In general. |Av| is unlikely to be identically zero, and the apparent motion of the
image brightness is almost always different from the motion field. For this reason, to
avoid confusion, we call the apparent motion an optical flow, and refer to techniques
estimating the motion field from the image brightness constancy equation as optical flow

techniques. Here is a summary of similarities and differences between motion field and
optical flow.
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Definition: Optical Flow

The optical flow is a vector ficld subject to the constraint (8.1 7). and loosely defined as the apparent
motion of the image brightness pattern.

Optical Flow and Motion Field
The optical low is the approximation of the motion field which can be computed fromtime-varying
image sequences. Under the simplifying assumptions of
® Lambertian surfaces
® pointwise light source at infinity
¢ no photometric distortion

the error of this approximation is

® small at points with high spatial gradient
® exactly zero only for translational motion or for any rigid motion such that the illumination
direction is parallel to the angular velocity

We are now ready to learn algorithms estimating the motion field.

8.4 Estimating the Motion Field

The estimation of the motion ficld is a useful starting point for the solution of many mo-
tion problems. The many techniques devised by the computer vision community can be
roughly divided into two major classes: differential techniques and matching l(‘(‘lm.ll]ll(’ﬁ.
Differential techniques are based on the spatial and temporal variations of the image
brightness at all pixels, and can be regarded as methods for computing optical flow.
Matching techniques. instead, estimate the disparity of special image points (features)
between frames. We examine differential techniques in section 8.4.1: matching is the
theme of section 8.4.2.

8.4.1 Differential Techniques

In recent (and not so recent) years a large number of differential techniques for com-
puting optical flow have been proposed. Some of them require the solution f)f asystem
of partial differential cquations, others the computation of second and hl]lh}‘l"("(lk‘l’
derivatives of the image brightness. others again least-squares estimates of the pa-
rameters characterizing the optical flow. Methods in the fatter class have at least two
advantages over those in the first two:

* ‘They arc not iterative: therefore. they are genuinely focal, and less biased than

iterative methods by possible discontinuitics of the motion ficld.

* They do not involve derivatives of order higher than the first: therefore, thes are
less sensitive to noise than methads requiring higher-order derivatives.
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We describe a differential technique that gives good results. The basic assumption
is that the motion field is well approximated by a constant vector field, v, within any
“small region of the image plane.'!

Assumptions

1. The image brightness constancy cquation yields a good approximation of the normal
component of the motion ficld.

2. The motion ficld is well approximated by a constant vector ficld within any small patch of
the image planc.

An Optical Flow Algorithm. Given Assumption 1. for cach point p; within a
small. N x N patch, Q. we can write

(VEY v+ E =0

where the spatial and temporal derivatives of the image brightness arc computed at
pPi.p2.. . Py

sa A typical size of the “small patch™ is § x 5.

Therefore. the optical flow can be estimated within @ as the constant vector, ¥,
that minimizes the functional

wivi= Y [(VE)Tv + E,]Z.
peQ

The solution to this least squares problem can be found by solving the linear system

ATAv=A"b. (8.22)
The i-th row of the N2 x 2 matrix A is the spatial image gradient evaluated at point p;:
VE(p))
VEp>)
A= . (8.23)
VE(I;NxN)

and b is the N2-dimensional vector of the partial temporal derivatives of the image
brightness. evaluated at py. . . . py2. after a sign change:

b=—[Eipr)..... E,(p‘\',N)]T . (R.24)

' Notice that this is in agreement with the first conclusion of section 8.2.3 (motion field of moving planes)
regarding the approximation of smooth motion ficlds.
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The least squares solution of the overconstrained system (8.22) can be obtained as?
v=(ATA) 'ATb. (8.25)

¥ is the optical flow (the estimate of the motion field) at the center of patch Q: repeating
this procedure for all image points, we obtain a dense optical flow. We summarize the
algorithm as follows:

Algorithm CONSTANT_FLOW
The input is a time-varying sequence of n images, Ey, Ea.. .. Eq. Let Q be a square region of
N x N pixels (typically, N =5).
1. Filter each image of the sequence with a Gaussian filter of standard deviation equal to g,
(typically o, = 1.5 pixels) along cach spatial dimension.
2. Filter cach image of the sequence along the temporal dimension with a Gaussian filter of
standard deviation a, (typically a, = 1.5 frames). If 2k + 1 is the size of the temporal filter.
Jeave out the first and last k images.
3. For each pixcl of cach image of the sequence:
(a) compute the matrix A and the vector b using (8.23) and (8.24)
(b) compute the optical flow using (8.25)

The output is the optical flow computed in the last step.

s#  The purpose of spatial filiering is to attenuate noise in the estimation of the spatial image
gradient; temporal filtering prevents aliasing in the time domain. For the implementation
of the temporal filtering, imagine to stack the images onc on top of the other, and filter
sequences of pixels having the same coordinates. Note that the size of the temporal filter
is linked to the maximum speed that can be “measured” by the algorithm.

An Improved Optical Flow Algorithm. We can improve CONSTANT_FLOW
by observing that the error made by approximating the motion ficld atp withits estimale
at the center of a patch increases with the distance of p from the center itsell. ‘This
suggests a weighted least-squarc algorithm, in which the points close Lo the center }ﬂ
the patch are given more weight than those at the periphery. If W is the weight matrix.
the solution, ¥,,.. is given by

¥, =A"w2a) 'A' wh.
Concluding Remarks on Optical Flow Methods. 11 is instructive to cxamine the
image locations at which CONSTANT_FLOW fails. As we have scen in Chapter 4. the
2 x 2 matrix

was(BH R, (k201
S EE L E?

