








Section 9.2 Shape from Shading 223

We use R instead of L because (9.2) tells you how light is reflected by a Lambertian
surface in terms of the surface normal for any given albedo and illuminant. This is a
particular example of reflectance map. In general, the function Rp,i is more complicated
or known only numerically through experiments.

9.2.2 The Fundamental Equation

In Chapter 2, we also met the image irradiance equation, which, denoting with p = [x, y]T
the image of P, we wrote as

Jr (d)2
E(p) = L(P)4 f cos4 a, (9.3)

with E (p) the brightness measured on the image plane at p. We now make two important
assumptions:

1. We neglect the constant terms in (9.3) and assume that the optical system has been
calibrated to remediate the cos4 a effect.

2. We assume that all the visible points of the surface receive direct illumination.

Assumption 1 simplifies the mathematics of the problem, and Assumption 2 avoids
dealing with secondary reflections. In these assumptions, combining (9.3) and (9.2) gives

E(p) = Rp,i(n). (9.4)

Equation (9.4) constrains the direction of the surface normal at P, and is the fundamental
equation of shape from shading.

In order to make profitable use of (9.4), we need to express the normal in terms
of the surface slopes. To this purpose, we further assume that the visible surface

3. is far away from the viewer
4. can be described as Z = Z(X, Y)

Assumption 3 enables us to adopt the weak-perspective camera model, and write

X
x=f-

Zo

and

Y
y=f-,

Zo

with Zo the average distance of the surface from the image plane. Thus, by a suitable
rescaling of the horizontal and vertical axis, the surface, Z, can be thought of as a
function of the (x, y) coordinates on the image plane,

Z = Z(x, y).







226 Chapter 9 Shape from Single-image Cues

Problem Statement

Given the reflectance map of the viewed surface, R = Rp,j(p, q), and full knowledge of the
parameters p and i relative to the available image, reconstruct the surface slopes, p and q, for
which

E(x, Y) = Rp,j(p, q),

and the surface Z = Z(x, y) such that 'iJZ/'iJx = p and 'iJZ/'iJy = q.

9.3 Finding Albedo and IIluminant Direction

We are one last step away from a shape-from-shading method: We still have to deal with
the problem that the parameters of the reflectance map (albedo and illuminant) can be
unknown. This problem is difficult per se; in what follows, we restrict our attention to
the relatively simpler Lambertian case.

9.3.1 Some Necessary Assumptions

Similarly to shape from shading itself, the problem of estimating albedo and illuminant
direction is only apparently simple; in fact, an effective way to provide good estimates
under general circumstances, or even in the simpler Lambertian case, must still be found.
The major difficulty is the fact that the problem is heavily underconstrained. To overcome
this difficulty, we must make assumptions on either the shape of the viewed surface or
the distribution of the surface normals; here, we favor the latter view.

Our task is therefore to derive a method which, under appropriate assumptions,
estimates albedo and illuminant direction. We begin by stating the problem in more
formal terms.

Assumptions and Problem Statement

Under the same assumptions of shape from shading, and with the further assumptions that

1. the surface imaged is Lambertian, and
2. the directions of the surface normals are distributed uniformly in 3-D space,

determine albedo and illuminant direction from a single image of the surface.

Let us fix the notation and select a reasonable distribution of the surface normals
in a generic scene. It is customary to describe surface normals by means of the tilt and
slant angles, a and,8 (see Figure 9.3 with a = 't' and,8 = a respectively). By definition,
we have that a E [0, 21l'], ,8 E [0, 1l' /2] and

n = [cos a sin,8, sin a sin,8, cos ,8]T. (9.8)



Section 9.3 Finding Albedo and Illuminant Direction 227

Z

P

'..'.." :...

Figure 9.3 Geometric interpretation of tilt and
slant.

In our assumptions, the distribution of the normal vectors, P, as seen from the
image plane, is

cos .8P(a,.8) = 2;:-' (9.9)

In agreement with intuition, P is uniform in a but, due to foreshortening, the number
of normal vectors with slant equal to .8 is proportional to cos.8.

