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In this paper, multidimensional models of image quality are
discussed. In such models, alternative images, for instance, ob-
tained through different processing or coding of the same scene,
are represented as points in a multidimensional space. The posi-
tioning is such that the correlation between geometrical proper-
ties of the points and the subjective impressions mediated by the
corresponding images is optimized. More specifically, perceived
dissimilarities between images are monotonically related to inter-
point distances, while the strengths of image quality attributes (such
as perceived noise and blur, or image quality) are, for instance,
monotonically related to point coordinates along specified direc-
tions. The goal of multidimensional models is to capture subjec-
tive impressions into a single picture that is easy to interpret. We
apply multidimensional models to two existing data sets to demon-
strate that they indeed account very well for experimental data on
image quality. The program XGms is introduced as a new inter-
active tool for constructing multidimensional models from experi-
mental data. Although XGms is introduced here within the context
of image-quality modeling, it is also potentially useful in other ap-
plications that rely on multidimensional models.

Keywords—Image quality, image-quality models, multidimen-
sional scaling.

I. INTRODUCTION

People are very used to making judgements about many
aspects of the things they encounter, be it objects, situations,
or other people. Judgements made by different people often
agree remarkably well when being compared explicitly.
When judging the quality of images, for instance, people
especially agree on the more perceptual aspects such as the
brightness, contrast, and colorfulness of the images. This is
partly due to the fact that their peripheral senses (for hearing,
seeing, etc.) are very similar. At the same time, this agreement
on perceptual aspects does not prohibit that people can
have very different opinions about more cognitively related
aspects of the same images. One aspect on which people
often disagree is the aesthetical quality of images. There
may be many different, often personal, reasons why some
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images (photographs or motion pictures) are considered to
better convey the essence of the subject being depicted and
appeal more to some people than to others. In this paper, we
will demonstrate how multidimensional models can capture
both common aspects and differences between individual
judgements.

In engineering, we adopt a restricted perspective on
image quality. We consider the input images as given and
are interested in evaluating the effect of alternative image
coding, processing, and/or display systems on the perceived
quality of these images. Even within this limited scope, we
can still distinguish many different aspects or attributes to
image quality. The perceived sharpness, contrast, color-
fulness, naturalness of colors, etc. may all be influenced
in different ways by such technical systems. Alternative
systems may also introduce different distortions, such as
noise, sampling, and quantization artifacts that obviously
do not belong to the scene, but are created by the imaging
system. People often agree very closely in their judgements
about the strengths of these image-quality attributes. The
importance that they assign to these individual attributes
in reaching their overall judgement on the technical image
quality may however differ. This fair amount of agreement
between people on underlying attributes will be referred to
as theprinciple of homogeneity of perception[1] and forms
an important motivation for the multidimensional scaling
(MDS) approach [1]–[3] toward image-quality modeling
that is presented in this paper. This principle states that
a single multidimensional configuration representing the
stimuli underlies the attribute and quality judgements by
all subjects. Differences in attribute judgements of subjects
can be accomodated in MDS by the fact that the mapping
from the joint multidimensional stimulus configuration to
the one-dimensional (1–D) attribute judgements may vary
per attribute and per subject. Constructing the underlying
stimulus configuration from experimental judgements by
subjects or predicting it on the basis of instrumental (i.e.,
objective) measurements on the images, hence, becomes a
major step in image-quality model building [4]. It should
be noted that the proposed MDS approach, which will be
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illustrated by an example in Section II, is fundamentally
different from most existing approaches [5] that attempt
to model image quality as a 1-D entity without trying to
provide insight into underlying image-quality attributes.

There are both theoretical and practical reasons for being
interested in creating models for image quality. On the one
hand, models guide the way we reason about a psychological
concept such as image quality. The way we experiment with
image quality and the data processing that is applied to ex-
perimental data is guided by such models [6]. Often, we col-
lect experimental data in order to verify if they are in agree-
ment with existing or emerging models. On the other hand,
because of the large amount of imaging equipment being pro-
duced nowadays, there is a substantial economical interest in
being able to predict the effect of variations in the technical
parameters of such systems on the resulting quality. Espe-
cially in the case of alternative systems with similar func-
tionality, perceived (image) quality is one of the major dis-
criminating factors between products from the point of view
of the user.

An instrumental quality measure is defined here as an al-
gorithm for predicting the stimulus configuration that under-
lies human judgements. The usefulness of such an algorithm
obviously depends on how well the resulting stimulus con-
figuration correlates with human judgements. Instrumental
models can not only make the design of new systems more
efficient, but can also be used to monitor the performance of
existing systems. An advantage of multidimensional models
over 1-D quality models in such a monitoring application is
that multidimensional models can also provide insight into
which attributes of image quality are failing when the overall
quality is insufficient.

The scientific field that is mostly concerned with mea-
suring subjective sensations such as image quality is called
psychophysics [7]. In a recent review paper [6], we have de-
scribed in detail some of the major concepts and models un-
derlying the psychophysical measurement of image quality
and its attributes. In the current paper, we are mainly con-
cerned with discussing how such psychophysical measure-
ments on several different quality attributes can be combined
into one overall model.

In Section III, we summarize some of the concepts and ter-
minology that are needed when discussing the psychophys-
ical measurement and modeling of image quality. We intro-
duce the three major experimental paradigms used in image-
quality evaluation: single-stimulus attribute scaling, double-
stimulus difference (or preference) scaling, and double-stim-
ulus dissimilarity scaling. We also discuss the important dis-
tinction between metric and nonmetric scales. We refer to the
above-mentioned review paper [6] for a more in-depth dis-
cussion of these topics. Next, in Section IV, we discuss mul-
tidimensional modeling of image quality and give a brief his-
torical overview of the application of MDS in image-quality
measurement and modeling. In Section V, we discuss in de-
tail how the parameters of a multidimensional model can be
estimated from experimental data. We introduce a new inter-

active program, called XGms,1 that can estimate a metric or
nonmetric multidimensional model from data obtained for
one or more subjects, using any combination of the three
above-mentioned experimental paradigms. This program is a
modified version of an existing program XGvis [8] that can
only handle metric dissimilarity data from a single subject.
Finally, in Section VI, we illustrate MDS modeling on some
existing data sets.

II. EXAMPLE OF MULTIDIMENSIONAL MODELING

In order to make the discussion on multidimensional mod-
eling more concrete, we start with an example. More specif-
ically, we describe the multidimensional modeling of exper-
imental data concerning the quality of images degraded by
noise and blur [9]. All combinations of four levels of blur
with a binomial kernel and four levels of Gaussian additive
white noise for three different scenes were used in an exper-
iment. The blur was characterized by the standard deviation

of the filter kernel ( values of 0, 2, 2, and 2 2). The
noise was characterized by the standard deviationof the
Gaussian probability density function ( values of 0, 7, 10,
and 14 for grey values in the range [0,255]). The noise was
added after the images were blurred and the processed im-
ages were quantized to 8 bits/pixel. All pictures contained
512 512 pixels, but only a subregion of 240470 pixels
was viewed in the experiments. This restricted region was
needed in order to allow simultaneous display of two im-
ages. The (cropped) images without noise or blur are shown
in Fig. 1.

The images were converted to 50-Hz noninterlace video
and displayed on a CCID-7351B high-resolution monitor.
The grey-value-to-luminance characteristic of the monitor
was measured and a lookup table was determined such that
the relationship between the grey valueand the luminance

for the combined chain (lookup table, digital-to-analog
video convertor, and monitor) became

(1)

with , cd/m , cd/m ,
and . This calibrated characteristic was verified by a
second luminance measurement.