125ce Appendix. section A.6 for alternative ways of solving overconstrained lincar systems.
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computed over an image region Q, is singular if and only if all the spatial gradients in
@ are null or parallel. In this case the aperture problem cannot be solved, and the only
possibility is to pick the solution of minimum norm, that is, the normal flow. The fact
that we have already met the matrix AT A in Chapter 4 is not a coincidence; the next
section tells you why.

Notice that CONSTANT_FLOW gives good results because the spatial structure
of the motion field of a rigid motion is well described by a low-degree polynomial in the
image coordinates (as shown in section 8.2.3). For this reason, the assumption of local
constancy of the motion field over small image patches is quite effective.

8.4.2 Feature-based Techniques

The second class of methods for estimating the motion field is formed by so-called
maiching techniques., which estimate the motion field at feature points only. The result
is a sparse motion field. We start with a two-frame analysis (finding feature disparities
between consecutive frames). thenillustrate how tracking the motion of a feature across
a long image sequence can improve the robustness of frame-to-frame matching.

Two-Frame Methods: Feature Matching. 1f motion
consecutive frames, the same matching methods can be us
This is true for both correlation-based and feature-based m
concentrate on maiching feature points. You can casily ada
case too.

The point-maiching method we describe is reminiscent of the CONSTANT
FLOW algorithm, and based on the features we met in Chapter 4. There. we looked at
the matrix A7 A of (8.26), computed over small, squarce image regions: the features were
the centers of those regions for which the smallest eigenvalue of AT A was larger than
a threshold. The idea of our matching method is simple: compute the displacement of
such feature points by iterating algorithm CONSTANT_FLOW,

The procedure consists of three steps. First, the uniform displacement of the
square region Q is estimated through CONSTANT_FLOW, and added (o the current
displacement estimate (initially set to 0). Second. the patch Q is warped according to
the estimated flow. This means that Q is displaced according to the estimated flow, and
the resulting patch. @', is resampled in the pixel grid of frame /. If the estimated flow
equals (v, v,). the gray value at pixel (i. j) of Q' can be obtained from the gray values
of the pixels of Q close to (i — y. j — vy). For our purpose. bilinear interpolation is
sufficient. Third. the first and second steps are iterated until a stopping criterion is met.
Here is the usual algorithm box, containing an example of stopping criterion.

-
I Bu keep in mind the discussion of section 8.2.1 on the differences between stereo and motion disparities.

" Bilinear interpolation means that the interpolation is linear in cach of the four pixels closest to (i - j-
v
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Algorithm FEATURE_POINT MATCHING

The input is formed by /; and I,. two frames of an image sequence, and a set of corresponding
feature points in the two [rames.
Let ). Q2. and Q' be three N x N image regions, and r a fixed, positive real number. Let d
be the unknown displacement between 1y and 1, of a feature point p on which Q) is centered.
For all feature points p:

1. Setd =0and center Qy on p.

2. Estimate the displacement dy of p, center of Q. through (8.25) and letd = d + d,.

3. Let Q' be the paich obtained by warping @} according to dy. Compute S, the sum of the
squared differences (the SSD of Chapter 7) between the new patch Q" and the correspond-
ing patch Q> in the frame /,.

4. If §> r.set Q) = Q" and go to step |: otherwise exit.

The output is an estimate of d for all feature points.

5 Inbhoth the smoothing stage. necessary to compute the derivatives in (8.25), and the warping
stage of steps 2 and 3 respectively, you should consider a region actually larger than @y
(say by a factor 2). This enables you to iterate the procedure without introducing boundary
effects.

s¥  An alternative stopping criterion is 1o control the relative variation of the estimated Now
at cach iteration and exit the loop if the relative variation falls below a fixed threshold,

Multiple-Frame Methods: Feature Tracking. As we assume to analyze long im-
age scquences, not just pairs of frames, we can improve on two-frame f.calurc .mulchmg.
We start with an intuitive fact: if the motion of the observed scene is continuous, as
it nearly always is, we should be able to make predictions on the motion of the image
points, at any instant, on the basis of their previous trajectories. In nlhc‘r words.' we CeX-
pect the motion of image points 10 be continuous, and therefore predictable, in most
cases: we should be able to use the disparitics computed between frames 1, and J; ».
i3 and I;_3, and so on, to make predictions on the disparitics between 1, and /.
before observing frame ;.

Definition: Feature Tracking

Feature tracking is the problem of matching features from frame to frame in long sequences of
images.

We approach tracking in the general framework of optimal m'linmlilfn 'hmr'vf our
solution is the Kalman filter. For our purposes, a Kalman filter is a recursive ulgthm
which estimates the position and uncertainy of a moving feature pointin the next I'r:nnc.
that is. where to look for the feature, and how large a region should be searched in the
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next frame, around the predicted position, to be sure {o find the feature within a certain
confidence. An introduction to the basic elements of Kalman filter theory is necessary
to understand this section, and can be found in the Appendix, section A 8. Read itnow
if you are not familiar with the Kalman filter.

Let us formalize the tracking problem. A new frame of the image sequence is
acquired and processed at each instant, i =10 + k. where k is a natural number. The
sampling interval is assumed 1 for simplicity. and. more importantly. small enough to
consider the motion of feature points from frame to frame linear.