~ Like all approximations, especially coarse ones, (9.9) does not describe accurately the
distribution of the normals of every possible surface as seen from the image plane. However
it does a good job on average, and makes it possible to obtain estimates of albedo and
illunrinant direction in the absence of any guess.

9.3.2 A Simple Method for Lambertian Surfaces

This section describes method for recovering albedo and illuminant direction composed
by three steps:

1. precompute the averages of the image brightness and its derivatives, using the
hypothesized distribution

2. evaluate the same averages from the image brightness

3. enter the results in equations that can be solved for albedo and illuminant direction

We start by denoting with a and T, respectively, the slant and tilt angle of the
illuminant, so that we can write

i = [cos T sin a, sin T sin a, cosa]T. (9.10)



228 Chapter 9 Shape from Single-image Cues

We now compute the average of the image brightness, as given by (9.4), using the
distribution in (9.9). By means of (9.8) and (9.10), the image brightness can be written
as a function of a and ,8 as

E(a,,8) = p(cos a sin,8 cos t' sin 0' + sin a sin,8 sin t' sin 0' + cos,8 COS 0'). (9.11)

The average, < E >, becomes therefore

{21T (1T /2
< E >= 10 da 10 d,8'Y(a, ,8)E(a, ,8),

This integral breaks down into three additive terms, of which the first two vanish
(because the tilt, a, is integrated over a full period), and the third yields

7r
< E >= 4P cos 0'. (9.12)

The interesting fact about this result is that, as we assumed that the surface normals are
distributed according to (9.9), we can compute < E > as the average of the brightness
values of the given image, and hence look at (9.12) as an equation for albedo and slant.

A similar derivation for the average of the square of the image brightness, < E2 >,
(see Exercise 9.1 for some hints) give

<E2>=~p2(1+3COS20'). (9.13)

From (9.12) and (9.13), it is immediate to recover albedo and slant as

yP = - (9.14)
7r

and

4<E>
cos 0' =, (9.15)

Y

where y = J67r2 < E2 > -48 < E >2.
We are still left with the problem of estimating t', the tilt of the illuminant. This can

be obtained from the spatial derivatives of the image brightness, Ex and Ey. Through
some simple but lengthy algebra that we omit (if you are curious, see the Further
Readings), one finds

<E>tan t' = . y (9.16)

<Ex>

with < Ex > and < Ey > the averages of the horizontal and vertical components of

the direction of the image spatial gradient, [Ex, Ey]T = (E; + E;)! [Ex, Ey]T. We now
summarize this method:



Section 9.4 A Variational Method for Shape from Shading 229

Algorithm APPRX_ALBEDO _ILL UM_FIND ER

The input is an intensity image of a Lambertian surface.

L Compute the average of the image brightness, < E >, and of its square, < E2 >.

2. Compute the spatial image gradient, [Ex, Ey]T, and let [Ex, Ey]T be the unit vector giving
the direction of [Ex, Ey]T. Compute the average of both components, < Ex > and < Ey >.

3. Estimate p, cos a, and tan t' through (9.14), (9.15), and (9.16).

The output are estimates of p, cos a, and tan t' .

" This method gives reasonably good results, though it fails for very small and very large
slants. However, one of the hypothesis underlying the derivation of this method is incon-
sistent. It might have occurred to you that a surface whose normal vectors are uniformly
distributed in 3-D space is likely to give rise to self-shadowing, especially for large slant of
the illuminant direction. This means that in some of our precomputed integrals the image
brightness was negative. To avoid this inconsistency, the integrals should be evaluated nu-

L merically using (9.7) as a definition of image brightness. For details on the consistent (but
considerably more complicated) version of APPRX_ALBEDO_ILLUM_FINDER refer
to the Further Readings. Curiously enough, the "consistent" method does not improve
much the final result.

We are now ready to search for a solution to the shape from shading problem.

9.4 A Variational Method for Shape from Shading

We picked one of the many existing methods based on a variational framework, the
solution of which gives the slopes of the unknown surface Z.

9.4.1 The Functional to be Minimized

Even under the simplifying Lambertian assumption, the direct inversion of (9.6) is a
very difficult task. In essence, one has to solve a nonlinear partial differential equation
in the presence of uncertain boundary conditions. For many such equations, even a
slight amount of noise can means that the solution (a) does not exist, (b) is not unique,
or (c) does not depend continuously on the data.4 Our equation is no exception. If you
are interested to the mathematical aspects of this problem you will find pointers in the
Further Readings.