Most viewing conditions satisfied the ITU-R BT.500 rec-
ommendation [10]. The viewing distance was 1.5 m, which
was equivalent to six times the height of the monitor. Be-
tween two successive stimuli, a uniform adaptation field was
displayed during the time it took subjects to enter their re-
sponse by means of a keyboard. The minimum duration of
this adaptation field was 2 s, while its luminance of 9 cd/m
was approximately equal to the average luminance of the im-
ages.

1XGms and XGobi Software: XGms is a modified version, developed
by the author, of the existing program XGvis. The XGvis and XGobi pro-
grams are available via http://www.research.att.com/~dfs. The XGms pro-
gram is also available for noncommercial use. E-mail requests can be made
to J.B.O.S.Martens@tue.nl.
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(a) (b) (c)

Fig. 1. Scenes used in experiments with blur and noise. (a) Wanda. (b) Terrace. (c) Mondrian.

Five subjects, aged between 25 and 39 years and with
normal or corrected-to-normal visual acuity between 1.5 and
2 measured on a Landolt chart2 at a distance of 5 m partic-
ipated in a double-stimulus dissimilarity experiment. Each
subject was presented all different image
pairs in random order and was asked to score the dissimi-
larity between the images in a pair using an integer number
in the range from 0 to 10.

The same five subjects, plus two additional ones, also took
part in three single-stimulus scaling experiments with the
same images. In three separate experiments, subjects rated
perceived noisiness, blur, and quality. The 16 stimuli were
presented four times, in random order, to each of the subjects
(resulting in attribute scores per subject).
Again, integer scores between 0 and 10 were used by the sub-
jects to express their judgements.

The XGms program that we will introduce in detail in
Section V was used to derive multidimensional models from
these data. The most concise picture representing the model
output for one scene (i.e., Wanda) is shown in Fig. 2. The 16
processed images of this scene are represented by the crosses.
The image in the upper left is the original, the image in the
lower left contains no noise (only blur), the image in the
upper right contains no blur (only noise), while the image
in the lower right contains the maximum amount of blur and
noise. The horizontal and vertical axes are not labeled since
they do not have any physical meaning. This is a consequence
of the fact that Fig. 2 can be arbitrarily translated, rotated, and
scaled without influencing its interpretation.

2Visual acuities of 1 or 2 on a Landolt chart imply that a subject can detect
the opening in a C-ring when this opening is 1 arcmin or 0.5 arcmin of visual
angle wide, respectively.

Fig. 2. Example of a multidimensional model for a scene
degraded by noise and blur. Crosses indicate the 16 processed
images, while the arrows indicate the directions in which perceived
blur, noise, and quality increase.

The fact that the 16 images are not arranged in a rec-
tangle, as might be expecteda priori from the independent
processing of blur and noise, indicates that there are some in-
teractions between perceived noise and perceived blur. The
directions that correspond to perceived blur and perceived
noise are indicated by two of the arrows. The interpretation
of the noise axis is, for instance, that the orthogonal projec-
tions of two image points onto this axis indicate (on average),
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which, of the two images, is perceived to be more noisy. As
expected, images with the same noise standard deviation are
perceived to be (approximately) equally noisy. There is no
such one-to-one relationship between the standard deviation
of the filter kernel and perceived blur, however. More specif-
ically, we can derive from the model in Fig. 2 that perceived
blur increases with noise for an unblurred image, while it de-
creases with noise for the most heavily blurred image. The
direction corresponding to overall quality is indicated by the
third axis. Obviously, since both perceived noise and per-
ceived blur contribute to overall quality, this direction of the
quality vector is in between the directions of the attribute
vectors for noise and blur. Blur is relatively more important
than noise, since the angle between the blur and the quality
direction is smaller than the angle between the noise and
the quality direction. The model depicted in Fig. 2 assumes
that the attribute directions are the same for all subjects. The
output of an alternative model, which allows for a different
attribute vector per subject, would look similar to Fig. 2, but
would contain one vector per attribute and per subject.

A scatter diagram showing the relationship between the
distances between stimulus points in Fig. 2 and scored
dissimilarities for one subject is shown in Fig. 3. In
Fig. 3(a), the dissimilarity data is assumed to be metric, i.e.,

is compared against . In Fig. 3(b), the dissimilarity
data is nonmetric, i.e., is compared against transformed
dissimilarities . In the example, the transformation is
assumed to be of the form and the power is
determined as part of the model optimization (in the specific
example, ). The linear regression coefficients be-
tween experimental dissimilarity data and interstimulus dis-
tances are and for the metric and
nonmetric case, respectively.

III. PSYCHOPHYSICALMEASUREMENT OFIMAGE-QUALITY

ATTRIBUTES

In many past experiments, subjects have been asked to
judge stimuli, such as images, on subjective attributes. The
stimuli are for instance different versions of the same image,
obtained by coding the original image at different bit rates
with one or more codecs. They have to be evaluated with re-
spect to overall image quality or one of its attributes (e.g.,
perceived noise or blur) [11]. When conducting such an ex-
periment, one implicitly assumes that subjects are able to dis-
criminate or rate stimuli on the given attribute in a reliable
and consistent way. The existence of such a discriminating
process [12], [13] is usually postulated and assumed to be an
inherent part of the perceptual and/or cognitive abilities of
the subject. Repeated intersubject and/or across-subject ex-
periments with the same stimuli should give consistent re-
sults if this assumption is true.

Setting up a psychophysical experiment involves decisions
on how the stimuli are to be presented to the observer and
what the valid observer responses are. Different such exper-
imental paradigms have been proposed, some of which have
been standardized [10]. We give a brief overview of some of
the most frequently used experimental procedures.

(a)

(b)

Fig. 3. (a) Original dissimilarity scores and (b) transformed
dissimilarity scores as a function of interstimulus distances.

In single-stimulus scaling, the test images are presented
one by one to the observer. A fixed reference image may
be shown together with the test image, either simultaneously
in space or sequentially in time. The task of the subject is
to rate the test images. In the ITU-R BT.500 recommenda-
tion for the subjective assessment of quality or impairment
[10], a graphical scale is proposed as a continuous rating
device. The scale is divided into five equal-sized nonover-
lapping intervals that are denoted by quality or impairment
categories. The quality categories are “excellent,” “good,”
“fair,” “poor,” and “bad,” while the impairment categories
are “very annoying,” “annoying,” “slightly annoying,” “per-
ceptible, but not annoying,” and “imperceptible.” The re-
sponses of the subjects are mapped into numbers (between
zero and 100, for instance) that correspond to the coordinates
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of the marks made on the continuous scale. In the experi-
ments performed at our laboratory, we have almost exclu-
sively used an alternative technique, callednumerical cate-
gory scaling[11], to rate stimuli. In this case, subjects use
integer scores from a limited range, say, from zero to ten.
The limited range is adopted because it has been shown that
subjects cannot handle large number ranges in a linear way
[14], [15]. Using adjectives to denote categories, as in the
case of the ITU-R recommendation, potentially also intro-
duces a bias in the use of these categories [16] and is avoided
in numerical category scaling.

In double-stimulus scaling, pairwise combinations of test
images are shown to the observer. The task of the subject
is to scale either the dissimilarity between both stimuli in
dissimilarity scalingor the difference in attribute strength
for both stimuli indifference scaling. The latter method is
also calledpreference scalingif the attribute to be scored is
quality.

In dissimilarity scaling, the subjects’ task is to indicate
how dissimilar or different they perceive two images to be
[17]. Any aspect that contributes to the dissimilarity can be
taken into account. The order of presentation of the stimuli in
the pair should be irrelevant. Continuous scaling or numer-
ical category scaling can be used to express the response to a
stimulus pair. Dissimilarity scores are by definition positive
or zero.