We consider only one feature point. pr = |4, )‘k]T. in the frame acquired at instant
1r. moving with velocity vy = [v,_k. v,.,k] . We describe the motion on the image plane
with the state vector X = [.q. Vo Vg ke v‘..k]T. Assuming a sufficiently small sampling
interval (and therefore constant feature velocity between frames). we write the system
model of the linear Kalman filter as

P =Pt + Vi B
Vi =Vt M-t

(8.27)

where £y and g;..y are zero-mean, white, Gaussian random processes modelling the
system noise. In terms of the state vector x;. (8.27) rewrites

X = Pp 1 Xk-1 + We-1.

with
1010
0101
1=V 010
0001
and

We-1 = [EI‘L——‘I] ’

As to measurements, we assume that a fast feature extractor estimates zi. the position of
the feature point pi. at every frame of a sequence. Therefore, the measurement model
of the Kalman filter becomes

[rooolfe
“‘[01 00][W]+"“

with g, a zero-mean, white, Gaussian random processes modelling the measurement
noise.

Assumptions and Problem Statement

In the assumptions of the linear Kalman filter (Appendix. section A.B). and given the noisy
observations z. compute the hest estimate of the feature’s position and velocity at instant i
and their uncertaintics.

Section 8.4
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Figure 8.8 An cxample of feature tracking over (hree frames of a traffic sequence. The feature
tracked is the centroid of the car. marked with a cross.

The Kalman filter algorithm is summarized in the following equations, repeated
here from the Appendix. section A.8 for completencss.

~ Algorithm KALMAN_TRACKING

The input is formed. at instant 7x, by the covariance matrices of system and measurement nois
at time fi_1. Qa1 and Ry 1 respectively. the time-invariant state matrix. ¢, the time-invarian!
measurcment matrix, H . and the position measurement at time k. 2. The entries of Pyare setle
high, arbitrary values.
T

= G P ®y G

Ky = PoHS GRPUHT + RO

& = Oy ki + Katm — ¥ Ak 1)

po=U- Kok - Ko+ KRk
The output is the optimal estimation of the position and velocity at time #. &, and their unc

Laintics. given by the diagonal clements of Px.

Two things arc worth noticing here. First. we do not just helieve the noisy measu
ments of px of the feature detector; the filter integrates them with modcl prcdicli«m-~
obtain optimal estimates. Second. the filter quantifies the uncertainty on the stat estine:
in the form of the diagonal elements of the state covariance matrix. This informal’
allows the feature detector 1o dimension automatically the image region to e scarct
1o find the feature point in the next frame. The search region is centered on the !
position estimate. and is larger the larger the uncertainty. The clements of the o
covariance matrix arc usually initialized to very large values: in a well-designed fif
they decrease and reach a steady state rapidly. thereby restricting the scarch regie
an image feature within a few frames. An example of tracking with Kalman filtern
shown in Figure 8.8. The centroid of the car in the image (indicated by the white cre
tracked over time. The size of the cross is pmpnrliunul {0 the uncertainty in the syt
state.
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Two problems arise in the implementation of this algorithm.

Missing Information
Kalman filtering is based on the knowledge of the following:
1. the system model and the corresponding noise covariance matrix, Qx
2. the measurement model and the corresponding noise covariance matrix, Ry
3. the initial (time 1)) system state. Xq. and state covariance matrix, Py
However, several of these guantities are usuvally unknown.
Data Association

In the presence of several image features and multiple measurements. which observed measure-
ments should be associated with which feature?

Missing Information. Fortunately, this problem is not as bad as you could expect.
The system model is usvally unknown, but is assumed lincar if the time sampling is
fast enough. The measurement model is available, as we assume that feature positions
are computed at each frame. A really critical parameter, instead. is the relative weight
of model prediction and measurements expressed by the filter's gain. K. From the
equation of K. we see that the gain depends on the covariance matrices of system
and measurement noise. In particular, if the entries of R; are much smaller than those
of Qy (that is, the system model is much noisier. and therefore more uncertain, than
the measurements), the Kalman filter ignores the prediction of the system model and
relies almost entirely on measurements. Conversely. il the entries of Q; are much
smaller than the entries of Ry, (that is, the measurements are much more uncertain than
the prediction). the filter ignores the measurements and relics almost entirely on the
prediction of the system model. Clearly, one aims at a balanced situation to achieve
the greatest benefit from the integration of measurements and prediction. To achieve a
balance, one can estimate Ry on the basis of the information available on the measuring
process. then scale the entries of Q. making them comparable with those of R;.

Finally. the state and its covariance can be initialized far off their asymptotic values
with no risk of compromising the filter convergence.'

Data Association. This is a nontrivial problem in general. as there may be many
features to be tracked. You should look into the Further Readings for a detailed analysis
of techniques dealing with it. Here, we just consider briefly the case of low clutter
and multiple but noninterfering targets. Low clutter means that the likelihood of noisy
features at each frame (e.g.. false features. features appearing for one frame only) is
low. Noninterfering targets means that feature paths do not intersect. In this case, the
technique known as nearest neighbor data association (NNDA) is the most effective.
NNDA just selects the measurement associated with the updated state nearest to the

11 the filter’s assumptions are satisfied. of course.
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(@ (b)

Figure 8.9 (a) Disjoint scarch regions of two features, centered
around the best position estimates py, p2; the measurements m, m,
are associated to the closest estimates. (b) If the scarch regions
intersect, the minimum-distance criterion fails.

predicted state (see Figure 8.9(a)). It is good practice to measure the distance between
states by means of the inverse of the state covariance matrix (Excrcise 8.5). NNDA is
clearly suboptimal (Figure 8.9(b)) and more sophisticated methods are required to deal
with high clutter and interfering targets.

8.5 Using the Motion Field

Now that we have various ways to estimate the motion field, what do we do with it? We
target two tasks of practical importance, the reconstruction of 3-D motion and structure.

