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AbstractÐWe describe new techniques to detect and analyze periodic motion as seen from both a static and a moving camera. By

tracking objects of interest, we compute an object's self-similarity as it evolves in time. For periodic motion, the self-similarity measure

is also periodic and we apply Time-Frequency analysis to detect and characterize the periodic motion. The periodicity is also analyzed

robustly using the 2D lattice structures inherent in similarity matrices. A real-time system has been implemented to track and classify

objects using periodicity. Examples of object classification (people, running dogs, vehicles), person counting, and nonstationary

periodicity are provided.

Index TermsÐPeriodic motion, motion segmention, object classification, person detection, motion symmetries, motion-based

recognition.
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1 INTRODUCTION

OBJECT motions that repeat are common in both nature
and the man-made environment in which we live.

Perhaps the most prevalent periodic motions are the
ambulatory motions made by humans and animals in their
gaits (commonly referred to as ªbiological motionº [16]).
Other examples include a person walking, a waving hand, a
rotating wheel, ocean waves, and a flying bird. Knowing
that an object's motion is periodic is a strong cue for object
and action recognition [16], [11]. In addition, periodic
motion can also aid in tracking objects. Furthermore, the
periodic motion of people can be used to recognize
individuals [20].

1.1 Motivation

Our work is motivated by the ability of animals and insects
to utilize oscillatory motion for action and object recogni-
tion and navigation. There is behavioral evidence that
pigeons are well-adapted to recognize the types of
oscillatory movements that represent components of the
motor behavior shown by many living organisms [9]. There
is also evidence that certain insects use oscillatory motion
for navigational purposes (hovering above flowers during
feeding) [17]. Humans can recognize biological motion from
viewing lights placed on the joints of moving people [16].
Humans can also recognize periodic movement of image
sequences at very low resolutions, even when point
correspondences are not possible. For example, Fig. 1
shows such a sequence. The effective resolution of this
sequence is 9� 15 pixels (it was created by resampling a
140� 218 (8-bit, 30fps) image sequence to 9� 15 and back
to 140� 218 using bicubic interpolation). In this sequence,

note the similarity between frames 0 and 15. We will use
image similarity to detect and analyze periodic motion.

1.2 Periodicity and Motion Symmetries

We define the motion of a point ~X�t�, at time t, periodic if it
repeats itself with a constant period p, i.e.,

~X�t� p� � ~X�t� � ~T �t�; �1�
where ~T �t� is a translation of the point. The period p is the
smallest p > 0 that satisfies (1); the frequency of the motion
is 1=p. If p is not constant, then the motion is cyclic. In this
work, we analyze locally (in time) periodic motion, which
approximates many natural forms of cyclic motion.

Periodic motion can also be defined in terms of symmetry.

Informally, spatial symmetry is self-similarity under a class of

transformations, usually the group of Euclidean transforma-

tions in the plane (translations, rotations, and reflections) [36].

Periodic motion has a temporal (and sometimes spatial)

symmetry. For example, Figs. 3a, 4a, 5a, and 6a show four

simple dynamic systems (pendulums). For each system, the

motion is such that ~X�t� p� � ~X�t� for a point ~X�t� on the

pendulum. However, each system exhibits qualitatively

different types of periodic motion. Fig. 5a is a simple planar

pendulum with a fixed rod under a gravitational field. The

motion of this system gives it a temporal mirror symmetry

along the shown vertical axis. The system in Fig. 4a is a similar

pendulum, but with sufficient initial velocity such that it

always travels in one angular direction. The motion of this

system gives it a temporal mirror symmetry along the shown

vertical axis. The system in Fig. 3a is a similar pendulum, but

in zero gravity; note it has an infinite number of axes of

symmetry that pass through the pivot of the pendulum. The

system in Fig. 6a consists of a pair of uncoupled and 180� out

of phase pendulums, a system which is often used to model

the upper leg motion of humans [24]. This system has a

temporal mirror symmetry along the shown vertical axis, as

well as an approximate spatial mirror symmetry along the
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same vertical axis (it is approximate because the pendulums

are not identical).
The above examples illustrate that while (1) can be used

to detect periodicity, it is not sufficient to classify different
types of periodic motion. For classification purposes, it is
necessary to exploit the dynamics of the system of interest,
which we do in Section 3.4.

1.3 Assumptions

In this work, we make the following assumptions: 1) the
orientation and apparent size of the segmented objects do
not change significantly during several periods (or do so
periodically); 2) the frame rate is sufficiently fast for
capturing the periodic motion (at least double the highest
frequency in the periodic motion).

1.4 Contributions

The main contribution of this work is the introduction of
novel techniques to robustly detect and analyze periodic
motion. We have demonstrated these techniques with video
of the quality typically found in both ground and airborne
surveillance systems. Of particular interest is the utilization
of the symmetries of motion exhibited in nature, which we
use for object classification. We also provide several other
novel applications of periodic motion, all related to
automating a surveillance system.

1.5 Organization of the Paper

In Section 2, we review and critique the related work. The
methodology is described in Section 3. Examples and
applications of periodic motion, particularly for the auto-
mated surveillance domain, are given in Section 4. A real-
time implementation of the methods is discussed in
Section 5, followed by a summary of the paper in Section 6.

