MODELING AND RECOGNITION OF HUMAN
ACTIONS USING A STOCHASTIC APPROACH

Esther B. Koller-Meier and Luc Van Gool
Commaunication Technology Lab, Image Science
Swiss Federal Institute of Technology (ETH)
CH-8092 Zurich, Switzerland

{ebmeier,vangool}@vision.ee.ethz.ch

Abstract  This paper describes a self-learning prototype system for the real-time
detection of unusual motion patterns. The proposed surveillance sys-
tem uses a three-step approach consisting of a tracking, a learning and
a recognition part. In the first step, an arbitrary, changing number of
objects are tracked with an extension of the CONDENSATION algorithm.
From the history of the tracked object states, temporal trajectories are
formed which describe the motion paths of these objects. Secondly,
characteristic motion patterns are learned by clustering these trajecto-
ries into prototype curves. In the final step, motion recognition is then
tackled by tracking the position within these prototype curves based on
the same method, the extended CONDENSATION algorithm, used for the
object tracking.
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motion recognition

1. Introduction

The analysis of human movements or activities from image sequences
is an important problem especially for surveillance applications. This
paper focuses on the surveillance of bank lobbies where security staff is
required to observe human activities on monitors to detect the occur-
rence of unusual events. The support of automatic video surveillance
systems should relieve the operators by directing their attention to the
unusual cases. We are primarily interested in detecting unusual events
such as vandalism, panic or overcrowded areas including unusual move-
ments as well as unlikely object positions. For this purpose we have
developed a self-learning framework for the real-time detection of such
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Figure 1.  Information flow of the proposed surveillance system.

unusual motion patterns consisting of a tracking, a learning and a recog-
nition part (see Fig. 1).

There is an extensive amount of computer vision work in the area
of motion models. Such models are generally first constructed for the
motion paths and the detected motions are then classified on the basis
of these models. The most frequent attempt based on a state-space
approach is the Hidden Markov Model (HMM) [3, 10, 11]. In [2] the
CONDENSATION-based Trajectory Recognition (CTR) is proposed which
can be seen as a generalization of HMM’s. Alternative methods based
on template techniques convert an image sequence into a static shape
pattern. The most commonly used features for this technique are 2D
meshes [8]. Furthermore, these approaches also comprise motion-energy
images (MEI) and motion-history images (MHI) which are presented
in [4]. A detailed review of human motion analysis can be found in [1].

The outline of this paper is given as follows. In the next section we
introduce the tracking approach which is based on the CONDENSATION
algorithm [5] to trace an arbitrary, changing number of objects. In
Section 3 we propose a self-learning clustering method using the tracking
results to build prototype curves as models for the motion paths. The
recognition part where the tracking results are matched to the learned
prototype curves is then explained in Section 4. Finally, we present some
experimental results in Section 5 for the surveillance of bank lobbies.



2. Tracking

First of all we focus on the object tracking in video sequences. We use
the extension of the CONDENSATION algorithm which we have developed
to track an arbitrary, changing number of objects for mobile robots [7].

In principle, we are interested in recursively constructing the a poste-
riori probability density of an object state conditioned on all measure-
ments Z = {z1,. ..z} which are obtained from a segmentation. The key
idea of the CONDENSATION algorithm [5] is to approximate the probabil-
ity distribution by a weighted sample set S = {(s\), 7())[j =1...N}.
Each sample consists of an element s which represents the state of an ob-
ject and a corresponding discrete sampling probability w. The evolution
of the sample set is described by first propagating each sample accord-
ing to a system model. Secondly, each element of the set is weighted
in terms of the measurements and finally, a particular sample is drawn
with replacement, by choosing it with probability .

In our application it is necessary to track multiple objects simultane-
ously and to handle newly appearing objects. For that purpose, we use
a single CONDENSATION tracker for multiple objects such that several
object states are represented simultaneously with one sample distribu-
tion. Furthermore, we apply an initialization at every iteration step
to incorporate newly appearing objects into the tracking process. The
programming details of the extended CONDENSATION algorithm for one
iteration step are given in Fig. 2.