Problem Statement

Given the motion field estimated from an image sequénce, compute the shape, or structure, of
the visible objects, and their motion with respect to the viewing camera.

Once again we distinguish between methods using dense and sparse estimates of
the motion field.

8.5.1 3-D Motion and Structure from a Sparse Motion Field

In this section we estimate 3-D motion and structure from a sparse set of matched image
features. If the average disparity between consecutive frames is small. the reconstruction
can gain in stability and robustness from the time intcgration of long sequences of
frames. If, on the contrary, the average disparity between frames is large, this problem
can be dealt with in a sterco-like fashion, for example by means of the cight-point
algorithm of Chapter 7 applied to a pair of frames. Of the many methods proposed
in the literature for the former case, we have chosen the factorization method, which
is simple to implement and gives very good (and numerically stable) results for objects
viewed from rather large distances. The necessary assumptions are summarized below.
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Assumptions: Factorization Method

1. The camera model is orthographic.

2. The position of n image points, corresponding to the scene points Py. P ... P, not all
coplanar, have been tracked in N frames, with N > 3.

53 Note that Assumption 2 is equivalent to acquiring the entire sequence before starting any
processing. This may or may not be acceptable depending on the application. Notice also
that, since the camera model is orthographic, camera calibration can be altogether ignored
if we accept to reconstruct the 3-D points only up to a scale factor.

The remainder of this section introduces the necessary notations, discusses the
rank theorem, on which the whole method is based, and states the complete factorization
algorithm.

Notation. Weletp;; = [.\',-,-. .\‘,-,-]T denote the jth image point (j = 1....n)at the
i-th frame (i = 1, ... N), and think of the x;; and y;; as entries of two N x n matrices.
X and Y, respectively. We then form the 2N x n measurement matrix

v-[¥]

For reasons that will be clear shortly, we subtract the mean of the entries on the same
row from each x;; and y;;:

.i’,‘j = Xij — i,’

. _ (8.28)
Nij = Vij = Ni.
where
I n
X = ; ij
i=|
" (8.29)
_ 1
Vi = ’—' Z Yij
j=1

are the coordinates of p;, the centroid of the image points in the i-th frame. Again, we
think of_(he &ij and §;; as entries of two N x n matrices, X and Y. and form the 2N x n
matrix W, called the registered measurement matrix.

W= [ ; ] (8.30)

The Rank Theorem. The factorization method is based on the proof of a simple
but fundamental result.
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Figure 8.10 The geometry of the factorization method.

Rank Theorem

The registered measurement matrix (without noise) has at most rank 3.

The proof is based on the decomposition (factorization) of W of (8.30) into the
product of a 2N x 3 matrix, R, and a 3 x n matrix, 5. R describes the frame-to-frame
rotation of the camera with respect to the points P;. S describes the points’ structure
(coordinates). The proof is essential for the actual algorithm, so we will go through it
in detail.

We consider all quantities expressed in an object-centered reference frame with
the origin in the centroid of Py, ... P, (Figure 8.10), and let i; and j; denote the unit
vectors of the image reference frame, expressed in the world reference frame and at
time instant i. Thus, the direction of the optical axis is given by the cross product of i;
andjh

k,=i,ij
It can be seen from Figure 8.10 that
xij = (P; =T, (8.31)
vij =ji (P =T, (8.32)

where T; is the vector from the world origin to the origin of the i-th image frame:
moreover, as the origin is in the centroid of the points,

I n
-y p;=0. (8.33)
n et
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Now. plugging (8.31) and (8.32) into (8.28), and using (8.29). we obtain

N . 1< .
"ijzliT-(Pj"Ti)_; Z||,‘T(PMI_TI')
m=

. . 1 n .
F= P =T =~ 3Py - To) (834)

m=|
But due to (8.33), and (o the fact that the index i is not summed. (8.34) become
=i P;
- T
Vij=i P
Therefore, if we define the 2N x 3 rotation matrix R as

- .
o=l

(8.35)

fame Gmme wwe

B PP ey

and a 3 x n shape matrix § as

S=[P P ... P,]. (8.36)

we can write
W = RS.

§ince the rank of R is 3 because N > 3. and the rank of § is also 3 because the N points
in 3-D space are not all coplanar. the theorem is proved.

s¥  Notice the importance of the assumption of noncoplanar points.

The importance of the rank theorem is twofold. First, it tells you that there is a
great deal of redundancy in the image data: no matter how many points and views you
are considering. the rank of the registered measurement matrix does not exceed three.
Second. and most importantly. the factorization of the registered measurement matrix.

W . as the product of R and S suggests a method for reconstructing structure and motion
from a sequence of tracked image points.
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The Factorization Algorithm. The factorization of W is relatively straightfor-
ward. First of all. note that this factorization is not unique: if R and § factorize W, and
Qisanyinvertible 3 x 3matrix,then RQand @~ IS also factorize W. The proof is simple:

(RONQ™'S) = R(QQ")§ =RS=W.

Fortunately, we can add two constraints:

1. the rows of R, thought of as 3-D vectors, must have unit norm:

2. the first n rows of R (the i ) must be orthogonal to the corresponding last n rows
(the j).