2 RELATED WORK

There has been recent interest in segmenting and analyzing
periodic or cyclic motion. Existing methods can be
categorized as those requiring point correspondences [33],
[35]; those analyzing periodicities of pixels [21], [30]; those
analyzing features of periodic motion [27], [10], [14]; and
those analyzing the periodicities of object similarities [6],
[7], [33]. Related work has been done in analyzing the
rigidity of moving objects [34], [25]. Below we review and
critique each of these methods. Due to some similarities
with the presented method, [33], [21], [30] are described in
more detail than the other related work.

Seitz and Dyer [33] compute a temporal correlation plot
for repeating motions using different image comparison
functions, dA and dI . The affine comparison function dA

allows for view-invariant analysis of image motion, but
requires point correspondences (which are achieved by
tracking reflectors on the analyzed objects). The image
comparison function dI computes the sum of absolute
differences between images. However, the objects are not
tracked and, thus, must have nontranslational periodic
motion in order for periodic motion to be detected. Cyclic
motion is analyzed by computing the period-trace, which
are curves that are fit to the surface d. Snakes are used to fit
these curves, which assumes that d is well-behaved near
zero so that near-matching configurations show up as local
minima of d. The K-S test is utilized to classify periodic and
nonperiodic motion. The samples used in the K-S test are
the correlation matrix M and the hypothesized period-trace
PT . The null hypothesis is that the motion is not periodic,
i.e., the cumulative distribution function M and PT are not
significantly different. The K-S test rejects the null hypoth-
esis when periodic motion is present. However, it also
rejects the null hypothesis if M is nonstationary. For
example, when M has a trend, the cumulative distribution
function of M and PT can be significantly different,
resulting in classifying the motion as periodic (even if no
periodic motion present). This can occur if the viewpoint of
the object or lighting changes significantly during evalua-
tion of M (see Fig. 19a). The basic weakness of this method
is it uses a one-sided hypothesis test which assumes
stationarity. A stronger test is needed to detect periodicity
in nonstationary data, which we provide in Section 3.4.

Polana and Nelson [30] recognize periodic motions in an
image sequence by first aligning the frames with respect to
the centroid of an object so that the object remains
stationary in time. Reference curves, which are lines parallel
to the trajectory of the motion flow centroid, are extracted
and the spectral power is estimated for the image signals
along these curves. The periodicity measure of each
reference curve is defined as the normalized difference
between the sum of the spectral energy at the highest
amplitude frequency and its multiples and the sum of the
energy at the frequencies half way between.

Tsai et al. [35] analyze the periodic motion of a person
walking parallel to the image plane. Both synthetic and real
walking sequences are analyzed. For the real images, point
correspondences were achieved by manually tracking the
joints of the body. Periodicity was detected using Fourier
analysis of the smoothed spatio-temporal curvature func-
tion of the trajectories created by specific points on the body
as it performs periodic motion. A motion-based recognition
application is described in which one complete cycle is
stored as a model and a matching process is performed
using one cycle of an input trajectory.
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Fig. 1. Low resolution image sequences of a periodic motion (a person walking on a treadmill). The effective resolution is 9� 15 pixels.



Allmen [1] usedspatio-temporal flow curvesof edge image
sequences (with no background edges present) to analyze
cyclic motion. Repeating patterns in the ST flow curves are
detected using curvature scale-space. A potential problem
with this technique is that the curvature of the ST flow curves
is sensitive to noise. Such a technique would likely fail on very
noisy sequences, such as that shown in Fig. 15.

Niyogi and Adelson [27] analyze human gait by first
segmenting a person walking parallel to the image plane
using background subtraction. A spatio-temporal surface is
fit to the XYT pattern created by the walking person. This
surface is approximately periodic and reflects the periodi-
city of the gait. Related work [26] used this surface
(extracted differently) for gait recognition.

Liu and Picard [21] assume a static camera and use
background subtraction to segment motion. Foreground
objects are tracked and their path is fit to a line using a
Hough transform (all examples have motion parallel to the
image plane). The power spectrum of the temporal histories
of each pixel is then analyzed using Fourier analysis and the
harmonic energy caused by periodic motion is estimated.
An implicit assumption in [21] is that the background is
homogeneous (a sufficiently nonhomogeneous background
will swamp the harmonic energy). Our work differs from
[21] and [30] in that we analyze the periodicities of the
image similarities of large areas of an object, not just
individual pixels aligned with an object. Because of this
difference (and the fact that we use a smooth image
similarity metric), our Fourier analysis is much simpler
since the signals we analyze do not have significant
harmonics of the fundamental frequency. The harmonics
in [21] and [30] are due to the large discontinuities in the
signal of a single pixel; our self-similarity metric does not
have such discontinuities.

Fujiyoshi and Lipton [10] segment moving objects from a
static camera and extract the object boundaries. From the
object boundary, a ªstarº skeleton is produced, which is then
Fourier analyzed for periodic motion. This method requires
accurate motion segmentation, which is not always possible
(e.g., see Fig. 16). Also, objects must be segmented individu-
ally; no partial occlusions are allowed (as shown in Fig. 21a).
In addition, since only the boundary of the object is analyzed
for periodic change (and not the interior of the object), some
periodic motions may not be detected (e.g., a textured rolling
ball, or a person walking directly toward the camera).