The measurements for our application are obtained by subtracting
two successive images. From the resultant motion blobs we extract the
central points described by the z and y image coordinates. Accordingly,
we define the state of an object blob at time ¢ by

St = (wtaytautavt) (1)

where u and v describe the velocities in the corresponding coordinate
directions. The propagation of each sample is then given as

Ty = Tp—1 +u—1At+ ngf)l

Y = Y1 + 1AL+ n,@l

Ut = Up—1 +’1’L,(gqi)1
vy = 'Uf,—1+'n/§11)1 (2)

where n = (n($),n(y),n(“),n(”)) is a vector of random variables with a
known distribution and At is the time interval between two consecutive
measurements. Currently, a first order system model is applied for com-
putational reasons, but we plan to expand this model to second order



1 Imitialize the sample set S; 1:
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the initial samples
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2 Propagate each sample from the set S; 1 to build a new
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Figure 2.  An iteration step of the extended CONDENSATION algorithm.

by additionally incorporating the acceleration into the object state. We
expect that for example the queuing in front of the cash machines can
then be modeled more precisely. By keeping the history of each sample
a trajectory is formed as a sequence of states.

An example where two persons are tracked simultaneously with a
single sample distribution is shown in Fig. 3. A bank lobby is observed
where three cash machines are located on the left side. The bright
grey spots show the current sample distribution while in darker grey the
corresponding trajectories are illustrated. The size of the sample set



Figure 8.  The sample distribution is shown as bright grey spots while in darker grey
the corresponding motion trajectories are illustrated.

is dependent on the number of objects, for our application we choose
N =400 and M = 40. The computational cost for the tracking is 0.09
seconds on a PC with a 450 MHz Pentium II processor.

3. Learning

The learning phase starts by building prototypes for the trajectories
of the tracked object states. The trajectories received from the tracking
process are typically short-lived, partially overlapping in space and time
and are possibly produced by different objects. Consequently, we cluster
these trajectories into long-lived prototype curves each corresponding to
a characteristic movement.

The clustering is done in the following steps:

1 All trajectories that are sufficiently long are added as new proto-
type curves.

2 Prototype curves that are overlapping and sufficiently close are
merged into a new curve.

In each iteration step the clustering method is applied to all new pro-
totype curves as well as to the already existing curves. As a result we
obtain a set of prototype curves of the monitored environment. A re-
lated clustering method, where feature points are grouped to form object
trajectories is described in [9].

Each prototype curve describes the spatio-temporal path of an object
and is modeled by a sequence of nodes

b= (z,y,u,v,w) (3)
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Figure 4.  Finding point pairs with equal distance in arc length to the initial points
p™ and ¢™M.

where z, y describe the spatial localization and u, v the motion. The
parameter w indicates the specific weight of this node and is increased
with every trajectory that contributes to the node. This weight is used
when two curves are merged, to interpolate the nodes of the resulting
curve. The initial value is given by w = 1.

For the comparison of two prototype curves it is necessary to analyze
their distance and their spatial overlap. Let us assume that we have two
prototype curves P and ). We first look at the starting point of curve
P and find the closest point on curve (). From these initial points, we
now find more corresponding point pairs on the two curves. A point
pair consists of a node on one curve and a corresponding point on the
other curve. Such pairs have always the same distance in arc length to
the initial points (see Fig. 4). We continue to find pairs until we reach
the end of one curve.

Two prototype curves are merged if the mean distance of the point
pairs

K
1
d= 2> (@ — 2 + (P — ) +

1
A = uP)? + (o) — o)) )

is sufficiently small and if they have a large enough overlap given by the
distance in arc length between the first and the last overlapping point
found on the curves. The factor A is used to normalize the velocities
and the parameter K indicates the number of point pairs. The merged
points on curve R are then calculated by a weighted interpolation of the
points on curve P and Q in the overlapping area (see Fig. 5).

In order for the merged prototype curve R not to acquire too many
nodes, we check for nearby nodes with low curvature values that can
be merged into one node without significantly changing the shape of
the prototype curve. Furthermore, as relatively unlikely trajectories can



Figure 5.  Generate an interpolated prototype curve R from the curves P and Q.

also provoke prototype curves we replace weak curves by more dominant
ones when a maximal number of prototype curves has been reached.

In Fig. 6 a new prototype curve is formed by the person crossing the
bank lobby. In grey we see as before the tracking results while in white
the prototype curves are shown. The computation power for the learning
is dependent on the number of prototype curves. By the chosen maximal
number of 30 curves the processing of the learning can temporarily reach
up to 1.0 second.

4. Recognition

In the real-time recognition mode movements are identified on the
basis of the prototype curves. In [2] the authors describe how the ba-
sic CONDENSATION algorithm [5] was successfully used to solve different
recognition tasks. We adapted the idea of this CONDENSATION-based
Trajectory Recognition to our extended CONDENSATION method speci-
fied in Fig. 2.

Figure 6.  The development of a new prototype curve caused by the person crossing
the bank lobby is illustrated in white.



Instead of the segmentation results, the output of the tracking is now
used as the measurement input. However, we usually use less samples
for the motion recognition than for the tracking. Therefore, the tracking
results are first clustered according to their distance. For each cluster, a
mean sample is calculated that consists of a position and a velocity. This
sample is then used as measurement input z for the motion recognition.