Our last effort before reaching an algorithm box is to show that these constraints allow
us to compute a lactorization of W which is unigue up to an unknown initial orientation
of the world reference frame with respect to the camera frame (Figure 8.10). At the
same time, we also show how to extend the method to the case in which, due to noise
or imperfect matching. the rank of the matrix W is greater than 3. Here is the proof.
First, consider the singular value decompuosition (Appendix, section A.6) of W,

w=uUnv'. (8.37)

The fact that the rank of W is greater than 3 means that more than 3 singular values
along the diagonal of D will not be zero. ‘The rank theorem can be enforced simply
by setting all but the threc largest singular values in D to zero, and recomputing the
corrected matrix W from (8.37).

sx By now, this should not surprise you. We used the same method elsewhere: ¢.g.. to compute
the closest rotation matrix 10 a numerical estimate in Chapter 6. Notice that, if the ratio
between the third and fourth singular value is not large. as expected. the SV warns you
about the consistency of the data.

Then let D' be the 3 x 3 top left submatrix of D corresponding to the three largest
singular values, o1, 72, and a3, and U and V' the 2N x 3and n x 3 submatrices of U and
V formed by the columns corresponding to oy a2, and a3,

R=vu'p'2
§=p'2yT, (R.3%)

N a1 co et .o . . N
In general, the rows i, and j; of the matrix R will not satisly the constranls mentioned
abave: however. if we look for a matrix Q such that

1
1 (R.39)

i ool
jee'i
)

then the new matrices R = RQ and § = Q' R still factorize W.and the rows of R sittisfy
the constraints. The obtained factorization is now clearly unique up to an arbitrary
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rotation. One possible choice is to assume that at time 1 =0 the world and camera
reference frame coincide.

Here is a concise description of the entire method. A method for determining Q
from (8.39) is discussed in Exercise 8.8.

Algorithm MOTSTRUCT_FROM_FEATS

The input is the registered measurement matrix W, computed from n features tracked over N
consecutive frames. ’

1. Compute the SVD of W,
Ww=upvT,

where U is 2 2N x 2N matrix. Vn xn.and D2N x m; UTU = 1. VTV = I and D is the
diagonal matrix of the singular values.

2, Sct to zero all but the three largest singular values in 1.

3. Define R and § as in (8.5.1).

4. Solve (8.39) for Q.for example by means of Newton's method (Excercise 8.8).

The output are the rotation and shape matrices, given by

R=RQ and §=07'§.

The algorithm determines the rotation of a set of 3-D points with respect to the
camera, but how about their translation? The component of the translation parallel to
the image plane is simply proportional to the frame-by-frame motion of the centroid of
the data points on the image plane. However, because of the orthographic assumption,
the component of the translation along the optical axis cannot be determined.

8.5.2 3-D Motion and Structure from a Dense Motion Field

We now discuss the reconstruction of 3-D motion and structure from optical flow. The
two major differences with the previous section are that

* optical flow provides dense but often inaccurate estimates of the motion field;
* the analysis is instantaneous. not integrated over many frames.

Problem Statement

Given an optical flow and the intrinsic parameters of the viewing camera, recover the 3-D motion
and structure of the observed scene with respect to the camera reference frame.

We have chosen a method that represents a good compromise between ease of
implementation and quality of results. The method consists of two stages:
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1. determine the direction of translation through approximate motion parallax;

2. determine a least-squares approximation of the rotational component of the op-
tical flow, and use it in the motion field equations to compute depth.

Stage 1: Translation Direction. The first stage is rather complex. We start by
explaining the solution in the ideal case of exact motion parallax, then move to the
case of approximate paraliax. We learned in section 8.2 that the relative motion field of
two instantaneously coincident image points, [Av_,, Au_\.]1 , is directed towards (or away
from) the vanishing point of the translation direction, py (the instantaneous epipole),
according to

1 i
Avy=(T-x =Ty f) (___ _ ___)
z 2 (8.40)

o
Av, = (T.y — Ty f) (2 ~ E)

where Z and Z are the depths of the 3-D points P = (X, ¥, Z)and P = (X, ¥, Z), which
project onto the same image point, p =[x, v] " in the frame considered. If (8.40) c:m'hc
written for two different image points, we can locate the epipole, pa. as the intersection
of the estimated, relative motion liclds. Once the epipole is known, it is straightforward
to get the direction of translation from (8.9).

s%  If (8.40) can be written for more than (wo points, we can resort to least squares 10 obtain a
better estimate of the epipole’s location.

This solution can be extended to the more realistic case of approximate motion
parallax, in which the estimates of the relative motion ficld are available only for ulm'n.\’l
coincident image points. The key obscrvation is that the differences between the ()[)ﬂ("lll
flow vectors at an image point p and at any point close to p can be regarded as noisy
estimates of the motion parallax at p (section 8.2.4). '

We must now rewrite the (8.40) for the case of approximate parallax. We begin
by wriling ﬂTle translational and rotational components of the relative motion fickd.

f ) -
[AvZ'. Av"’f] and [Af;‘, A'(‘] respectively, for two almost coincident image points, p
and p. These arc

arl = Tx-T.J TX . I
z z (841)
- Ty-Tf T.y-T.f
N RRE LA
Al}. 7 5
and
A=y - V) + ‘—”—‘(K‘\' - X¥) - ‘-'i.‘-(xz -
/ / (842)

. " -- ), =2
AV = —amlx — §) - -"-,‘(.t)' —E 2 -
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From the rotation equations we notice that Av” — () and Avy = Ofor p — p. Asto the
translation equations, we can rewrite them as

1 1 T, ~
Av,r =(T.x-T.f) (-— - ;) + Ez(.r - X)

¥4
| | T (8.43)
AU_‘T =(T,v — T_\-f) (E - ;) + EZ('V —-¥).