Selinger and Wixson [34] track objects and compute self-
similarities of that object. A simple heuristic using the peaks
of the 1D similarity measure is used to classify rigid and
nonrigid moving objects, which in our tests fails to classify
correctly for noisy images (e.g., the sequence in Fig. 15).

Heisele and Wohler [14] recognize pedestrians using
color images from a moving camera. The images are
segmented using a color/position feature space and the
resulting clusters are tracked. A quadratic polynomial
classifier extracts those clusters which represent the legs
of pedestrians. The clusters are then classified by a time
delay neural network, with spatio-temporal receptive fields.
This method requires accurate object segmentation. A
3-CCD color camera was used to facilitate the color
clustering and pedestrians are approximately 100 pixels in
height. These image qualities and resolutions are typically
not found in surveillance applications.

There has also been some work done in classifying
periodic motion. Polana and Nelson [30] use the dominant

frequency of the detected periodicity to determine the
temporal scale of the motion. A temporally scaled XYT

template, where XY is a feature based on optical flow, is used
to match the given motion. The periodic motions include
walking, running, swinging, jumping, skiing, jumping jacks,

and a toy frog. This technique is view dependent and has not
been demonstrated to generalize across different subjects

and viewing conditions. Also, since optical flow is used, it
will be highly susceptible to image noise.

Cohen et al. [5] classify oscillatory gestures of a moving

light by modeling the gestures as simple one-dimensional
ordinary differential equations. Six classes of gestures are

considered (all circular and linear paths). This technique
requires point correspondences and has not been shown to
work on arbitrary oscillatory motions.

Area-based techniques, such as the present method, have

several advantages over pixel-based techniques, such as
[30], [21]. Specifically, area-based techniques allow the

analysis of the dynamics of the entire object, which is not
achievable by pixel-based techniques. This allows for

classification of different types of periodic motion, such as
those given in Section 4.1 and Section 4.4. In addition, area-

based techniques allow detection and analysis of periodic
motion that is not parallel to the image plane. All examples
given in [30], [21] have motion parallel to the image plane,

which ensures there is sufficient periodic pixel variation for
the techniques to work. However, since area-based methods

compute object similarities which span many pixels, the
individual pixel variations do not have to be large. For

example, our method can detect periodic motion from video
sequences of people walking directly toward the camera. A
related benefit is that area-based techniques allow the

analysis of low S/N images, such as that shown in Fig. 16,
since the S/N of the object similarity measure (such as (5)) is

higher than that of a single pixel.

3 METHOD

The algorithm for periodicity detection and analysis

consists of two parts. First, we segment the motion and
track objects in the foreground. We then align each object
along the temporal axis (using the object's tracking results)

and compute the object's self-similarity as it evolves in time.
For periodic motions, the self-similarity metric is periodic

and we apply Time-Frequency analysis to detect and
characterize the periodicity. The periodicity is also analyzed

robustly using the 2D lattice structures inherent in
similarity matrices.

3.1 Motion Segmentation and Tracking

Given an image sequence It from a moving camera, we

segment regions of independent motion. The images It are
first Gaussian filtered to reduce noise, resulting in I�t . The
image I�t is then stabilized [12] with respect to image I�tÿ� ,
resulting in Vt;tÿ� . The images Vt;tÿ� and I�t are differenced
and thresholded to detect regions of motion, resulting in a

binary motion image:
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Mt;ÿ� � 1 if
���I�t ÿ Vt;tÿ� ��� > TM

0 otherwise;

(
�2�

where TM is a threshold. In order to eliminate false motion
at occlusion boundaries (and help filter spurious noise), the
motion imagesMt;� andMt;ÿ� are logically anded together:

Mt �Mt;ÿ� ^Mt;� : �3�
An example ofMt is shown in Fig. 21b. Note that, for large
values of � , motion parallax will cause false motion in Mt.
In our examples (for a moving camera), � = 300 ms was
used.

Note that, in many surveillance applications, images are
acquired using a camera with automatic gain, shutter, and
exposure. In these cases, normalizing the image mean
before comparing images It1 and It2 will help minimize false
motion due to a change in the gain, shutter, or exposure.

A morphological open operation is performed on Mt

(yielding M�
t ), which reduces motion due to image noise.

The connected components forM�
t are computed and small

components are eliminated (further reducing image noise).
The connected components which are spatially similar (in
distance) are then merged and the merged connected
components are added to a list of objects Ot to be tracked.
An object has the following attributes: area, centroid,
bounding box, velocity, ID number, and age (in frames).
Objects in Ot and Ot�k, k > 0, are corresponded using
spatial and temporal coherency.

It should be noted that the tracker is not required to be
very accurate, as the self-similarity metric we use is robust
and can handle tracking errors of several pixels (as
measured in our examples).

Also note that, when the background of a tracked object
is sufficiently homogeneous, and the tracked object does not
change size significantly during several periods, then
accurate object segmentation is not necessary. In these
cases, we can allow Ot to include both the foreground and
background. Examples of such backgrounds include grassy
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Fig. 2. Lattices used to match the peaks of the autocorrelation of S0. (a) Square lattice (b) 45� rotated square lattice.

Fig. 3. (a) Pendulum in zero gravity with a constant angular velocity. The arrows denote the direction of motion. (b) Similarity plot for pendulum.