In difference scaling, subjects can for instance respond to
a stimulus combination by means of a numerical category
from 5 to 5 or using a mark on a continuous interval that
is symmetric around the origin. If the first (or leftmost) stim-
ulus has the largest attribute strength, then a negative score
is given, while a positive score corresponds to the second
(or rightmost) stimulus having the largest attribute strength.
Hence, the order of the stimuli does matter in this case. The
absolute value of the response is monotonically related to
the strength of the attribute difference. The zero category (or
origin) can be used in case both stimuli are judged to have
equal attribute strength.

In all the above cases, the subject responses can be ex-
pressed as real or integer numbers. These numbers corre-
spond to sensations, such as image quality, that are not di-
rectly observable. Equal differences between the numbers
can not be assumeda priori to correspond to equal differ-
ences in sensations. In this sense, psychophysical measure-
ments differ fundamentally from many physical measure-
ments [7]. Such numbered responses for which only the order
and not the magnitude, is significant are said to belong to an
ordinal or nonmetric scale.

It is usually assumed that there is an unknown monotoni-
cally increasing or decreasing nonlinear function that relates
the internal sensation strengths to the subject responses [18].
More specifically, let us denote the attribute strengths of the
images used in the experiment by numbers . In differ-
ence scaling, for instance, the response to two images

and is assumed to be a function of the difference in the
numbers and , i.e.,

(2)

for some monotonic response function[18]. This model
has a geometric interpretation in one dimension. The images

are represented by their coordinates in one dimension
and the differences between stimulus coordinates are mono-
tonically related to the subject responses. The responses only
belong to ametric scaleif the function can be assumed to
be linear.

Substituting and
in the above equation confirms that the scale is only
determined up to an arbitrary linear transformation, since

(3)

are two equivalent descriptions. The numbers are,
hence, said to belong to aninterval scale. An interval
scale that has a well defined origin, such as in the case of
difference scaling, where zero corresponds to no perceived
difference, is called aratio scale.

Obviously, constructing a model from metric data is easier
than from nonmetric data partly because many mathematical
and statistical techniques [19], such as regression, principal
component analysis, analysis of variance (ANOVA), etc., as-
sume metric data. However, techniques for analysing non-
metric data are increasingly available [6], [20]–[22]. The pro-
gram XGms, which is introduced in this paper, combines sev-
eral of these techniques and makes them easily accessible
through a graphical user interface (GUI).

IV. M ULTIDIMENSIONAL MODELING OFIMAGE QUALITY

When subjects are requested to evaluate image quality in
a psychophysical experiment, they are often able to analyze
and justify their judgements (especially if they are somewhat
experienced in making image-quality judgements). They can
for instance report different kinds of distortions in coded im-
ages [23] and are aware of the fact that their overall quality
judgement is determined by the relative weight that they at-
tribute to these individual impairments. They are also able to
report the sensation strengths for individual impairments in a
similar way as they can report their overal quality sensations.

In order to simultaneously model the results from different
experiments with the same stimuli, a multidimensional geo-
metrical model is proposed. In such a model, images are rep-
resented by points in a multidimensional space. All observa-
tions, obtained using one or several of the above-mentioned
experimental paradigms, are related to geometrical proper-
ties of these points, such as distances between points and co-
ordinates of point projections onto selected axes. This multi-
dimensional model can be viewed as an extension to the 1-D
geometrical model described above for modeling judgements
on a single attribute.

Based on the above considerations, we divide the task of
image-quality modeling into:

1) establishing the stimulus configuration (i.e., the dis-
criminating process) that underlies all attribute judge-
ments by different subjects;

2) determining how this stimulus configuration relates to
the judgements for different attributes and/or individ-
uals.
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In case of an instrumental measure, the stimulus configu-
ration is supplied by the measure and the remaining task
(2) is to determine if this configuration does indeed agree
with the subject responses. The XGms program that we will
introduce below supports both options, i.e., derivation of a
stimulus configuration from experimental data and compar-
ison of a given stimulus configuration against experimental
data.

A number of algorithms, usually referred to as MDS pro-
grams [2], [3], [24], have been developed within the field of
mathematical psychology to derive stimulus configurations
from experimental data. Most of these algorithms model dis-
similarity data. The stimuli are positioned in space according
to metric or nonmetric models. In nonmetric models, the dis-
tances between stimulus positions are only monotonically re-
lated to the judged dissimilarities, i.e., only the rank order of
the experimental data is important [25]–[27]. Metric models,
in contrast, maintain a linear relationship between the ex-
perimental dissimilarities and the distances between stim-
ulus positions. The Euclidean distance is the metric most fre-
quently used, although more general Minkowski metrics and
weighted distances have also been used. In the latter case, the
multidimensional psychological space in which the stimuli
are positioned is not identical for all subjects (i.e., does not
conform strictly to the principle of homogeneity of percep-
tion); the spaces for individual subjects are linked by linear
(affine) transformations [3]. An example of a freely avail-
able MDS program for modeling dissimilarity data that im-
plements most of the above metric and nonmetric options is
ALSCAL.3

MDS has been used by Marmolin and Nyberg [28]
and Goodman and Pearson [29] to study image quality.
Dissimilarity judgements for pairs of impaired images were
used in both studies. The dimensions of the multidimen-
sional spaces, thus, established were labeled based on an
examination of the positions of the impaired images. This
labeling was however not verified by separate (independent)
experiments. Escalante-Ramírezet al. [30] studied the
perceptual quality of noise-reduced computer tomography
images using MDS techniques. In addition to the space
obtained using dissimilarity data, they also obtained a
second space through a principal component analysis of the
scaling data for the main attributes: noise, blur, and visibility
of structures. They, hence, assumed the scaling data to be
metric in this case. Both stimulus configurations found
in this study were very similar and could be related by a
linear transformation. The attribute data could also be used
to identify the attribute directions in the multidimensional
space that was obtained from dissimilarity data. A similar
study was undertaken by Kayargadde and Martens [9] to
model images degraded by noise and blur. A problem en-
countered in both studies is that no program is available for
finding a single stimulus configuration based on all available
experimental data. Although a program for the joint analysis
of direct ratings, pairwise preferences and dissimilarities has

3http://forrest.psych.unc.edu/research/ALSCAL.html

been proposed [31], the available implementation4 does not
seem to function properly for the most general case.

Existing MDS programs are mostly offline programs. This
implies that the user must enter his/her parameter choices,
such as the dimension of the space or the selection between
metric or nonmetric analysis and that the results are returned
in a file to be examined after the program has finished. This
makes it very difficult and cumbersome to appreciate the im-
pact of alternative model choices. Also, since MDS programs
are nonlinear optimization programs, the reported solution
may correspond to a local optimum instead of a global one.
The interactive MDS program XGvis [8] has been devel-
oped to help remedy such problems. The program XGvis al-
lows to interactively control the main parameters in the MDS
models and exchanges the calculated stimulus configuration
with a second program, called XGobi [32]. This latter pro-
gram is an interactive dynamic data visualization tool for the
X Window environment. By combining the functionality of
both programs, the user is not only able to dynamically alter
the parameters of the MDS model within XGvis, but to also
view and manipulate the stimulus configuration in XGobi.
This interactivity for instance allows the user to assist the op-
timization algorithm in avoiding suboptimum solutions that
correspond to local minima. The XGvis program, however,
only implements a metric model for the dissimilarity data
of a single subject and, hence, has too limited functionality
to be very useful for modeling image quality. In order to
overcome these limitations, XGvis has been extended to in-
clude the joint analysis of data from single-stimulus scaling,
double-stimulus difference scaling, and dissimilarity scaling
for multiple subjects. XGms supports both metric and non-
metric modeling of (parts of) the data.