The second terms of the right-hand side of the (8.43) tend to zero for p — p, while the
first terms tend to the expression obtained for the exact motion parallax, (8.40). We can
therefore write the relative motion field of two almost coincident points concisely as

1 i _
Ay =(T:x ~ T./)(E - E) +e(p—pP
- (8.44)
Avy=(T;y - T,\‘.f)(z - -2-) +ep—p)

with e, and e, smooth functions of the difference between p and p, and e, () = et =0.

Equations (8.44) show that, if p and p are close enough, a large relative motion
field can only be due to a large difference in depth between the 3-D points P and P.
This observation suggests a relatively simple algorithm for locating the instantaneous
epipole (and therefore the direction of translation) from a number of approximate
motion parallax estimates. We compute the flow differences (Au,, Av,) between a point

pi and all its neighbors within a small patch Q. then determine the eigenvalues and
eigenvectors of the matrix

= z Ay, Y Av Avy
A= [ ¥ AvAv, T A%, ] . (8.45)

where the sums are taken over the Q;: the eigenvector corresponding 1o A;. the greater
eigenvalue, identifies the direction of the line I; through p; which minimizes the sum
of the squared distances to the set of difference vectors Appendix. section A.6). This
direction is taken to be the optimal estimate of motion parallax within the patch Q.
Moreover, ; itself can be regarded as a measure of the estimate’s reliability. If ),
is I?rge."‘ the underlying distribution of the flow differences has a peak in the direction
of I;. This is likely 10 be due to the presence of considerable differences in depth within
Q.. Instead. if A; is small. the underlying distribution of the flow differences is flatter,

and almost certainly created by the flow field of a surface that does not vary much in
depth within Q;.

'8 One might argue that what really counts should be the ratio between the smaller and greater eigenvalues.
However. since the range of Ar, and A, is finite. the greater eigenvalue is large in absolute terms.
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We can now formulate a weighted least squares scheme to compute the intersec-
tion of the several lines I;, that is, the epipole py. Since ki, po, and p; are coplanar, for
each patch Q; we can write :

(i, x p) ' po=0. (8.46)

If there are N patches, we can write N simultaneous instances of (8.46), that is, in matrix
notation,

Bpy=0 (847)
with
I xp/
I xp)
B= . (8.48)
iN x pL

The problem of determining a lcast-squares estimate of py is thus reduced tothe prohlgm
of solving the overconstrained homogeneous system (8.47). As customary, the solution
can be found from the SVD of B, B = UDVT (Appendix, section A.6), as the column
of V corresponding to the null (in practice, the smallest) singular value of B.

& Inorder to give appropriate weights to the different estimates, it is better to use a wcighlcld
least-square scheme and consider the matrix W B, where the entries of the diagonal matrix
W are the larger cigenvalues of A;.

Stage Two: Rotational Flow and Depth. The rest of the algorithm is straight-
forward. We simely form the pointwise dot product, 1, between the optical flow at
point p; =[x;, yi]' and the vector [y; — w, —(x; — xp)] . As we know from section 8.2,
v) depends only on the rotational component of motion; therefore, at each point p; of
the image plane we have

vy = vy — ) — VP — ) (8.49)

with v and v? as in (8.42). If the intrinsic parameters of the camera are known, we can
write a linear system of N simultancous instances of (8.49) in the image rcfcrcn?c framme
by using (8.14). and solve for the three components of the angular velocity using least
squares. Finally, we recover the translational dircction from the epipole coordinates hy
means of (8.9). and solve (8.7) for the depth Z of cach image point.

It is now time to summarize the method.

Algorithm MOTSTRUCT_FROM_FLOW

The input quantitics are the intrinsic parameters of the viewing camera. and a dense optical flow
field. v. produced by a single rigid motion.
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1. Write (8.7) in the image reference frame, using the knowledge of the intrinsic parameters.
2. For each image pointp;.i=1,... N:

(a) compute the flow differences Ar, and Av, between the optical flow at p; and at all the
points p in a neighborhood of p;. Qi:

{b) compute the cigenvalucs and eigenvectors of the matrix A; of (8.45): let ; be the
greater cigenvalue. and | the unit eigenvector corresponding to 4.

3. . Computc the SVDoIWB. WB = UDVT . with B asin (8.4R8) and W a diagonal matrix such
that W;; = A;. Estimate the epipole py as the column of V corresponding to the smablest
singular value.

4. Form the dotproduct of (849 fori=1..... N and rewrite the equations obtained in the
image reference frame.

§. Determine the angular velocity components as the feast-squares solution of a system of N
simulitancous instances of (8.49).

6. Determine the translational direction from the epipole coordinates and the knowledge of
the intrinsic parameters (see (8.9)).

b

Solve (8.7) for the depth Z of cach image point.

The output quantitics are the direction of translation, the angular velocity. and the 3-D
coordinates of the scene points.

"W Naotice that. as discussed in section 8.2.5. the epipole can bhe estimated without prior
knowledge of the camera parameters, that is. with an uncalibrated camera. The direction
of translation. instead. can be obtained from the epipole only if the imrinsic parameters of
the camera are known.

MOTSTRUCT_FROM_FLOW is not as accurate as MOTSTRUCT_FROM_
FEATS. This is not surprising. as MOTSRUCT_FROM_FLOW is an instantancous
method. which relies on local approximations of the observed motion, on the assump-

tion of large variation in depth in the observed scene. and on the accuracy of camera
calibration.

8.6 Motion-based Segmentation

In this final section. we relax the assumption that the motion between the camera and the
scene is described by a single 3-D motion to deal with the problem of mudtiple motions.
For the sake of simplicity. we restrict the analysis to the case in which the camera is
fixed. If you are interested in motion segmentation in the presence of camera motion.
a problem which is still waiting for a general and satisfactory solution. sce the Further
Readings.