Darker pixels are more similar. (c) Autocorrelation of similarity plot.



fields, dirt roads, and parking lots. An example of such a

sequence is given in Fig. 15.

3.2 Periodicity Detection and Analysis
The output of the motion segmentation and tracking
algorithm is a set of foreground objects, each of which has a
centroid and size. To detect periodicity for each object, we
first align the segmented object (for each frame) using the

object's centroid and resize the objects (using a Mitchell filter
[32]) so that they all have the same dimensions. The scaling is
required to account for an apparent size change due to change
in distance from the object to the camera. Because the object
segmentation can be noisy, the object dimensions are
estimated using the median of N frames (where N is the
number of frames we analyze the object over). The objectOt's
self-similarity is then computed at times t1 and t2. While

CUTLER AND DAVIS: ROBUST REAL-TIME PERIODIC MOTION DETECTION, ANALYSIS, AND APPLICATIONS 785

Fig. 4. (a) Pendulum in gravity with single angular direction. The arrows denote the direction and magnitude of motion; the pendulum travels faster at

the bottom of its trajectory than at the top. (b) Similarity plot for pendulum. (c) Autocorrelation of similarity plot. The peaks are denoted by ª+º

symbols.

Fig. 5. (a) Pendulum in gravity with an oscillating angular direction. The arrows denote the direction of motion. (b) Similarity plot for pendulum.

(c) Autocorrelation of similarity plot. The peaks are denoted by ª+ª symbols.

Fig. 6. (a) Two pendulum out of phase 180� in gravity. The arrows denote the direction of motion. (b) Similarity plot for pendulums. (c) Autocorrelation

of similarity plot. The peaks are denoted by ª+º symbols.



many image similarity metrics can be defined (e.g., normal-

ized cross-correlation, Hausdorff distance [15], color index-

ing [2]), perhaps the simplest is absolute correlation:

St1; t2 �
X

�x;y�2Bt1

Ot1�x; y� ÿOt2�x; y�j j; �4�

where Bt1 is the bounding box of object Ot1 . In order to
account for tracking errors, the minimal S is found by
translating over a small search radius r:

S0t1; t2 � min
dx;dyj j<r

X
�x;y�2Bt1

Ot1�x� dx; y� dy� ÿOt2�x; y�j j: �5�

For periodic motions, S0 will also be periodic. For example,
Fig. 8a shows a plot of S0 for all combinations of t1 and t2 for
a walking sequence (the similarity values have been linearly
scaled to the gray-scale intensity range [0, 255]; dark regions
show more similarity). Note that a similarity plot should be
symmetric along the main diagonal; however, if substantial
image scaling is required, this will not be the case. In
addition, there will always be a dark line on the main
diagonal (since an object is similar to itself at any given
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Fig. 7. Person walking on a treadmill.

Fig. 8. (a) Similarity plot for the person walking in Fig. 7. (b) Lattice structure for the upper left quadrant of (a). At the intersections of the diagonal and

cross diagonal lines, the images are similar to Fig. 7a, 7b, and 7c. This can be used to determine the phase of the walking person.

Fig. 9. (a) Power spectrum of similarity of a walking person. (b) Autocorrelation of the similarity of the walking person in Fig. 7 (smoothed with a 5� 5

� � 1 Gaussian filter). The peaks (shown with white ª+º symbols) are used to fit the 45� rotated square lattice in Fig. 2b.



time) and periodic motions will have dark lines (or curves if

the period is not constant) parallel to the diagonal.
To determine if an object exhibits periodicity, we

estimate the 1D power spectrum of S0�t1; t2� for a fixed t1

and all values of t2 (i.e., the columns of S0). In estimating the

spectral power, the columns of S0 are linearly detrended

and a Hanning filter is applied. A more accurate spectrum

is estimated by averaging the spectra of multiple t1s [31] to

get a final power estimate P �fi�, where fi is the frequency.

Periodic motion will show up as peaks in this spectrum at

the motion's fundamental frequencies. A peak at frequency

fi is significant if

P �fi� > �P �K�P ; �6�
where K is a threshold value (typically 3), �P is the mean of

P , and �P is the standard deviation of P . Note that multiple

peaks can be significant, as we will see in the examples.
In the above test, we assume that the period is locally

constant. The locality is made precise using Time-Fre-

quency analysis given in Section 3.3. We also assume that

there are only linear amplitude modulations to the columns

of S0 (so that linear detrending is sufficient to make the data

stationary) and that any additive noise to S0 is Gaussian.

Both of these assumptions are relaxed in the method given

in Section 3.4.

3.2.1 Fisher's Test

If we assume that columns of S0 are stationary and
contaminated with white noise, and that any periodicity
present consists of a single fundamental frequency, then we
can apply the well-known Fisher's test [29], [3]. Fisher's test
will reject the null hypothesis (that S0 is only white noise) if
P �fi� is substantially larger than the average value.
Assuming N is even, let q � b�N ÿ 1�=2c and

Eq � qmax1�i�q P �fi�Pq
i�1 P �fi�

: �7�

To apply the test, we compute the realized value x of Eq
from S0 and then compute the probability:

P �Eq � x� � 1ÿ
Xq
j�0

�ÿ1�j q

j

� �
�1ÿ jx=q�qÿ1

� ; �8�

where z� � max�z; 0�. If this probability is less than �, then
we reject the null hypothesis at level � (in practice, we use
� � 0:05). This test is optimal if there exists a single periodic
component at a Fourier frequency fi in white noise
stationary data [29]. To test for periodicities containing
multiple frequencies, Seigel's test [29] can be applied.

