An introduction to Bayesian Networks and the Bayes Net Toolbox for Matlab

> Kevin Murphy MIT AI Lab 19 May 2003

Outline

- An introduction to Bayesian networks
- An overview of BNT

What is a Bayes (belief) net? Compact representation of joint probability distributions via conditional independence

Figure from N. Friedman

What is a Bayes net?

A node is conditionally independent of its ancestors given its parents, e.g.

C?R,B,E|A Hence

P(E, B, R, A, C)

- = P(E)P(B|E)P(R|B,E)P(A|R,B,E)P(C|A,R,B,E)
- = P(E)P(B)P(R|E)P(A|B,E)P(C|A)

From $2^5 - 1 = 31$ parameters to 1 + 1 + 2 + 4 + 2 = 10

Why are Bayes nets useful?

- Graph structure supports
 - Modular representation of knowledge
 - Local, distributed algorithms for inference and learning
 - Intuitive (possibly causal) interpretation

- Factored representation may have exponentially fewer parameters than full joint $P(X_1,...,X_n) =>$
 - lower sample complexity (less data for learning)
 - lower time complexity (less time for inference)

What can Bayes nets be used for?

- Posterior probabilities
 - Probability of any event given any evidence
- Most likely explanation
 Scenario that explains evidence
- Rational decision making
 - Maximize expected utility
 - Value of Information
- Effect of intervention

- Causal analysis

Figure from N. Friedman

A real Bayes net: Alarm

Domain: Monitoring Intensive-Care Patients

• 37 variables

More real-world BN applications

- "Microsoft's competitive advantage lies in its expertise in Bayesian networks"
 Bill Gates, quoted in LA Times, 1996
- MS Answer Wizards, (printer) troubleshooters
- Medical diagnosis
- Genetic pedigree analysis
- Speech recognition (HMMs)
- Gene sequence/expression analysis
- Turbocodes (channel coding)

Dealing with time

- In many systems, data arrives sequentially
- Dynamic Bayes nets (DBNs) can be used to model such time-series (sequence) data
- Special cases of DBNs include
 - State-space models
 - Hidden Markov models (HMMs)

State-space model (SSM)/ Linear Dynamical System (LDS)

Example: LDS for 2D tracking

$$\begin{pmatrix} x_t \\ y_t \\ \dot{x}_t \\ \dot{y}_t \end{pmatrix} = \begin{pmatrix} 1 & 0 & \Delta & 0 \\ 0 & 1 & 0 & \Delta \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x_{t-1} \\ y_{t-1} \\ \dot{x}_{t-1} \\ \dot{y}_{t-1} \end{pmatrix} + V_t$$
$$\begin{pmatrix} x_t \\ y_t \\ y_t \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{pmatrix} \begin{pmatrix} x_t \\ y_t \\ \dot{x}_t \\ \dot{y}_t \end{pmatrix} + W_t$$

Sparse linear Gaussian systems) sparse graphs

Hidden Markov model (HMM)

Sparse transition matrix)/sparse graph

$$P(X_t = j | X_{t-1} = i) = A(i, j)$$
 transition
matrix

 $p(Y_t = y | X_t = i) = \mathcal{N}(y; \mu_i, \Sigma_i)$ Gaussian observations

Probabilistic graphical models

Toy example of a Markov net

A real Markov net

- •Estimate $P(x_1, ..., x_n | y_1, ..., y_n)$
- $\Psi(x_i, y_i) = P(\text{observe } y_i | x_i)$: local evidence
- $\Psi(x_i, x_j) / \exp(-J(x_i, x_j))$: compatibility matrix c.f., Ising/Potts model

Inference

- Posterior probabilities
 - Probability of any event given any evidence
- Most likely explanation – Scenario that explains evidence
- Rational decision making
 - Maximize expected utility
 - Value of Information
- Effect of intervention

- Causal analysis

Figure from N. Friedman

Kalman filtering (recursive state estimation in an LDS)

Estimate $P(X_t|y_{1:t})$ from $P(X_{t-1}|y_{1:t-1})$ and y_t •Predict: $P(X_t|y_{1:t-1}) = S_{Xt-1} P(X_t|X_{t-1}) P(X_{t-1}|y_{1:t-1})$ •Update: $P(X_t|y_{1:t}) / P(y_t|X_t) P(X_t|y_{1:t-1})$