V. XGMS

In this section, we describe the class of multidimensional
models that is implemented in the interactive program
XGms. We first describe the optimization criterium or stress
function that is used in the program to estimate the model
parameters from the experimental data. Many parameters of
the multidimensional model (such as the dimensionof the
space) can be controlled by the user at runtime, so that their
effect on the stimulus configuration and on the relationship
between experimental data and model predictions can be
explored. Next, we show how optimized monotonic trans-
formations can be used to replace the input data, which may
be nonmetric, by transformed data that is approximately
metric. Finally, in order to give a better impression of how
a user can influence the construction of multidimensional
models, the user interface to the program XGms is also
described shortly.

A. Optimization Criterium

1) Dissimilarity Data: The experimental dissimilarity
data are denoted by for subject and
stimulus pair ( ) with . The goal is to

4http://www.psych.mcgill.ca/faculty/ramsay/ramsay.html
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construct a stimulus configuration such that the
experimentally observed dissimilarities are monotonically
related to the interstimulus distances

(4)

where the distance is computed according to a Minkowski
metric with power . The default value corresponds to
a Euclidean distance metric.5 More precisely, we pursue a
linear relationship between transformed dissimilarity scores

and interstimulus distances , i.e.,
, where is a regression factor. In order

to preserve the physical meaning of dissimilarity zero, we re-
quire that the applied transformations satisfy . An
important implicition of the pursued relationship is that the
transformed dissimilarities are assumed to be metric
(i.e., have ratio properties), since they are compared to the
metric distances . We, hence, assume that there exists a
monotonic transformation that maps the nonmetric ob-
served dissimilarities into metric transformed dissimi-
larities . Note that this assumed transformation is the
inverse of a response function that relates internal sensation
strengths (on a metric scale) to external responses [as in (2)].

While the stimulus configuration is assumed to be shared
by all subjects (according to the principle of homogeneity
of perception), the transformations and the regression
factors may be subject dependent. For the time being,
we assume that the transformations on the experimental
data are known. If the input data can be assumed
to be metric, no transformations need to be applied, i.e.,

, for all subjects and
all stimulus combinations ( ). This is the default choice
of the program XGms at initialization. If the input data is
nonmetric, then transformations that map the observed
dissimilarities to transformed dissimilarities
that have ratio properties can be derived from the data, as will
be discussed later.

The stress [27] for the dissimilarity data is a relative
measure that expresses how much the model predictions

differ from the (transformed) observations
, i.e.,

(5)

with

(6)

Note that the sums can be taken over a subset

(7)

5The use of a Minkowski norm withl 6= 2 implies that coordinate dif-
ferences in horizontal and vertical directions are treated differently from co-
ordinate differences in oblique directions. Such Minkowski norms should,
therefore, be handled with care. Amongst others, the optimum stimulus con-
figuration will often depend critically on the initial configuration and con-
vergence problems may occur, especially forl < 2 [20], [33].

of all possible stimulus combinations for subject, so that
missing data can be handled (a missing dissimilarity is in-
dicated by ). We can also select to exclude the largest
dissimilarities (maybe because they are judged to be inaccu-
rate) by setting to a value smaller than the maximum
transformed dissimilarity value for subject , where

. The number of observations for sub-
ject is, therefore, usually substantially smaller than the
possible stimulus combinations.

Once the stimulus positions , for , are
known, minimization of individual terms in the above expres-
sion, i.e.,

(8)

can be used to determine the regression factors, for
. These factors can subsequently be used to define

thenormalized transformed dissimilarities

(9)

If all subjects behave similarly, then the normalized trans-
formed dissimilarities for identical stimulus pairs ()
should have similar values across subjects, i.e., be approx-
imately equal to the interstimulus distance. We will see
in the next section how these normalized scores can be used
to test the hypothesis that the MDS model can describe the
average subject behavior when judging dissimilarity.

Since the transformed dissimilarities are assumed to be-
long to a ratio scale, i.e., are only determined up to an ar-
bitrary linear scale factor, the stress function should be in-
variant under a linear scaling , which
can indeed be accomplished by the model parameter change

. Note that the normalized transformed dissim-
ilarities are invariant under such a transformation.

The scaling of the regression parameterby could
also be replaced by a uniform dilation of the stimulus con-
figuration, i.e., . In order to avoid such undeter-
mined model behavior, a condition is imposed on the stim-
ulus configuration in order to uniquely determine its scale
factor. Similarly, a translation of the stimulus configuration
has no influence on the interstimulus distances either, so that
an additional condition is imposed to uniquely determine this
translation. In summary, the stress is invariant under linear
translations and uniform dilation of the stimulus coordinates

, i.e., mappings of the form

(10)

for and . A priori conditions
on the stimulus configuration are therefore required in order
to guarantee a unique stimulus configuration. The transla-
tion vector is determined by re-
quiring that the configuration is centered at the origin, i.e.,

, for . The dilation factor is
derived from the condition that is constant
(in our case, equal to ). Stimulus configurations that sat-
isfy these conditions are called normalized. Because of this
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normalization of the stimulus configuration, the number of
degrees of freedom (DOFs) in this configuration is equal to

(11)

If the distance metric is Euclidean, i.e., if , then
an arbitrary orthogonal transformation (rotation or mirroring
around the origin) of the stimulus configuration has no effect
on the interstimulus distances either. This further reduces the
DOF in the stimulus configuration to

(12)

In the default setting of the XGms program, no measures
are taken to uniquely select the orientation of the stimulus
configuration. This implies that the orientation of the output
stimulus configuration will depend on the initial stimulus
configuration. The default settings of the XGms program
can, however, be modified such that an orthogonal trans-
formation is selected that alligns the stimulus configuration
along its principal axes [20].

2) Preference Data:The stress term for the double-stim-
ulus preference (or, more generally, attribute difference) data
can be defined in a similar way as

(13)

where denotes the transformed pref-
erence rating by subject, with , for stimulus
pair ( ), with and

(14)

is the corresponding prediction error. It is again assumed that
the mapping is monotonically increasing and satisfies

. The transformed preference , which is
assumed to belong to a ratio scale, is compared against a pre-
diction , which is derived from the stimulus
positions and and thepreference vector for subject

. Again, a subset

(15)

of all possible stimulus combinations can be selected. While
dissimilarities are always positive numbers, preferences can
be both negative or positive, depending on whether theth
stimulus is preferred over theth stimulus or vice versa.
Therefore, the upper limit works on the absolute value
of the (transformed) preferences. It is smaller than the max-
imum amplitude of the transformed preferences of

subject , where . The number of observed
preferences for subjectis denoted by .

XGms allows to choose between two possible prediction
models. The user can (interactively) switch between both
models in order to decide which model best describes the
data.

According to thevector-productor inner-productmodel,
the prediction is equal to the vector product

(16)

between the difference vector , pointing from stim-
ulus to stimulus , and the preference vector . The cor-
responding geometrical interpretation is as follows. The dif-
ference between the orthogonal projections (or coordinates)
of the stimulus positions and onto a 1-D axis, with di-
rection specified by the vector , determines the average
preference between both stimuli for subject. If the same
stimuli are scored very differently by different subjects, then
this should be reflected in preference vectorswith dis-
tinct orientations. Such different orientations are obviously
only possible in case the dimensionof the space exceeds
one [34].

A consequence of the ratio property of the transformed
preferences is that only the directions of the preference vec-
tors are uniquely determined; their amplitudes may
be scaled arbitrarily. We can, hence, put and con-
clude that the vector-product model containsDOFs for
each preference, i.e., DOFs for the direction of the
vector and one DOF for the correlation factor .