In practice, Fisher's test, like the K-S test used by [33],
works well if the periodic data is stationary with white
noise. However, in most of our nonperiodic test data (e.g.,
Fig. 19a), which is not stationary, both Fisher's and the K-S
test yield false periodicities with high confidence.
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Fig. 10. Cycle of a person walking (p � 32). Note the similarity of frame t and p=2ÿ t, and the similarity of frame t and p=2� t.

Fig. 11. (a) First image of a 100-image walking sequence (the subject is walking approximately 25� offset from the camera's image plane). (b)

Walking sequence similarity plot, which shows the similarity of the object (person) at times t1 and t2. Dark regions show greater degrees of similarity.



3.2.2 Recurrence Matrices

It is interesting to note that S0 is a recurrence matrix [8], [4],

without using time-delayed embedded dimensions. Recur-

rence matrices are a qualitative tool used to perform time

series analysis of nonlinear dynamical systems (both periodic

and nonperiodic). Recurrence matrices make no assumptions

on the stationarity of the data and do not require many data

points to be used (a few cycles of periodic data is sufficient).

The input for a recurrence matrix is a multidimensional

temporally sampled signal. In our use, the input signal is the

tracked object image sequenceOt and the distance measure is

image similarity. Given a recurrence matrix, the initial

trajectory ~X�t� of a point on an object can be recovered up

to an isometry [23]. Therefore, the recurrence plot encodes the

spatiotemporal dynamics of the moving object. The similarity

plot encodes a projection of the spatiotemporal dynamics of

the moving object.

3.3 Time-Frequency Analysis

For stationary periodicity (i.e., periodicity with statistics

that don't change with time), the above analysis is

sufficient. However, for nonstationary periodicity, Fourier

analysis is not appropriate. Instead, we use Time-Frequency

analysis and the Short-Time Fourier Transform (STFT) [28]:

Fx�t; v;h� �
Z 1
ÿ1

x�u�h��uÿ t�ei2�vudu; �9�

where h��uÿ t� is a short-time analysis window and x�u� is

the signal to analyze (S0 in our case). The short-time

analysis window effectively suppresses the signal x�u�
outside a neighborhood around the analysis time point

u � t. Therefore, the STFT is a ªlocalº spectrum of the signal

x�u� around t.
We use a Hanning windowing function as the short-time

analysis window. The window length should be chosen to
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Fig. 12. (a) Column 1 of Fig. 11b, with the corresponding segmented object for the local minima. (b) Image similarity for upper 25 percent, next

25 percent, and lower 50 percent of body. (c) Average power spectrum of all columns of Fig. 11b.

Fig. 13. Cycle of a running dog (p � 12). Note the lack of similarity for any two frames t1 and t2, 0 < t1 < t2 < p.



be long enough to achieve a good power spectrum estimate,

but short enough to capture a local change in the

periodicity. In practice, a window length equal to several

periods works well for typical human motions. An example

of nonstationary periodicity is given in Section 4.7.

3.4 Robust Periodicity Analysis

In Section 3.2, we used a hypothesis test on the 1D power

spectrum of S0 to determine if S0 contained any periodic

motion. The null hypothesis is that there is only white noise

in the spectrum, which is rejected by (6) if significant

periodic motion is present. However, the null hypothesis

can also be rejected if S0 contains significant non-Gaussian

noise, or if the period is locally nonconstant, or if S0 is

amplitude modulated nonlinearly. We seek a technique that

minimizes the number of false periodicities while

maximizing the number of true periodicities. Toward this

end, we devise a test that performs well when the

assumptions stated in Section 3.2 are satisfied, but does

not yield false periodicities when these assumptions are

violated.
An alternative technique to Fourier analysis of the 1D

columns of S is to analyze the 2D power spectrum of S0.
However, as noted in [19], the autocorrelation of S0 for

regular textures has more prominent peaks than those in

the 2D Fourier spectrum. Let A be the normalized

autocorrelation of S0:

A�dx; dy� � P
�x;y�2R S0 �x;y�ÿ �S0R��S0 �x�dx;y�dy�ÿ �S0RL� �P

�x;y�2R S0 �x;y�ÿ �S0R� �2
P

�x;y�2R S0 �x�dx;y�dy�ÿ �S0RL� �2
� �0:5;

�10�

where �S0R is the mean of S0 over the region R, �S0RL
is the

mean of S0 over the region R shifted by the lag �dx; dy�, and

the regions R and RL cover S0 and the lagged S0. If S0 is

periodic, then A will have peaks regularly spaced in a

planar lattice Md, where d is the distance between the lattice

points. In our examples, we will consider two lattices, a

square lattice MS;d (Fig. 2a), and a 45� rotated square lattice

MR;d (Fig. 2b). The peaks P in A are matched to Md using

the match error measure e:
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Fig. 14. (a) Similarity plot of the running dog in Fig. 13. Note that there are no dark lines perpendicular to the main diagonal, as shown in Fig. 8a.