As we want to detect if and where our objects are positioned on one
of the learned prototype curves, the state of each sample is given as

st = (pt, Pt) (5)

where p indicates the prototype curve and ¢ specifies the current position
on this curve.

The object is assumed to move along the prototype curve, so the state
evolution of each sample is described by

Mt = M1
b = 1+ At+np (6)

where n is a random variable with a known distribution and At is the
time interval between two consecutive measurements.

In the first step of the extended CONDENSATION algorithm, we initial-
ize new samples from the measurements. Such a new sample is specified
by finding the closest point on a prototype curve y and by calculating
the corresponding temporal position ¢. If the distance to the closest
curve is too far, we assign this sample to a residual curve with p = 0.
So, to this virtual curve are assigned all movements at unusual places.

In Fig. 7 the recognition results for an example sequence are indicated.
The tracking results are shown in grey while in white the learned set
of prototype curves are illustrated. From the sample distribution of
the recognition we have recovered the corresponding object positions
which are shown as black spots on the prototype curves. The number
of samples required for the recognition is dependent on the number of
prototype curves. For our application we choose N = 300 and M = 30.
The recognition can be performed within 0.04 seconds.

5. Experimental Results

We give three examples, one for an unlikely object position and two
for unusual movements. For the recognition of movements at unusual
places we consider the samples of the residual prototype curve. An alert
is triggered when a minimal percentage of samples belong to the residual
curve. In the left image of Fig. 8 such a situation is illustrated where
two unauthorized people improperly occupy the bank lobby using it as



Figure 7.

Recovered object positions of the recognition samples are shown in black
on a learned set of prototype curves.

a dormitory. The corresponding alert seen by the security staff is shown
in the right image. Of course, this case could even be detected by a
static analysis that does not use tracking, however it is convenient that
the result is also provided by our framework.

When a person stays in a common place but his behavior is not equiv-
alent to one of the learned prototype curves, e.g. because he has an
unusually high speed, we call this an unusual motion event. In that case

Figure 8.
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Detection of an unusual motion event caused by the two unauthorized

people which improperly occupy the bank lobby using it as a dormitory. In the left
image, the current situation of the surveillance framework is illustrated while in the
right image the alert seen by the security staff is shown.
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Figure 9.  Detection of an unusual motion event caused by rapid movements of
an act of vandalism.

the tracked position of the person will be too far away from the expected
position on the prototype curve. This results in a lower weight for the
sample, so that we can detect this event by analyzing the proportion of
the recognition samples assigned to one prototype curve before and after
the selection step. In Fig. 9 such an event caused by an act of vandalism
is illustrated.

False alarms produced for example by playing children (see Fig. 10)
can not be excluded as the system is unable to differentiate between not
learned or unusual behavior patters on the one hand and because some
distinctions between normal and abnormal behaviors simply require too
high a level of semantic interpretation. Of course, in the end it is the
operator who will assess the situation.

6. Conclusion

We have described a self-learning framework consisting of a tracking,
a learning and a recognition part for detecting unusual motion events in
real-time. Such a surveillance system is primarily intended to be used
in security-sensitive areas such as airports, railway stations, banks or
public building lobbies. The tracking approach is solved with an exten-
sion of the CONDENSATION algorithm which can deal with an arbitrary,
changing number of objects. Motion trajectories are formed by keeping
the history of the tracked object states. Using the clustering we can
generate long-lived prototype curves by grouping the trajectories. This
processing step is generally the most time-consuming part as the compu-
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Figure 10. Detection of an unusual motion event caused by the child running
around the pillar.

tation power increases with the number of prototype curves. But since
the clustering is only done during the training phase, it does not add
to the computational cost during normal operation. For the recognition
task the tracking results are then assigned to the prototype curves. The
idea of the CONDENSATION-based Trajectory Recognition is applied to
the extended CONDENSATION tracker so that the recognition and track-
ing are both based on the same probabilistic framework. Finally, the
detection of unusual movements is done by analyzing the sample distri-
bution.

If we have more than one person in the scene, the identification and
localization of the object which is responsible for the alert is not directly
provided by the sample distribution. On the other hand, we know which
prototype curves are active and where in these curves the samples are
located.

To improve the accuracy, tracking could be considered across multi-
ple cameras. In addition, the prototype curves which represent the usual
events could evolve. Motion patterns could possibly be included or re-
moved from the set of prototype curves over time, for example when
the bank closes its counter at 5pm, the corresponding curve could be
deleted.
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