The alternativeideal-pointor unfolding model

(17)

is based on the ratio of the distances of the stimulus positions
and from the “ideal point” [3], [31]. This ideal point

cannot coincide with a stimulus point since [ ] must
remain finite.6 If the same stimuli are scored very differently
by different subjects, then this should be reflected by ideal
points at some distance apart. Unlike the vector-product
model, the ideal-point model can also model different subject
behaviors in case the space is 1-D. The model contains
model parameters for each preference, i.e., DOFs for the
position of the ideal point and one DOF for the correlation
factor .

The predictions from both models can be related in case of
a Euclidean metric with . More specifically, if

, then the first-order Taylor series expansion

(18)

6This can be avoided in XGms by using a slightly modified prediction
formula withlog(kx � p k ) replaced bylog(r + kx �p k ), where
r is a small offset, such asr = 10 .
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can be used to derive the following approximation:

(19)

Hence, if the ideal-point is far removed from the stim-
ulus positions, then only the direction of the vector is
relevant for the predictions and the ideal-point model be-
comes equivalent to a vector-product model. In practice, this
will imply that estimation of the amplitude becomes
ill conditioned in case of the ideal-point model and that a
vector-product model, with one less DOF, should be pre-
ferred.

Very often, the available preference data may be divided
into groups. For example, the indexes may
refer to different subjects rating preference (differ-
ences in image quality), while indexes

may refer to the same subjects rating another attribute dif-
ference (such as the difference in amount of perceived blur).
In such a case, it often makes sense to look for a common
prediction model for all subjects within a group. This corre-
sponds to estimating a single prediction vector for
all indexes in a group. In case of a single group with
subjects, this reduces the number of parameters fromto

for the vector-product model and from
to for the ideal-point model. XGms allows to define
such groups and can also export thenormalized transformed
preferences

(20)

that allow for an easy comparison of experimental data across
subjects within a group. Indeed, for stimulus pair (), the
repeated judgements across subjects in a group
should aggregate around the “group” prediction

.
3) Attribute Data: The stress term for the single-stimulus

attribute scaling data is defined as

(21)

where denotes the average transformed attribute score
for subject , is the attribute rating given by subject

for stimulus on the th repetition ( ,
, and ), and

(22)

is the corresponding prediction error. The transformed at-
tribute scores are compared against
their predictions [ ]. These predictions for subject
are derived from the stimulus positions and theattribute
vector . The same two prediction models as in the case of
preference data are available for modeling attribute data in
XGms.

The vector-product model compares the transformed at-
tribute scores with the linear prediction

(23)

The average strength of attributefor stimulus , hence, in-
creases linearly with the coordinate of the stimulus projec-
tion on a 1-D axis with direction indicated by the attribute
vector . The offset value , the scale factor , and the
direction of the attribute vector comprise a total of
parameters. We again adopt the convention that in
this case.

The alternative to this vector-product model is the ideal-
point (or unfolding) modelideal-point modelunfolding model
in which the transformed attribute scores for stimulusare
related to the distance of the stimulus at position

from an “ideal” image at position , i.e.,

(24)

where the offset

(25)

is included to obtain that the attribute predictions are centered
around the origin. The offset value, the scale factor , and
the position are the parameters of the ideal-point
model.

Again, a subset

(26)

off all possible attribute scores can be used in the stress func-
tion. The transformed attribute values for subjectbelong to
the interval [ ], for . The upper
limit and the base value can be used to indi-
cate that only the transformed attribute scores in the range
[ ] contribute to the stress.
The number of observed attribute scores for subjectis de-
noted by .

The zero point for dissimilarity data and preference
data has a physical meaning (i.e., no dissimilarity or pref-
erence) and is, hence, uniquely determined. We could,
therefore, assume that the transformed dissimilarities

and preferences belonged to ratio scales,
provided of course that the applied transformations satisfied

. Attribute data usually do not have
such a natural origin, so that the transformed attribute scores

are assumed to belong to an interval scale, i.e., they
are only determined up to an arbitrary linear transformation.
The stress is invariant under such a linear transformation

of the transformed attribute
data, since such a transformation can be absorbed in the
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regression parameters by mapping and
.

As in the case of preference data, the attribute data may
be subdivided into groups. This corresponds to estimating a
single prediction vector for all indexes in a group.
In case of a single group with subjects, this reduces the
number of parameters from to for the
vector-product model and from to for the
ideal-point model. Thenormalized transformed attributes

(27)

across subjects and repetitions in a group are expected
to aggregate around the “group” prediction [ ] for stim-
ulus .

B. Interactively Controlled Power-Like Transformations

The monotonically increasing transformations from
, , and to , , and

are fixed in the above discussion. These transformations
can, however, be modified interactively in XGms. In order
to limit the possible variations, the available nonlinear
transformations are based on a power-like function

(28)

that can be characterized by two parametersand . This
function varies from zero for values well below
the threshold to a power function with exponentfor values

well above the threshold. Note that the often-used
power-law relationship [20]

(29)

is included as a special case. The above definition needs to
be modified to a logarithmic relationship

(30)

in case . The continuity in this transition from a power
law to a logarithmic relationship is most easily observed by
verifying that the derivative to the funcion is

(31)

in all cases. Note that this derivative is strictly positive, so
that is indeed monotonically increasing.

The nonlinear transformations that are used in the XGms
program are designed such that they preserve the range of
the input data. It is easily verified that, if the input datais
within the range [ ], that

(32)

where is the origin of the power function and
, is also limited to this same range. The

linear relationship

(33)

is used as the default transformation by the program XGms.
It corresponds to assuming that the input data is metric.

In case of dissimilarity and preference data, we choose
, where is the maximum (absolute) score and

, since the zero value is the natural origin for the trans-
formation. The resulting simplified transformation

(34)

satisfies and and contains
two parameters, i.e.,and . In XGms, the threshold value

is specified by as a fraction of .
In the case of attribute data, there is no natural origin for

the transformation, so that the biasis also a parameter. The
transformed bias value is denoted by . In
this case, the threshold is specified by as
a fraction of the overall range.

C. Nonmetric MDS Through Optimized Transformations

The multidimensional model described above is es-
sentially metric, since the nonlinear transformations on
the experimental data are assumed to be knowna priori.
Rather than fitting the model to the experimentally observed
dissimilarities , preferences and attribute scores

, the fit is made to the transformed values ,
, and that are assumed to have ratio or

interval properties. In nonmetric modeling, the monotonic
transformations on the data are not specifieda priori, but are
determined as part of the optimization process. The XGms
program allows for such nonmetric optimizations under
user control. The user can select to replace some or all of
the experimental data by optimally transformed data in the
above minimization of the stress.

The stress functions are composed of expressions of the
form

(35)

where denotes the transformed observationfor case
and is the corresponding prediction according to the stim-

ulus configuration and regression parameters in the current
model. These predictions are, for instance, linearly related
to the distances between the stimulus positions in case of dis-
similarity and to the coordinates or coordinate differences of
the stimulus positions along known attribute or preference
directions.

In nonmetric MDS [3], [26], the monotonic transformation
that minimizes for known predictions is selected as

the transformation for the experimental data. In XGms, the
monotonic transformations are such that they preserve the
extreme values. The extreme values are equal to zero and the
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maximum (absolute) value in case of dissimilarity and pref-
erence data and equal to the minimum and maximum value
in case of attribute data. In the case of preference data, the
optimum transformation is also restricted to be asymmetric
with respect to the origin, i.e., . Amongst
others, this implies that .