(b) Autocorrelation of the similarity plot (smoothed with a 5� 5 � � 1 Gaussian filter). The peaks (shown with white ª+º symbols) are used to fit the

square lattice in Fig. 2a.

Fig. 15. Person running across a parking lot, viewed from a moving

camera at an altitude of 1,500 feet.

Fig. 16. Zoomed images of the person in Fig. 15, which correspond to

the poses in Fig. 7. The person is 12� 7 pixels in size.



Bi �
Pi
���Md;iÿPij�minj 6�i jMd;iÿPjj^jMd;iÿPij�TD^A�Pi��TA

n o �11�

e�Md� �
X
i

jMd;i ÿBij; �12�

where Bi is the closest peak to the lattice point Md;i, TD
(TD < d=2) is the maximum distance Pi can deviate from

Md;i, and TA is the minimum autocorrelation value that the

matched peak may have. Md matches P if all the following

are satisfied:

min
d1�d�d2

e�Md� < Te; �13�

jBj � TM; �14�
where Te is a match threshold; �d1; d2� is the range of d;

TM is the minimum number of points in Md to match. In

practice, we let TD � 1, Te � 2jMdj, Te � 2jMdj, and

TM � 0:9jMdj; TA � 0:25. The range �d1; d2� determines the
possible range of the expected period, with the require-
ment 0 < d1 < d2 < L, where L is the maximum lag used
in computing A. The number of points in MR and MS can
be based on the period of the expected periodicity and
frame-rate of the camera. The period p � 2d� , where � is
the sampling interval (e.g., � � 33 ms for NTSC video).

Peaks in A are determined by first smoothing A with a
Gaussian filter G, yielding A�. A��i; j� is a peak if A��i; j� is a
strict maximum in a local neighborhood with radius N . In
our examples, G is a 5� 5 filter with � � 1 and N � 5.
Lin et al. [19] provide an automatic method for determining
the optimal size of G.

4 EXAMPLES AND APPLICATIONS

4.1 Synthetic Data

In this section, we demonstrate the methods on synthetic
data examples. We generated images of a periodic planar
pendulum, with different initial conditions, parameters,
and configurations. Note that the equation of motion for a
simple planar pendulum is

d2�

dt2
� g

L
sin � � 0; �15�

where g is the gravitational acceleration, L is the length of
the rigid rod, and � is the angle between the pendulum rod
and vertical axis [22]. In the first example (see Fig. 3a), we
set g � 0 so that the pendulum has a circular motion with a
constant angular velocity. The diagonal lines in the
similarity plot (Fig. 3b) are formed due to the self-similarity
of the pendulum at every complete cycle. The autocorrela-
tion (Fig. 3c) has no peaks.

In the next example, we use the same configuration, but
set g > 0 and the initial angular velocity to be sufficient so
that the pendulum still has a single angular direction.
However, in this configuration, the angular velocity is not
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Fig. 18. Spectral power of the running person in Fig. 15.

Fig. 17. (a) Similarity plot of the running person in Fig. 15. (b) Autocorrelation of upper quadrant of S0. The peaks are used to fit the 45� rotated square

lattice in Fig. 2b.



constant, which is reflected in the qualitatively different

similarity plot (Fig. 4b) and autocorrelation (Fig. 4c). Note

that the peaks in A match the lattice structure in Fig. 2a.
By decreasing the initial angular velocity, the pendulum

will oscillate with a changing angular direction, as shown in

Fig. 5a. The similarity plot for this system is shown in Fig. 5b

and the autocorrelation in Fig. 5c. Note that the peaks in A

match the lattice structure in Fig. 2b.
Finally, for the system of two pendulums 180� out of

phase, shown in Fig. 6a, the similarity plot is shown in Fig. 6b

and the autocorrelation is shown in Fig. 6c. Note that the

peaks inAmatch the lattice structure in Fig. 2b. Also note the

lower measures of similarity for the diagonal lines S0�t; t�
�k� 1=2�p� and the cross-diagonal lines S�t; �k� 1=2�pÿ t�,
and the corresponding effect on A.

4.2 The Symmetry of a Walking Person

In this example, we first analyze periodic motion with no

(little) translational motion, a person walking on a treadmill

(Fig. 7). This sequence was captured using a static JVC KY-

F55B color camera at 640� 480 at 30fps, deinterlaced, and

scaled to 160� 120. Since the camera is static and there is no
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Fig. 19. (a) Vehicle driving across a parking lot. (b) Similarity plot of the vehicle.

Fig. 20. (a) Spectral power of the vehicle in Fig. 19a. (b) Autocorrelation of S0 of the vehicle in Fig. 19a (smoothed with a 5� 5 � � 1Gaussian filter).

The peaks are denoted by ª+º symbols.