If the camera is fixed. identifying moving objects can be seen as a problem of
detecting changes against a fived background.
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Problem Statement

Given a sequence of images taken by a fixed camera. find the regions of the image, if any.
corresponding to the different moving objects.

This problem can be thought of as a classification problem. One has to classify
the pixels of each frame of a sequence as either moving or fixed with respect to the
camera. On the basis of what we have seen so far, a possible procedure seems to be
the computation of optical flow followed by a thresholding procedure. The pixels for
which the norm of the optical flow is large enough are labelled as “moving”, the others
as “fixed”. Two criticisms can be raised against this approach. First, the estimation of
optical flow inside patches that contain pixels from independently moving objects is
usually rather poor. Second, in many applications (surveillance tasks for example) the
detection of motion or changes in the scene is all that is needed. .

Presumably the simplest strategy for detecting changes in an inggc sequence is
image differencing: (i) \ake the pointwise difference between consceutive framcs,.:md
(ii) label as “moving” the pixels for which this difference exceeds a predetermined
threshold, 1.

Algorithm CHANGE _DETECTION

The input is an image sequence. Iy, .. .. 1, and a positive real number, 12 for cach image pair
Uk fiyr)

1. Compute the pointwise image difference Ayli, j) = Iy ti j) = Itio )
2. if |Axli, j) > 1. label pixel (0. ) of the frame k as moving.

The output is a map of the moving image regions.

The threshold must be chosen so that the probability of mistaking differences
created by image noise for real motion is very small. A simple way to do this n o acquire
two images of a static scene, with no illumination changes. and look at the histogram of
the difference image. In agreement with the assumption that this difference 18 mainly
due 1o the camera noise (see Chapter 2), the histogram should look like a zero-mean
Gaussian function (sce Figure 8.11). The threshold can thus he estimated as a multiple

of the standard deviation of the computed distribution.

e Of course. the more different the images used Lo estimate the standard deviation. the more
accurately the histogram refiects the distribution ol the noisc.

Better results can be obtained in a number of different ways. ()"F possibility l\" fo
resort to statistical tests (see Further Readings). A second possibility is 1o take motton
measures more sophisticated than image differencing. For instance, an znllcr.nmwc 10
image differencing is the weighted average of the normal flow magnitude VEA/IVEL
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Figure 8.11 Two sample snapshots. taken at close instants, from an overnight. indoors

surveillance sequence, and the histogram of the differences of the gray values between the two
images.

over a small patch Q; centered at point p,. The weights are taken to be the square of
the norm of the spatial image gradient. so that this motion measure can be written as
o _ENVE]
C+ Y IVEW
where the sum are taken over Q,. and the temporal and spatial derivatives are meant

to be Fk?mpulcd at each point of Q;. The purpose of the constant C is to remove the
instability that may be caused by uniform patches. The choice of the weights agrees
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with the results of section 8.3, which proved that the difference between the true motion
field and the apparent motion of the image brightness is smaller at the locations where
the norm of the spatial image gradient is larger. The conversion of this idea into an
algorithm for change dctection is straightforward, and left as an exercise.

8.7 Summary
Alter working through this chapter you should be able to:
U explain the fundamental probiems of motion analysis in computer vision

estimate the optical flow from a sequence of images

match and tracking image features over time

CcCcCceCcC

estimate 3-D motion and structure from both densc and sparse estimates of the
motion field

c

deteet changes in image sequences taken from a fixed camera

8.8 Further Readings

The discussion on the difference between motion field and optical flow is taken from
Verri and Poggio [19]. The method deseribed here for estimating optical fow is due to
Lucas and Kanade [12]. A variational approach to the computation of optical low was
first proposed by Horn and Schunck [8}. OF the many parametric methods proposed
since see. for example, Campani and Verri [3] (in which you can also find a discussion
on the spatial propertics of the motion field). For a stricily local computation of optical
flow you should start with Nagel's work (sce [14]. for example). A correlation-based
method is described by Poggio, Little, and Gamble [ 15]. Finally, the paper by Barron,
Fleet, and Beauchemin [2]is an excellent review of many methods for estimating optical
flow. and includes Internet sites with public-domain code.

The literature on feature matching for motion is also vast. Among the many
techniques available, you may want to look at the classic books by Ullman |18] and
Hildreth [7]. A nice and simple account of Kalman filtering is the paper by Cooper [4].
Alternatively. you can look at the very clear and complete book by Maybeck {13 Data
association is discussed, for example, in the book cdited by Bar-Shalom {1].

‘the factorization method for 3-1) motion and structure from sparse features is
due 10 Tomasi and. Kanade {17]. Among the other feature-based method we suppest
the technique proposed by Faugeras. Lustman. and Toscani |5]. The epipole’s method
for reconstruction from optical flow is based on the paper by Rieger and Lawlon 116}
and on an idea originally suggested by Longucet-Higgins and Prazdny {111 Part o) the
algorithm MOTSTRUCT_FFROM FLOW is based on the implementation proposcd
in the appendix of the paper by Heeger and Jepson {6]. the main topic of which is an
alternative algorithm to MOTSTRUCT IFR( M FLOW.

For a thorough analysis of change detection see Hsu, Nagel and Reker (9] Aso
motion-hased segmentation in the general case. vou may want 1o look at the work of
Irani. Rousso, and Peleg [10). for example. and references therein.
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8.9 Review

Questions

O 81 What are the properties of the motion field generated by a planar surface?

Would an arbitrarily oriented planar surface generate a motion field across the
entire image plane?