1) Optimum Power-Like Transformation:The first pos-
sibility is to assume that the optimum transformation can be
closely approximated by (32). A nonlinear optimization over
the parameters and (and in case of attribute scores) can
then be performed in XGms. The parameters are restricted
to the range and in order to avoid
runaway arguments in the optimization.7 In case of attribute
scores, the origin for the transformation is limited to the
range [ ] of scores that occur. The number of DOFs in
an optimized power-like transformation is, hence, or

, depending on whether the transformed data is ratio
(dissimilarity and preference data) or interval (attribute data),
respectively.

Although this optimization over a restricted set of
power-like transformations often gives reasonable results, it
may be interesting to compare the obtained optimum power-
like transformation with the optimum transformation out
of all possible monotonic transformations. For example, in
case of attributes, knowledge of the optimum monotonic
transformation often helps to select an appropriate bias
parameter for the power-like transformations (it is usually
advantageous to put this biasat the attribute score for
which this optimum transformation is most asymmetric).
Therefore, XGms also allows for an optimization across all
possible monotonic transformations.

2) Optimum Monotonic (Kruskal) Transformation:An
algorithm for determining the optimum monotonic trans-
formation in nonmetric MDS was originally developed by
Kruskal [3], [26]. We use an alternative and more flexible
method based on spline interpolation introduced by Ramsay
[35].

Suppose that the observations contain
distinct values. Without loss of generality, we can

assume that the data are sorted such that the firstobser-
vations are all distinct and in increasing
order. Such sorting has no effect on the value of the stress. A
monotonically increasing transformation function

(36)

can be obtained by integrating a positive-valued derivative
function . We take a derivative function that
linearly interpolates between positive values , for

. The corresponding integrated function will be
piecewise quadratic with a continuous derivative, as shown
in the example of Fig. 4. A nonlinear optimization of the
stress in (35) as a function of , for ,
can, hence, be to used to find the optimum monotonically

7Nonlinear optimizations for bounded parameters are performed using the
DMNFB routine from the Netlib library at http://www.netlib.org.

(a)

(b)

Fig. 4. (a) Piecewise-linear derivative functionT (o) that is
strictly positive. (b) Corresponding monotonically increasing
functionT (o) that is piecewise quadratic with a continuous
derivative.

increasing transformation on the data. The numbers
have to be rescaled at each iteration step to guarantee that
the transformation preserves the data range [ ], i.e.,
the normalization conditions

(37)

and are imposed. Since only the in-
termediate values are modified from to , for

, we obtain that the number of DOFs in the above
Kruskal optimizationis .

3) Optimum Spline Transformation:The Kruskal ap-
proach can be easily generalized to spline transformations
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in which case the derivatives are only specified for
a limited number of knot points , for
(with ). The first and last knot point are chosen
equal to the minimum and maximum value, i.e.,
and , respectively, and the number of internal
knot points is . All required derivatives are obtained
by linear interpolation of the values at the knot points,
while the monotonic transformation is again obtained
by integrating the normalized derivative function. XGms
allows forspline optimizationwith equally
spaced internal knot points. Especially whenis large,
such a spline optimization of a reduced order is a practical
alternative to the general Kruskal optimization. The number
of DOFs in the optimized monotonic transformation is

in case of a spline optimization withinternal
knot points. One DOF is added by the integration, but two
DOFs are consumed by the normalization conditions that
guarantee that the range of the data is preserved.

D. Optimization of the Stress Function

The XGms program minimizes an overall stress function
of the form

(38)

as a function of the stimulus positions , the re-
gression parameters (for dissimilarity), and (for
preference), and , , and (for attribute scaling). In case
of nonmetric MDS, the monotonic transformations , ,
and must also be optimized per subject. The weights are
initialized to , but can be used to vary the
relative contribution of the dissimilarity, preference, and at-
tribute data to the overall stress.

All required optimizations are performed iteratively.8If the
stimulus configuration needs to be optimized (as in MDS),
then one iteration step involves three stages. If the stimulus
configuration is fixed (as in regression analysis), then one
iteration step involves only two stages.

In the first stage, which is only performed in case of MDS,
the stimulus positions are optimized, assuming fixed values
for the regression parameters and the monotonic transforma-
tions. The stimulus configuration is normalized after each
optimization step, i.e., its translation and dilation factor are
determined bya priori conditions (see above).

In the second stage, the regression parameters are opti-
mized for a fixed stimulus configuration and known mono-
tonic transformations on the data. This latter optimization
involves only individual terms in the stress function and is,
therefore, fairly simple and efficient. In case , it re-
duces to solving a set of (simultaneous) linear equations. If

, then a (slower) nonlinear optimization is required.

8Nonlinear optimizations in XGms are performed using the iterative rou-
tine DMNF from the Netlib library.

Nonmetric models add a third stage to each iteration step
in the minimization of the stress criterium. In this third stage,
the monotonic transformations that minimize the stress for
the current stimulus configuration and regression parameters
are updated.

E. Graphical User Interface to XGms

The GUI to XGms is depicted in Fig. 5 for an experimental
data set containing both dissimilarity data and attribute data.
This interface was derived from the GUI of the XGvis pro-
gram [8].

The panel at the top contains the major action buttons. The
user can either specify an initial stimulus configuration at
startup or can load a new stimulus configuration (using “Load
CONF”) at any time during the XGms session. He/she can
also switch to a random initial stimulus configuration using
the “Scramble CONF” button and can return at any time to
the last specified initial configuration using “Init CONF.”
The current stimulus configuration can be kept fixed and
used for regression analysis against the experimental data. A
single iteration step in the regression can be triggered with the
“Step REG” button, while multiple iterations can be started
and stopped with the “Run REG” button. Alternatively, the
current stimulus configuration can be used as the initial
configuration in an MDS analysis. Starting and stopping of
the iterations in such an MDS analysis is controlled by the
“Step MDS” and “Run MDS” buttons.

Either the original data (Di and Ai), power-transformed
data (Dt and At), or spline-transformed data (Ds and As)
can be used in the regression or MDS analysis. Dissimilari-
ties and/or attribute scores from individual subjects can be
selected for transformation or the scores from all subjects
can be transformed simultaneously (Di-current, Dt-current,
or Ds-current versus Di-all, Dt-all, or Ds-all). In the example,
the original data are used for the attributes, while the dissim-
ilarity data are transformed using a power-like function. In
order to allow processing by other data analysis or visual-
ization programs, most intermediate data in the XGms pro-
gram can also be output to ASCII files using the options in
the “file” menu. Amongst others, the normalized transformed
scores , , and/or and their model pre-
dictions , , and can all
be exported in this way.

The bottom left panel allows to control the parameters of
the multidimensional model, such as:

1) the dimension of the stimulus space;
2) the power used in the stress function;
3) the Minkowski power of the distance metric;
4) the number of iteration steps in one call to the opti-

mization routines;
5) the weights , and/or on the different stress

terms;
6) the prediction model used (either vector product or

ideal point);
7) the parameters and (and in case of attributes)

that control the nonlinear power-like transformations
on the individual subsets of the data;
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Fig. 5. XGms GUI.