TABLE 1
Confusion Matrix for Person, Dog, and Other Classification



translational motion, background subtraction was used to

segment the motion [6].
The similarity plot S0 for this sequence is shown in

Fig. 8a. The dark lines correspond to two images in the

sequence that are similar. The darkest line is the main

diagonal since S0�t; t� � 0. The dark lines parallel to the

main diagonal are formed since S0�t; kp=2� t� ' 0, where p

is the period, and k is an integer. The dark lines

perpendicular to the main diagonal are formed since

S0�t; kp=2ÿ t� ' 0 and is due to the symmetry of human

walking (see Fig. 10).
It is interesting to note that, at the intersections of these

lines, these images are similar to either Fig. 7a, 7b, or 7c, (see

Fig. 8b). That is, S0 encodes the phase of the person walking,

not just the period. This fact is exploited in the example in

Section 4.5.
The autocorrelation A of S0 is shown in Fig. 9b. The peaks

in A form a 45� rotated square lattice (Fig. 2b), which is used

for object classification (Section 4.4). Note that the

magnitude of the peaks in A (Fig. 9b) have a pattern similar

to the A in Fig. 6c.

We next analyze the motion of a person who is walking

at an approximately 25� offset to the camera's image plane

from a static camera. (Fig. 11a). The segmented person is

approximately 20 pixels in height, and is shown in Fig. 12a.

The similarity plot (Fig. 11a) shows dark diagonal lines at a

period of approximately 1 second (32 frames), which

correspond to the period of the person's walking. The

lighter diagonal lines shown with a period of approximately

0.5 seconds (16 frames) are explained by first noting that the

person's right arm swing is not fully visible (due to the 25�

offset to the image plane). Therefore, it takes two steps for

the body to be maximally self-similar, while the legs

become very self-similar at every step. The effect of this is

that the similarity measure S0 is the composition of two

periodic signals, with periods differing by a factor of two.

This is shown in Fig. 12b, where the aligned object image is

partitioned into three segments (the upper 25 percent, next

25 percent, and lower 50 percent of the body) and S0 is

computed for each segment. The upper 25 percent, which

includes the head and shoulders, shows no periodic motion;

the next 25 percent, which includes the one visible arm, has

a period double that of the lower 50 percent (which includes

the legs). Fig. 12c shows the average power spectrum for all

the columns in S0.

4.3 The Symmetry of a Running Dog

In this example, we look at the periodicity of a running dog

from a static camera. Fig. 13 shows a complete cycle of a

dog (a Black Labrador). Unlike the symmetry of a walking

or running person, a running dog has a lack of similarity for

S0�t; kpÿ t�. This results in the similarity plot (Fig. 14a)

having dark lines parallel to the main diagonal, formed by

S0�t; kp� t�, but no lines perpendicular to the main diagonal

(as with a walking/running person). The similarity plot has

peaks (Fig. 14a) that correspond to poses of the dog at

frame 0 in Fig. 13. The autocorrelation A of S0 is shown in

Fig. 14b; the peaks in A form a square lattice (Fig. 2a), which

is used in Section 4.4 for object classification.
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Fig. 21. (a) Three people running, viewed from a moving camera at an altitude of 1,500 feet. (b) Segmented motion.

Fig. 22. Similarity plots and spectral power for three people in Fig. 21a.

Note that the frequency resolution is not as high as in Fig. 18 since fewer

frames are used to estimate the power.



4.4 Object Classification Using Periodicity

A common task in an automated surveillance system is to
classify moving objects. In this example, we classify three
types of moving objects: people, dogs, and other. We use
the lattice fitting method described in Section 3.4 for
classification, which is motivated by texture classification
methods. Specifically, the square lattice MS (Fig. 2a) is used
to classify running dogs and the 45� square lattice MR

(Fig. 2b) is used to classify walking or running people. Note
that MR;d is a subset of MS;d, so if both MS;d and MR;d match,
MR is declared the winner. If neither lattice provides a good
match to A, then the moving object is classified as other.

The video database used to test the classification consists
of video from both airborne surveillance (people and
vehicles) and ground surveillance (people, vehicles, and
dogs). The database consists of 30 vehicle sequences (25
from airborne video); 55 person sequences (50 from air-
borne video); and 4 dog sequences (all from ground video).

For the airborne video and dog sequences, the back-
ground was not segmented from the foreground object.
For these sequences, the background was sufficiently

homogeneous (e.g., dirt roads, parking lots, grassy fields)

for this method to work. For the other sequences (taken

with a static camera), the background was segmented as

described in [6].
The airborne video in Fig. 15 was recorded from a Sony

XC-999 camera (640� 240 at 30fps) at an altitude of about

1,500 feet. There is significant motion blur due to a slow

shutter speed and fast camera motion. Additional noise is

induced by the analog capture of the video from duplicated

SVHS tape. Fig. 15 shows a person running across a parking

lot. The person is approximately 12� 7 pixels in size

(Fig. 16). The similarity plot in Fig. 17a shows a clearly

periodic motion, which corresponds to the person running.

Fig. 18 shows that the person is running with a frequency of

1.3Hz; the second peak at 2.6Hz is due to the symmetry of

the human motion described in Section 4.2. The autocorre-

lation of S0 is shown in Fig. 17b. Fig. 19b shows the

similarity plot for the vehicle in Fig. 19a, which has no

periodicity. The spectral power for the vehicle (Fig. 20b) is

flat. The autocorrelation of S0 has only 2 peaks (Fig. 20a).
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Fig. 23. (a) Frame 100 from a low contrast 200 frame sequence; the subject (marked with a white arrow) puts his hands in his pockets halfway

through the sequence. (b) Similarity plot of the lower 40 percent of the body. (c) Similarity plot of the upper 60 percent of the body. The periodicity

ceases after the middle of the sequence.