A typical trick to circumvent at least existence and continuity problems (con-
ditions (a) and (c» is to recast the problem in the variational framework. Instead of
looking for an exact solution to (9.6), we allow for some small deviations between the

4In the mathematical literature, a problem for which at least one of the conditions (a), (b), or (c) holds is said

to be ill posed.



230 Chapter 9 Shape from Single-image Cues

image brightness and the reflectance map, and enforce a smoothness constraint which
controls the smoothness of the solution. One possible way to implement this idea is to
look for the minimum of a functional (. of the form

(. = f dxdy (E(X, y) - R(p, q»2 + ).(p; + p; + q; + q;») , (9.17)

in which the smoothness constraint is given by the sum of the spatial derivatives of p
and q. The parameter). is always positive and controls the relative influence of the two
terms in the minimization process. Clearly, a large). encourages a very smooth solution
not necessarily close to the data, while a small ). promotes a more irregular solution
closer to the data.

Unlike the case of deformable contours, the minimization of this functional cannot
be performed effectively by means of a greedy algorithm and we have to make use of
the full machinery of the calculus of variations.

9.4.2 The Euler-Lagrange Equations

The calculus of variations gives you a straightforward procedure to derive equations
minimizing a generic functional,s the Euler- Lagrange equations. This section simply tells
you how to set up these equations; refers to the Further Readings for more information.6

For a functional (. which, like (9.17), depends on two functions p and q of two
real variables x and y, and on their first order spatial derivatives, the Euler-Lagrange
equations read

~-~~-~~=O,op ox opx oyopy

and

~ - ~~ -~!!.§.. =0.
oq ox oqx oy oqy

Since R is the only function of p and q in (9.17), and neither E or R depend on Px, Py,
qx, and qy, the Euler-Lagrange equations associated with (9.17) become

oR-2(/- R)- - 2).pxx - 2).pyy = 0
op

and
oR-2(/- R)- - 2).qxx - 2).qyy = 0,
oq

5 It is far easier to write the equations than to solve them, however!

6For our purposes, the derivation of the Euler-Lagrange equations associated to a variational method is a
rather boring and not much informative exercise of calculus. The real problem is not the derivation of the
equations, but finding a good numerical algorithm for solving them.



Section 9.4 A Variational Method for Shape from Shading 231

which can be simplified to give

1 oR~p = --(1 - R)- (9.18)
}. op

and

1 oR
~q = --(1 - R)-, (9.19)

}. oq

with ~p and ~q denoting the Laplacian of p and q (that is, ~p = Pxx + Pyy and
~q = qxx + qyy). Our next task is to solve (9.18) and (9.19) for p and q.

9.4.3 From the Continuous to the Discrete Case

It turns out that solving (9.18) and (9.19) is easier in the discrete than in the continuous
case. Thus we immediately proceed to find the discrete counterpart of (9.18) and (9.19).

We start by denoting with Pi,j and qi,j the samples of P and q over the pixel grid
at the location (i, j). Through the usual formula for the numerical approximation of the
second derivative (Appendix, section A.2), (9.18) and (9.19) become

1 oR-4Pi,j + Pi+l,j + Pi-l,j + Pi,j+1 + Pi,j-1 = -i(E(i, j) - R(pi,j, qi,j)-a; (9.20)

and

1 oR-4qi,j + qi+l,j +qi-l,j + qi,j+1 + qi,j-1 = -i(E(i, j) - R(pi,j, qi,j)aq. (9.21)

"' The partial derivatives of the reflectance map in (9.20) and (9.21) are either computed
analytically (in the Lambertian case, for example) and then evaluated at Pi,j and qi,j, or
evaluated numerically from the reflectance map itself.

The problem is now reduced to finding the slopes Pi,j and qi,j, solutions of (9.20)
and (9.21), and determining the unknown surface Z = Z(x, y) from them.