8) the number of internal knot points in a spline trans-
formation.9

If data for several subjects and/or attributes are available,
then the “current” selection for the dissimilarity or attribute
allows to view the settings and model fits for the current
subset of the data. The user can, for instance, select which
parameters of the power-like transformation are fixed to a
user-specified value and which can be optimized by XGms.
In the case of preference and attribute data, a choice can
be made between a vector-product model and an unfolding
model. Attributes and preferences can also be grouped so that
they share a common prediction vector. It is, moreover, pos-
sible to (temporarily) exclude the subset of the data currently
being viewed from the stress criterium. Another way of se-
lecting a subset of the available data is through the “use brush
groups” and “use identified points” options [8]. The XGobi
program that is used to visualize the stimulus configuration
(see below) allows to partition the stimuli into nonoverlap-

9Kruskal transformation is considered as a special case of spline transfor-
mation, indicated bys or s equal to max.

ping subsets by means of brushing.10 In case “use brush
groups” is selected, then only those dissimilarities and pref-
erences for which both stimuli belong to the same subgroup
are used in the regression and/or MDS analysis. Similarly,
XGobi also allows to select a subset of the stimulus points.
In case “use identified stimuli” is selected, then only those
data that involve the identified stimuli are used in the anal-
ysis. Both options can also be active at the same time.

The graph at the top in the bottom right panel of Fig. 5
shows how the stress has varied as a function of time during
the XGms session. In addition, scatterplots of transformed
experimental data versus predicted model data and barplots
representing the histograms of the transformed experimental
data are shown for the “current” dissimilarity and attribute.
The small panels depict the overall transformations from the
input data to the transformed data. The limits , ,
or [ ] used to define a subset

10Brushing means that the attributes (such as color, shape, etc.) of the
stimulus points can be changed. Stimulus points with the same attributes
are assumed to belong to the same brush group.
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Fig. 6. XGobi GUI.

of the “current” data can be changed by clicking at the de-
sired position in the histogram of the transformed data. The
data in the scatterplots can also be output to the visualization
program XGobi in order to examine them more closely.

As mentioned before, the stimulus configuration is ex-
changed between the MDS program XGms and the visual-
ization program XGobi. The GUI to the XGobi program is
shown in Fig. 6. The two-dimensional (2-D) stimulus config-
uration in the example is displayed as a point plot and the user
can view and/or alter this configuration. In Fig. 6, two brush
groups with eight stimuli each have been created using open
and filled circles, respectively, while eight of the 16 available
stimuli have been identified. The preference and attribute
vectors (or ideal points) can also be visualized in XGobi.
Higher dimensional stimulus configurations can be viewed
dynamically by moving a 2-D projection plane through the
stimulus space [32].

VI. I MAGE QUALITY DATA

In this section, we apply multidimensional modeling to
two experimental data sets.

A. Images With Blur and Noise

The first data set that we consider concerns images
degraded by noise and blur [9]. The experimental setup used
for collecting these data was described in Section II. The
measurements performed per scene with the 16 different

images were as follows: 1) double-stimulus dissimilarity
scaling by five subjects and 2) single-stimulus attribute
scaling of perceived noisiness, blur, and quality by seven
subjects. The 16 images of a scene corresponded to all
possible combinations of four levels of blur and four levels
of Gaussian additive white noise. We used XGms with
an inner-product prediction model for the attribute scores
to find separate 2-D stimulus configurations for each of
the scenes. The subjects were assumed to form a homo-
geneous group, so that a single attribute vector was used
to describe the mapping from stimulus configuration to
attribute strengths for all subjects. A nonmetric analysis
showed that the dissimilarity and attribute scores were
approximately metric, so that no monotonic transformation
was performed on the data in the following analysis (i.e.,

and ). The resulting
2-D model for the image Wanda was already illustrated
in Fig. 2. The corresponding 2-D models for the images
Terrace and Mondrian are shown in Fig. 7. We now discuss
in somewhat more detail how we can determine if these
models do indeed provide an adequate description of the
experimentally obtained attribute and dissimilarity data.

Since a Minkowski power of was used in the
minimization of the stress function, ANOVA can be used to
analyze the goodness of fit between the multidimensional
model predictions and the experimental data. Briefly stated,
ANOVA attributes the variance in observed data to several
(potential) causes and determines the statistical evidence
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for these causes. In our case, the data is split into model
predictions and prediction errors. The hypothesis to be
tested is that the prediction errors can be attributed solely
to noise, so that the model is adequate and need not be
improved further. The results of ANOVA analyses in our
example are summarized in Table 1. We briefly discuss how
these results were obtained and refer to the excellent book
by Draper and Smith [19] for a more in-depth discussion on
linear regression and ANOVA.

The observed attribute scores for different subjects
cannot be compared directly. XGms can, however, export

normalized transformed attribute scores that can
be used to compare responses across subjects that belong
to a homogeneous group (i.e., that are assumed to share a
common attribute vector). The most frequently used statistic
for testing the goodness of fit of a model to (repeated)
measurements is thelinear correlation coefficient , which
is defined11 as

(39)

The stimulus predictions are derived from the
stimulus configuration and attribute vector of
the multidimensional model. This attribute vector is assumed
to be shared by all subjects in a group. The number of
DOFs in the sum of squares SS (residue) is

(40)

since two DOFs are used per subject for obtaining the re-
gression coefficients and that are involved in defining
the normalized attribute scores and DOF are needed to
specify the attribute vector. In the current example, an
inner-product model was used in two dimensions, so that

(in case of an ideal-point model ).
If transformations are applied to the original attribute scores
(i.e., if ), then the number of DOFs in these
transformations should also be subtracted from the above
DOF (residue).

Note that no DOF are counted for the stimulus configu-
ration itself, which is formally only allowed if the attribute
data being tested are not used in determining this stimulus
configuration. This is not strictly true in the current example
in which the configuration is derived from the experimental
data using MDS. However, the regression analysis addresses
only a subset of the available experimental data and the ob-
tained stimulus configurations with and without the data in
this subset included are usually very similar. The statistics
in Table 1 were, therefore, derived for a fixed configuration,

11This definition of the linear correlation coefficientR relies on the fact
that the normalized scores are centered on the origin.

(a)

(b)

Fig. 7. 2-D stimulus configurations from the blur/noise
experiment for scenes (a) “Terrace” and (b) “Mondrian.” Directions
for perceived quality, blur, and noise are indicated by the vectors.

based on all available data. We expect that this approxima-
tion has only limited consequences for the conclusions drawn
from the following analyzes. If necessary, DOF (residue) can
be further reduced to reflect the number of DOF in the stim-
ulus configuration.

Linear correlation coefficients indicate the percentage of
variance in the data that can be described by a linear predic-
tion model, but do not allow to judge whether such a model
can potentially be improved. This requires that the variance
in the prediction error is compared against the inherent vari-
ance that is in the experimental data. We expect a smaller
correlation between the actual data and the model predic-
tions in case the responses to identical stimuli on repeated
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Table 1
MDS Model Statistics for Dissimilarity (D) and Attributes Blur
(B), Noise (N ), and Overall Quality (Q) in Case of Images
With Blur and Noise

Cases where the statistics indicate that the model fit is not com-
pletely adequate are marked by (*).

trials vary more. This accuracy of the experimental data can
be estimated if the stimuli have been scored more than once
(either within or across subjects). In such case, the best pos-
sible predictor12 for stimulus is the average score

(41)

where is the number of repetitions for stimulus. Using
these average scores, SS (residue) can be split into

(42)

where

(43)

accumulates the variances on successive trials around the av-
erage score and

(44)

is the SS of the differences between the average scoresand
the predictions according to the multidimensional model.
The maximum value that can be obtained for the linear
correlation coefficient is

(45)

since SS (residue) cannot become smaller than SS (pure
error).

12Obviously, an even better fit to the data can be obtained by using pre-
dictors of the form� that depend in a more general way on the subject
k and stimulusi. Such a predictor is, however, not in agreement with the
assumption that the subjects form a homogeneous group.