0 82 What is the relation between the instantaneous epipole and the focus of

expansion (or contraction)?
8.3 What is the difference between motion field and optical flow?

8.4 'The derivation of (8.17) assumes that the image brightness is continuous and
can be differentiated. How plausible is this assumption in general? Why?

85 What are the assumptions behind the algorithm CONSTANT_FLOW?

8.6 Given our discussion of the Kalman filter for feature tracking. how would you
decide the shape and size of the search regions given the uncertainties produced
by the filter?

87 How would you decide whether the elfective rank of W in algorithm
MOTSTRUCT_FROM_FEATS is 3?7

88 What happens if you apply MOTSTRUCT_FROM_FLOW to the optical
flow of a planar surface?

89 Why change detection methods are not useful (in themselves) for motion-
based segmentation in the general case?

Exercises

O 8.1 Estimate the ratio between the quadratic and linear terms, the quadratic

and constant terms. and the linear and constant terms in (8.13). Set the motion

and structure parameters of the planar surface to some arbitrary but reasonable
values.

8.2 Show that the aperture problem can be solved if a corner is visible through
the aperture.

8.3 Extend algorithm CONSTANT_FLOW by assuming that the motion field is
locally approximated by a linear vector field.

84 Create a simple. synthetic image sequence by shilting a given image by
[r.. v,-]T pixel per frame (with v, and v, not integer), and using bilinear inter-
polation in the resampling stage. Then. apply the inverse transformation: that is.
create an image sequence starting from the last frame and applying a motion of
[-ve.—v.] pixel per frame. Compare the last frame of this sequence with the
original image. Do you expect them to be exactly equal? If not. why?

85 Show that the distance between system states computed through the covari-
ance matrix. named Mahalanobis distance. is not isotropic. What is the advantage
of using Mahalanobis distance instead of the usual Euclidean distance?

86 Write the Kalman filter equations for a one-dimensional state vector.

Q

0

Section 8.9  Review 217

87 The celebrated structure-from-motion theorem, due to Shimon Ullman,
states that, under orthographic projection, at least N views of at feast n noncopla-
nar points are needed to uniquely recover structure. Can you guess the values of
N and n from the factorization method?

88 The nonlinear system (8.39) can be solved by means of Newton's method,
an iterative procedure, the main idea of which is rather simple. Write down the
full system of 3 x N quadratic equations in the nine entries of the matrix Q, say
qi. . - - - q9. Starting from an initial guess for the values of ¢1,....qo (like the
identity matrix for example), take the partial derivatives of each equation with
respect 1o each unknown, and evaluate the expressions obtained at the current
value of the entries. If M;; denotes the partial derivatives of the i-th equation with
respect to g;. the matrix M;; can be viewed as the system matrix of the linear
system

MAq=¢€,

where Aq=[Aq).. ... Aqu]" . the components of which should be used o update
the current estimate of ¢, . ... qy. The components of the 3N-D vector € arc
the residuals of all equations, computed by means of the previous estimates of
1. - - - »qu. The procedure is iterated until the components of Aq are sufficiently
small. Implement and solve this method for estimating (.

89 Show that Step 3 of MOTSTRUCT_FROM_FLOW works equally well cven
if the epipole is at infinity.

Projects

81 Implement a coarsc-lo-finc version of CONSTANT_FLOW. Build the
coarser levels by ileratively averaging over the four neighboring pixcls at the
immediately finer levels. Start CONSTANT_FLOW at the coarsest level and prop-
agate the estimates 1o cach corresponding group of four pixels at the Iinch level.
Compare the results with a standard implementation of CONSTANT_FLOW.
Why should the two methods differ? Which method is expected to perform better
in the presence of large image displacement?

82 Implement FEATURE_POINT_MATCHING  and M()'I'S’I‘Rl.l(“l‘,
FROM_FEATS. Use the set of matched features, output of the former. as input
of the lauter.

8.3 [mplcment CONSTANT_FLOW and MOTSTRUCT _FROM_FLOW. Use
the optical flow cstimates. output of the former. as input of the latter.

84 Implement a tracking system based on the Kalinan filter, nlnd use it 1o track
a moving object viewed from a fixed camera. Usce the centroid of 'htt I:u-gcsl \Ll of
connected pixels in which a change is detected. and measure the objeet’s position
through CHANGE _DETECTION. Let the centroid position ;m.d velocity |'vc'|.hc
system state. Devise a simple data association algorithmto deal v.vnh the possibility
of detecting changes in more than one large scl of connected pixels.
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Shape from Single-image

Cues

Je voudrais pas crever
Sans savoir si 1a lune

Sous son faux air de thune
A un cHté pointu’

Boris Vian, Je Voudrais pas Crever

The subject of this chapter, inferring the shape of objects from a single intensity irpnge. is a
classic problem of computer vision. We do not consider range images, in which shape is already

explicit.

Chapter Overview

Section 9.1 lists the main methods for inferring shape from intensity images.

Section 9.2 introduces the concept of reflectance map and the problem of shape from shading
from a physical and mathematical viewpoint.

Section 9.3 discusses a method for estimating alhedo and illuminant direction.

Section 9.4 describes a method for extracting the shape of an object from a shading pattern.

Section 9.5 shows how shape can be computed from the distortion of 3-D textures caused by the
imaging projection, considering deterministic and statistical textures.

What You Need to Know to Understand this Chapter

o Working knowledge of Chapters 2 and 4.
« Working knowledge of Fast Fourier Transform (FFT).

11 would not want to die without knowing whether the moon. behind her fakse look of coin. has a pointed

side. 219