9.4.4 The Algorithm

We observe that (9.20) and (9.21) can be rewritten as

1 oRP. '= p-. '+- (E-R ) - (9.22)I,j I,j 4}. op

and

1 oRq. . =q-. . + - (E - R)- (9.23)I,] I,] 4}. oq ,



232 Chapter 9 Shape from Single-image Cues

with (Appendix, section A.2)

- Pi+l,j + Pi-l,j + Pi,j+l + Pi,j-l
Pi,j= 4

and

- qi+l,j + qi~l,j + qi,j+l + qi,j-l
qi,j= 4 .

As Pi,j and qi,j are the averages of Pi,j and qi,j over the four nearest neighbors,
(9.22) and (9.23) can be turned into an iterative scheme that, starting from some initial
configurations for the Pi,j and qi,j, advances from the step k to the step k + 1 according
to the updating rule

k+l -k 1 8R l k

p.. =p. .+-(E-R)- (9.24)I,j I,j 4)., 8p

and

k+l -k 1 8R l k
q.. = q. . + -(E - R)- . (9.25)

I,j I,j 4)., 8q

However, where have all those boundary conditions gone? The answer is not easy,
because in many cases of interest the boundary conditions are practically unknown,
In this case, one attempts to impose "neutral" boundary conditions, like the so-called
natural boundary conditions (p and q constant over the image boundary), or the cyclic
boundary conditions (p and q wrapped around at the image boundary). Since we are
going to compute the Fourier transform of P and q, in what follows we adopt the cyclic
boundary conditions. If the boundary conditions are known, they should be enforced
in the iterative scheme at every step.

9.4.5 Enforcing Integrability

As most pioneers of shape from shading, we too have left out what turns out to be a
very important detail. If you actually attempt to reconstruct the viewed surface from the
normals obtained by iterating (9.24) and (9.25), you will soon find out that the solution
is inconsistent! This is hardly surprising: since the functional was not told that P and
q were the partial derivatives of the same function Z, jhere is no Z such that Zx = P
and Zy = q. To circumvent this inconvenience, a good idea is to insert a step enforcing

integrability after each iteration. It is more complicated to explain the reason why it
works than doing it, so we first tell you how it works and then discuss why.

At each iteration, we compute the Fast Fourier Transform (FFT) of P and q. In
complex notation,7 with i as the imaginary unit, we can write

71f you are not familiar with the complex notation for the FFr, you may just skip the derivation and go all
the way to the description of the algorithm. Of course, you need at least to be able to use an FFr routine!











Section 9.5 Shape from Texture 237

Examples of deterministic textures are images of patterned wallpaper, bricks
walls, and decorative tiles. Most natural textures are statistic: think for example of
pebbles, gravel, wood, or lawns. To recover shape from both types of texture we need
to learn a few, basic facts and make some choices.

9.5.2 Using Texture to Infer Shape: Fundamentals

Why Does it Work? Notice the strong impression of shape you get from Fig-
ures 9.5, in which texture is the only cue present.8 How does this happen? In the image
of a textured 3-D surface, the texels appear distorted. This is the key fact behind shape
from texture: the distortion of the individual texels and its variation across the image
create the 3-D impression.9 We can therefore formulate the computational problem of
shape-from-texture as follows.

Problem Statement: Shape from Texture

Given a single image of a textured surface, estimate the shape of the observed surface from the
distortion of the texture created by the imaging process.

Representing Image Texture. How do we represent image texels? Deterministic
and statistic textures are represented by qualitatively different techniques, and methods
vary accordingly.

Deterministic texels are represented naturally by the shape parameters of the
specific shape at hand. For instance, the ellipses in Figure 9.5 can be represented by
the parameters of the ellipse equation (Chapter 5). Statistic textures are represented
typically in terms of spatial frequency properties; for instance, by the power spectrum
computed over image regions.

Representing Texture Distortion. What kind of texture distortion does the imag-
ing process introduce? Considering Figure 9.5, we notice two distortions:

perspective distortion: due to the perspective projection, which makes circles increas-
ingly far from the camera project to smaller and smaller ellipses;

foreshortening: which makes circles not parallel to the image plane appear as ellipses.