The results of the classifications are shown in Table 1.
The thresholds used for the lattice matching are those given
in Section 3.4. Each sequence is 100 images (30 fps); a lag
time of 30 images (1 second) is used to compute A.

4.5 Counting People

Another common task in an automated surveillance system
is to count the number of people entering and leaving an
area. This task is difficult since, when people are close to
each other, it is not always simple to distinguish the
individuals. For example, Fig. 21a is a frame from an
airborne video sequence that shows three people running
along a road and the result of the motion segmentation
(Fig. 21b). Simple motion blob counting will give an
inaccurate estimate of the number of people. However, if
we know the approximate location of the airplane (via GPS)
and have an approximate site model (a ground plane), we
can estimate what the expected image size of an ªaverageº
person should be. This size is used to window a region with
motion for periodic detection. In this example, three
nonoverlapping windows were found to have periodic
motion, each corresponding to a person. The similarity plots
and spectral powers are shown in Fig. 22.

The similarity plots in Fig. 22 can also be used to extract
the phase angle of the running person. The phase angle is
encoded in the position of the cross diagonals of S0. In this
example, the phase angles are all significantly different
from one another, giving further evidence that we have not
over counted the number of people.

4.6 Simple Event Detection

In this example, we show how periodicity can be used as
input for event detection. Fig. 23a shows a person walking
through a low contrast area (in a shadow) toward the
camera; halfway through the 200 image sequence the
person stops swinging his arms and puts them into his
pockets. This action is shown on the similarity plots for the
upper and lower portions of the body. Specifically, in
Fig. 23c, a periodic pattern for the upper part of the body is
visible for the images [1, 100], but not for [101, 200]. This is
further shown by the significant peak in the power
spectrum for the images [1,100] (Fig. 24a) and the lack of
significant peaks in the power spectrum for the images [101,
200] (Fig. 24b). Thus, while the image of the person is only

37 pixels high in this sequence and we are not tracking his
body parts, we can deduce that he stopped swinging his
arms at about frame 100. An automated surveillance system
can use this technique to help decide if someone is carrying
an object. In [13], we combine periodicity and shape
analysis to detect if someone is carrying an object.

4.7 Nonstationary Periodicity

In this example, a person is walking, and roughly half way
through the sequence, starts to run (see Fig. 25a). The
similarity plot (Fig. 25b) clearly shows this transition. Using
a short-time analysis windowing Hanning function of
length 3,300 ms (100 frames), the power is estimated in
the walking and running stages (Fig. 26).

4.8 Estimating Human Stride Using Periodicity

In [26] and [20], human gait was used for person
recognition. In this example, we do not analyze the gait
(which is how people walk or run), but rather estimate the
stride length of a walking or running person. The stride
itself can be useful for person recognition, particularly
during tracking. For example, stride length can help object
(person) correspondence after occlusions. Stride length can
also be used for input to a surveillance system to detect auto
theft in a parking area (e.g., a person of different size and
stride length drove off with a car than the person who
drove in with the car).

Assume the area of surveillance has a site model, and the
camera is calibrated. The estimated stride length is L � vgp,
where vg is the ground velocity of the person, and p is the
period. For best results, vg and p should be filtered to reduce
the inherent noise in the tracking and period estimation. For
example, in Fig. 25a, the estimated stride of the person is 22
inches when walking and 42 inches when running, which is
within 2 inches of the person's actual stride.

5 REAL-TIME SYSTEM

A real-time system has been implemented to track and
classify objects using periodicity. The system uses a dual
Processor 550MHz Pentium III Xeon-based PC and runs at
15Hz with 640� 240 gray-scale images captured from an
airborne video camera. The system uses the real-time
stabilization results from [12].
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Fig. 24. (a) Power spectra of the upper left quadrant of Fig. 23c. (b) Power spectra of the lower right quadrant of Fig. 23c.



We will briefly discuss how the method can be efficiently
implemented to run on a real-time system. In computing S0,
for each new frame, only a single column that corresponds
to the new frame needs to be recomputed; the remaining
entries can be reused (shifted) for the updated S0. Therefore,
for each new frame, only O�N� S0�i; j� computations need to
be done, where N is the number of rows and columns in S0.

For computing A, the 2D FFT can be utilized to greatly
decrease the computational cost [18].

Finally, SIMD instructions, such as those available on the
Pentium III, can be utilized for computing S0�i; j�, as well as
A (either directly or using the FFT).

6 CONCLUSIONS

We have described new techniques to detect and analyze
periodic motion as seen from both a static and moving
camera. By tracking objects of interest, we compute an
object's self-similarity as it evolves in time. For periodic

motion, the self-similarity measure is also periodic and we
apply Time-Frequency analysis to detect and characterize
the periodic motion. The periodicity is also analyzed
robustly using the 2D lattice structures inherent in
similarity matrices.

Future work includes using alternative independent
motion algorithms for moving camera video, which could
make the analysis more robust for nonhomogeneous back-
grounds for the case of a moving camera. Further use of the
symmetries of motion for use in classification of additional
types of periodic motion is also being investigated.
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Fig. 26. Spectral power for walking/running sequence in Fig. 25a.

Fig. 25. (a) Person walking, then running. (b) Similarity plot of walking/running sequence.
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