If the normalized scores are derived from mini-
mizing a stress function with exponent , as is the case
in the current example, then the following relationships

and (46)

hold, so that there are only independent values .
If the multidimensional model “fits” the data, then the

standard deviation of the regression errors in case of the
model predictors should not exceed the standard deviation
of the regression errors in case of the best predictors.
Unbiased estimates for these standard deviations are the
mean squares (MS), i.e.,

(47)

where DOF denotes the number of degrees of freedom

(48)

in the respective SS. The ratio

(49)

is, hence, a good statistic for testing the goodness of fit of
the multidimensional model. In case of equal standard devi-
ations, we expect . A large value of , on the other
hand, indicates that the prediction error for the model is sig-
nificantly larger than the prediction error for the best pre-
dictor and, hence, that is substantially smaller than . A
better model than the multidimensional model under test can
be pursued in such cases. A lack of fit ,however, does not pro-
hibit that a large part of the variance in the attribute data may
be explained by the available model, i.e., that bothand
are well above 0.9, for instance, so that the model may still
be a very useful (but not perfect) description of the data.

It has been shown that the ratiosatisfies an
distribution under the hypothesis thatthe standard deviations
of the underlying (Gaussian) distributions are equal[19]. If
this is the case, then the probability that a value greater than

occurs is equal to

(50)

with , where we have introduced the
notation

(51)
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(a) (b)

(c)

Fig. 8. Experimental quality scores versus MDS model predictions in the experiment with blur and
noise for scenes (a) “Wanda,” (b) “Terrace,” and (c) “Mondrian.” Estimated standard deviations
of the experimental scores, obtained by regarding judgements within and across subjects as
repeated measurements, are also indicated.

for the incomplete beta function and for
the complete beta function. This result can be used to set up
a quantitative testfor the goodness of fit. If the observed
ratio is larger than , where most often , then it
is considered very unlikely that both standard deviations are
equal and hence that all the variance in the data is accounted
for by the model.

In case of our example data set, the number of DOFs in
the prediction errors is ,
since 16 stimuli where judged four times by seven subjects
( ). The attribute scores were linearly corre-
lated with the stimulus coordinates in a 2-D space as in-

dependent variables. A single attribute vector with one DOF
was used to derive attribute strengths from stimulus coordi-
nates for all subjects, so that the total number of regression
parameters is . The op-
timal predictor has pa-
rameters, so that . The
goodness of fit can, hence, be tested based on the distribution

. More specifically, with , an observed
ratio
is interpreted as a lack of fit.

The statistics in Table 1 indicate that the MDS models
describe most of the variance in the experimental data
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(a) (b)

(c) (d)

Fig. 9. 1-D stimulus configurations from JPEG experiment are shown along the ordinates for scenes
(a) “Boats,” (b) “Child,” (c) “Girls,” and (d) “Lighthouse.” Abscissas show the JPEG quality (Q)
parameter that is derived from the quantizer step size; the original image is plotted at valueQ = 100.

( in all cases). The linear correlation coefficient
is largest for perceived noise and smallest for perceived

blur. Since this trend is also observed in the pure-error
correlations , this only reflects the fact that blur is harder
to judge consistently than quality, while noise is most easy
to judge. The largest deviations from linear regression are
observed for overall quality. This can for instance be verified
in Fig. 8, where the normalized quality scores for all stimuli
are plotted against the stimulus coordinates along the quality
direction. The lack of fit seems to be mainly caused by the
fact that the last point, which corresponds to the original
image, falls above the regression line.

The regression analysis that is presented above for
single-stimulus attribute data must be modified slightly in
case of double-stimulus data, such as dissimilarity data.
The correlation coefficient for dissimilarity data is de-
fined by

(52)
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where is the distance between the points
representing stimulus and . The number of DOF in the
residue error is

(53)

in case subjects are assumed to form a homogeneous
group (and no transformations are applied on the dis-
similarity data, i.e., ). The maximum
correlation coefficient satisfies

(54)

and corresponds to the best possible dissimilarity predictors

(55)

for , where and denote the respec-
tive number of times that stimulus pairs () and ( ) are
repeated (across subjects). Note that the optimal predictor is
assumed to satisfy and , so that it is speci-
fied by values. The lack-of-fit measure

(56)

sums the squared differences between the optimal dissimi-
larity predictions and the interstimulus distances according
to the multidimensional model. In case of a stress function
with exponent , the best predictors satisfy the condi-
tion

(57)

so that . For our ex-
ample data, we obtain that ,

and , so
that an test with 5% confidence value

is used to test the goodness of fit of the multidimen-
sional model to the experimental dissimilarity data.

B. JPEG-Coded Images

The second data set that we analyze concerns JPEG-coded
images [17]. The images were obtained by applying six
different quality levels in the JPEG-baseline encoding [36]
of four different scenes. The measurements performed per
scene were as follows: double-stimulus dissimilarity scaling
by ten subjects and double-stimulus difference scaling of

Table 2
MDS Model Statistics for Dissimilarity (D) and Attributes
Blockiness (B) and Overall Quality (Q) in Case of
JPEG-Coded Images

Cases where the statistics indicate that the model fit is not com-
pletely adequate are marked by (*).

perceived blockiness and quality by the same ten subjects.
We used XGms with an inner-product model for preference
to derive the 1-D stimulus configurations in Fig. 9. An
inner-product model in one dimension automaticallly im-
plies that the subjects are considered to form a homogeneous
group. Nonmetric analysis again confirmed only a marginal
improvement over metric analysis, so that the reported
analysis is again based on metric data (i.e.,
and ).

Table 2 should be interpreted in a similar way as Table 1.
The normalized scores of different subjects for the same
stimulus combination ( ) and attribute (dissimilarity,
blockiness or quality) were treated as repetitions, so that the
statistics in Table 2 indicate how the derived 1-D stimulus
configurations can describe the average subject responses.

The results of the ANOVA analyses for dissimilarity (),
blockiness ( ) and quality ( ) indicate that large correlation
coefficients are found (i.e., ), so that the majority
of the variance in the date can be described by a 1-D model.
However, significant deviations from linear regression are
especially observed for the scenes “Child” and “Girls.” This
can for instance be verified in Fig. 10, where the normalized
quality scores for all stimulus pairs are plotted against the
differences in the stimulus coordinates. Fig. 10 illustrates
that the deviation from the regression line is larger than the
standard deviation of the experimental error for some of the
data points. A more complex (for instance, higher dimen-
sional) model will be needed to describe these remaining
deviations.

VII. SUMMARY

In this paper, we have shown how experimental data on
image quality and its attributes can be integrated using mul-
tidimensional models. The interactive program XGms for es-
timating multidimensional models from data has been intro-
duced as an interesting extension to available programs. It
has been shown that the models implemented in XGms can
indeed provide adequate descriptions for two available ex-
perimental data sets.

The experimental data are treated as continuous variables
in the data analyses presented in this paper. In case subjects
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(a) (b)

(c) (d)

Fig. 10. Experimental quality scores versus MDS model predictions in the JPEG experiment
for scenes (a) “Boats,” (b) “Child,” (c) “Girls,” and (d) “Lighthouse.” The estimated standard
deviations of the experimental scores, obtained by regarding judgements across subjects as
repeated measurements, are also indicated.

use numerical category scaling with only a limited number of
discrete categories for expressing their sensations, this is an
obvious approximation. If the quantization noise introduced
by the categorical scaling can be assumed to be substantially
smaller than the internal noise underlying the judgements,
this approximation is sufficiently accurate. However, in order
to remedy this limitation, we are currently developing a ver-
sion of XGms in which the input data can also be interpreted
as discrete (categorical) data. The main implication of this
change is that the stress optimization will have to be replaced
by a maximum-likelihood optimization [6], [20].
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