Under suitable assumptions, the amount of both distortions can be measured from an
image. For example, in Figure 9.5 (a) perspective distortion can be quantified by the area
variation across the ellipses, and foreshortening by the ratio of the ellipse's semiaxes.
In fact, we can use two different classes of texture-based measures to estimate shape:

8Texture can be also a powerful mean to segment images: In Figure 9.6, although intensity varies with no
apparent regularity, we have a strong impression of a uniform texture in each image, and it is perfectly obvious
that the three images represent different surface types.
9 Indeed, both are important cues for shape perception in human vision.







240 Chapter 9 Shape from Single-image Cues

small, rectilinear segments, e.g., a variation of the Hough line detector of Chapter 5.
Remember though, if the 3-D texture is not composed of small line segments, the conditions
of assumptions 1 and 2 are only approximated, and this is likely to worsen results.

We now sketch the derivation behind STAT_SHAPE_FROM_TEXT, omitting
much detail. Assume there are N needles in the image, and let ai be the angle formed
by the i-th image needle with the image's x axis. In our assumptions, ai is a uni-
formly distributed random variable in [0, 1T]. We now introduce an auxiliary vector,
[cos 2ai, sin 2ai]T, itself a random quantity. This vector is characterized by a probabil-
ity distribution called distribution on the unit circle, which is a function of the distribution
of the ai. Its center of mass is defined by

1 N
c= N LCOS2ai

i=l

1 N
5 = N L sin 2ai' (9.30)

i=l

It can be proven that, in orthographic projections (Assumption 4), the center of mass is

l-cosaC = cos 21"
1+cosa

5 = sin 21".!.- _1 - cos a. (9.31)

+cosa
Solving for a and 1", we find

l-Qa = arccos 1+Q

1T
1" = 1/1 :j::"2 (mod 21T), (9.32)

where Q and 1/1 are the polar coordinates of the center of mass,

/~" . ~" 1 5Q = V C2 + 52, 1/1 = - arctan -. (9.33)
2 C

"" Notice the ambiguity in the estimate of tilt.

The complete algorithm is stated below:

Algorithm STAT _SHAPE_FRO M- TEXTURE

The input is an image containing N needles, each forming an angle aj with the x axis of the image.
The assumptions stated above hold.

L Compute C, S using (9.30).



Section 9.6 Summary 241

2. Compute the polar coordinates Q, 1/1 of the center of mass of the distribution on the unit
circle using (9.33).

3. Estimate the orientation of the 3-D plane, (u, i), using (9.32).

The output is (u, i), the estimate of the orientation of the 3-D plane.

9.5.4 Concluding Remarks

Shape from Texture and Texture Segmentation. In our discussion of shape from
texture, we assumed a uniform texture throughout the image. In reality, this is some-
thing of a special case: Images are likely to contain different textures, or textured areas
surrounded by non-textured ones. In general, differently textured regions need separat-
ing before shape-from-texture algorithms can be applied. This problem is called texture
segmentation, and it is a classic problem of image processing. As texture is an ubiquitous
feature of surfaces, texture segmentation is frequently used to identify objects of interest
in the image; for instance, it proves very useful in many defect detection systems.

In texture segmentation, image pixels are classified on the basis of several textural
measures, called texture features, computed in local neighborhoods. These measures
are usually statistical properties of the intensity values, or spatial frequency measures
like the power spectrum. Unfortunately, segmentation relies on the assumption that
texture features are constant within regions of uniform texture, whereas texture (and
feature) distortions are exactly what shape-from-texture methods rely on! For this
reason, performing texture segmentation and shape from texture at the same time is not
trivial at all, which is why we have treated shape from texture as independent of texture
segmentation. The Further Readings point you to an introduction to the literature of
texture segmentation.ll

Texture Depends on Spatial Scale. Textures appear and disappears at different
spatial scales. For example, imagine to zoom in on a floor made of wooden planks:
When the image contains many planks, the main image texture is given by the planks'
contours; as you close in on one plank, the main texture is given by the wood's fibers.
These textures look different: The wooden planks create a deterministic pattern, the
fibers a statistical one. Therefore, "the texture of a surface" actually refers to the texture
of a surface at a given spatial scale.

9.6 Summary

After working through this chapter you should be able to:

I:J explain the nature and objectives of shape-from-X methods

I:J explain the purpose and nature of shape from shading

11 The reason why texture segmentation has not been included in our discussion of feature detection (Chap-

ters 4 and 5) is exactly that it was not needed to support shape from texture.



242 Chapter 9 Shape from Single-image Cues

Q design an algorithm for shape from shading, and recover a surface from a map of
normals

Q explain the purpose and nature of shape from texture
Q recover the orientation of a plane covered by a statistical texture

9.7 Further Readings

Table 9.1 mentions several shape-from-X methods; here are some introductory refer-
ences, chosen from a vast literature. You can begin an investigation into shape from
focus and defocus from [17,21]. Ma and Olsen's work [19] is a good starting point for
shape from zoom. A good illustration of shape from contours is given by [16], and a mod-
em shape-from-contour approach is discussed by Cipolla and Blake [5]. Active vision
is a recent, influential paradigm of computer vision; for an introduction, see [3], or the
report of the recent panel discussion in [24], or again the seminal paper by Aloimonos
eta/. [1].

The approximate method for determining albedo and illuminant has been adapted
from [26], which also explains in detail how to obtain (9.16). The field of shape from
shading has been strongly influenced by a number of pioneering works due to Horn and
coworkers [11, 14, 12]. More on the reflectance map can be found in [13]. The original
method proposed by Horn more than twenty years ago in [11] is still a classic, though
not easy to explain and implement. The algorithm described in this chapter has been
proposed by Frankot and Chellappa [6] as an improvement of the method described in
[12]. A rigorous account on ill-posed problem of computer vision and methods for their
solution can be found in [2].

Much of our discussion of shape from texture is based on Garding's work [7,
8] and references therein, in which you can also find a detailed treatment of texture-
based curvature estimation. Methods for recovering shape from deterministic textures
under perspective projections are discussed in [4, 15, 9]. The closed-form solution in
STAT_SHAPE_FROM_TEXTURE is due to Glirding [8], and is a variation of Witkin's
maximum-likelihood estimator [25] which involves a nontrivial minimization. Recent
examples of shape-from-texture algorithms reconstructing curved surfaces covered by
statistical textures, using spatial-frequency descriptors, are given in [23] and [20]. Ap-
proaches to the problem of segmenting texture and computing shape from texture
simultaneously exists, but the methods are not trivial; an example is reported in [18].
Texture segmentation in itself is a classic topic of image processing, and its literature is
vast. To begin its exploration, see [10] for a collection of texture-based segmentation
algorithms, and [22] for a recent survey of the field.

9.8 Review

Questions

0 9.1 Why the methods in this chapter recover shape but not distance?
0 9.2 Why the methods in this chapter are applied to intensity images, and not to

range images?



Section 9.8 Review 243

D 9.3 Explain the difference between the tilt and slant used in shape from shading
and shape from texture.

D 9.4 Are the tilt and slant angles used in shape from shading and shape from
texture the same as spherical coordinates? If not, what are the differences?

D 9.5 Explain why, in algorithm APPRX_ALBEDO_ILLUM_FINDER, it could
happen that cos a > 1. What would you do to avoid this inconsistency?

D 9.6 Identify the ambiguity intrinsic to the reflectance map of a Lambertian sur-
face. Discuss the consequences on shape from shading.

D 9.7 Why are the boundary conditions necessary in SHAPE_PROM_SHADING?
Could you run the algorithm ignoring them?

D 9.8 How would you set a value for A in SHAPE_PROM_SHADING? (Hint:
Look at the right-hand side of (9.24) and (9.25).)

D 9.9 Explain the difference between foreshortening and perspective distortion.

D 9.10 Can you assume orthographic projections when using the area gradient?
Why?

D 9.11 Identify the elements given in the general structure of shape-from-texture
algorithms in STAT_SHAPE_FROM_TEXT.

D 9.12 How would you choose the parameters of an edge detector used to extract
needles for STAT_SHAPE_FROM_TEXT?

Exercises

0 9.1 Compute the integral

{2iT (iT/2< E2 >= 10 da 10 d/3'Y(a, /3)E2(a, /3)

with E(a, /3) as in (9.11). Hint: Recall thatl iT sin2 xdx =l iT cos2 xdx = 1l' .

-iT -iT

0 9.2 Show that the Fourier coefficients c~ and c~ of (9.28) and (9.29) leave the
Fourier coefficients c of (9.26) unchanged.

0 9.3 Explain why replacing the term multiplying A in (9.17) with (Py - qx)2 is an
alternative way of enforcing integrability in shape from shading. Do you think
this way of enforcing integrability is as effective as Step 2 in SHAPE_PROM-
SHADING? Why does the new functional also enforce smoothness?

0 9.4 Derive and discretize the Euler-Lagrange equations for the new functional
of Exercise 9.3. Find an iterative scheme similar to the one in SHAPE_FROM-
SHADING.

0 9.5 Consider the textured plane shown in Figure 9.5 (a). Write an expression link-
ing slant, the (known) size of an image texel, and the distance of the corresponding
3-D texel from the camera. Assume there is no tilt.



1

244 Chapter 9 Shape from Single-image Cues

0 9.6 Extend your solution to Exercise 9.5 by removing the assumption of zero tilt.
You have now to write an expression for the tilt and one for the slant.

Projects
. 9.1 Implement SHAPE_FROM_SHADING. Test the algorithm on synthetically

generated images of a Lambertian surface following the suggestions given in
section 9.2. Study the sensitivity of the algorithm to noise, direction of illuminant
and uncertainty in the knolwdge of albedo and illuminant.

. 9.2 Implement STAT_SHAPE_FROM_TEXT and test your implementation
with synthetic images of planar textures corrupted by additive noise. Study the
variation of the error as a function of the amount of additive noise and of the ori-
entation of the plane. For which orientations do you expect higher errors? Why?
Is your expectation confirmed by experiments?

References

[1] Y. Aloimonos, I. Weiss and A. Bandopadhay, Active Vision, International Journal of
Computer Vision, Vol. 7, pp. 333 - 356 (1988).

[2] M. Bertero, T. Poggio and V. Torre, Ill-posed Problems in Early Vision, Proc. IEEE, Vol.
76, pp. 869-889 (1988).

[3] A. Blake and A. Yuill, Active Vision, MIT Press, Cambridge (MA) (1992).

[4] D. Blostein and N. Ahuja, Shape from Texture: Integrating Texture-Element Extraction
and Surface Estimation, IEEE Transactions on Pattern Analysis and Machine Intelligence,
Vol. PAMI-11, no. 12, pp. 1233-1251 (1989).

[5] R. Cipolla and A. Blake, Surface Shape from the Deformation of Apparent Contours,
International Journal of Computer Vision, Vol. 9, pp. 83 -112 (1992).

[6] R.T. Frankot and R. Chellappa, A Method for Enforcing Integrability in Shape from
Shading Algorithms, IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol.
10, no. 4, pp. 439 - 451 (1988).

[7] J. Garding, Shape from Texture for Smooth Curved Surfaces, Proc. European ConI on
Computer Vision, S. Margherita (Italy), pp. 630--638 (1992).

[8] J. Garding, Direct Estimation of Shape from Texture, IEEE Transactions on Pattern Analy-
sis and Machine Intelligence, Vol. PAMI-15, no. 11, pp.1202-1207 (1993).

[9] J. Garding, Shape from Texture for Smooth Curved Surfaces in Perspective Projection, Int.
Journ. of Mathematical Imaging, Vol. 2, no. 4, pp. 329 - 352 (1992).

[10] R.M. Haralick and L.G. Shapiro, Computer and Robot Vision, Vol. I, Addison-Wesley

(1992).
[11] B.K.P. Horn, Obtaining Shape from Shading Information, in P.H. Winston (ed.), The

Psychology of Computer Vision, McGraw-Hill, New York, pp.115-155 (1975).

[12] B.K.P. Horn and M.J. Brooks, The Variational Approach to Shape from Shading, Computer
Vision Graphics and Image Processing, Vol. 33, no. 2, pp. 174 - 208 (1986).

[13] B.K.P. Horn and B.G. Sjoberg, Calculating the Reflectance Map, Applied Optics, Vol. 18,
no. 11, pp. 1770 -1779 (1979).