Forwards algorithm for HMMs

Predict:

$$P(X_t|y_{1:t-1}) = \sum_{x_{t-1}} P(X_t|x_{t-1}) P(X_{t-1}|y_{1:t-1})$$

$$\alpha_{t|t-1} = A^{I} \alpha_{t-1}$$

Update:

$$P(X_t = i | y_{1:t}) \propto P(X_t = i | y_{1:t-1}) p(y_t | X_t = i)$$

$$\alpha_t \propto \alpha_{t|t-1} \cdot * b_t$$

Discrete-state analog of Kalman filter

O(T S²) time using dynamic programming

Message passing view of forwards algorithm

 $\alpha_t \propto \alpha_{t|t-1} \cdot * b_t$

Discrete analog of RTS smoother

 $P(X_t|y_{1:T}) \propto P(X_t|y_{1:t-1})P(y_t|X_t)P(y_{t+1:T}|X_t)$

 $\gamma_t(i) \propto \alpha_{t|t-1}(i) b_t(i) \beta_t(i)$

Belief Propagation aka Pearl's algorithm, sum-product algorithm

Generalization of forwards-backwards algo. /RTS smoother from chains to trees - linear time, two-pass algorithm

Figure from P. Green

BP: parallel, distributed version

 $bel(x_3) \propto$ $\mu_{1\to 3}(x_3)\mu_{2\to 3}(x_3)\mu_{4\to 3}(x_3)$ $\mu_{3\to 4}(x_4) =$ $\mu_{1\to 3}(x_3)\mu_{2\to 3}(x_3)\psi(x_1,x_2,x_3,x_4)$ x_{1}, x_{2}, x_{3}

Representing potentials

- For discrete variables, potentials can be represented as multi-dimensional arrays (vectors for single node potentials)
- For jointly Gaussian variables, we can use $\psi(X) = (\mu, \Sigma)$ or $\psi(X) = (\Sigma^{-1} \mu, \Sigma^{-1})$
- In general, we can use mixtures of Gaussians or non-parametric forms

Manipulating discrete potentials

Marginalization

$$\mu_3(x_3, x_4) = \sum_{x_1, x_2} \psi(x_1, x_2, x_3, x_4)$$

Multiplication

$$\phi(x_1, x_3, x_4) = \mu_3(x_3, x_4) \times \mu_1(x_1, x_3)$$

80% of time is spent manipulating such multi-dimensional arrays!

Manipulating Gaussian potentials

- Closed-form formulae for marginalization and multiplication
- $O(1)/O(n^3)$ complexity per operation
- Mixtures of Gaussian potentials are not closed under marginalization, so need approximations (moment matching)

Semi-rings

- By redefining * and +, same code implements Kalman filter and forwards algorithm
- By replacing + with max, can convert from forwards (sum-product) to Viterbi algorithm (max-product)
- BP works on any commutative semi-ring!

Inference in general graphs

- BP is only guaranteed to be correct for trees
- A general graph should be converted to a junction tree, by clustering nodes
- Computationally complexity is exponential in size of the resulting clusters (NP-hard)

Approximate inference

- Why?
 - to avoid exponential complexity of exact inference in discrete loopy graphs
 - Because cannot compute messages in closed form (even for trees) in the non-linear/non-Gaussian case
- How?
 - Deterministic approximations: loopy BP, mean field, structured variational, etc
 - Stochastic approximations: MCMC (Gibbs sampling), likelihood weighting, particle filtering, etc
- Algorithms make different speed/accuracy tradeoffs
- Should provide the user with a choice of algorithms

Learning

- Parameter estimation
- Model selection (structure learning)

Parameter learning

iid data

Conditional Probability Tables (CPTs)

Figure from M. Jordan

Structure learning (data mining)

Genetic pathway

Figure from N. Friedman

Structure learning

- •Learning the optimal structure is NP-hard (except for trees)
- •Hence use heuristic search through space of DAGs or PDAGs or node orderings
- •Search algorithms: hill climbing, simulated annealing, GAs
- •Scoring function is often marginal likelihood, or an approximation like BIC/MDL or AIC

$$G^* = \arg \max_{G} \log P(D|G)P(G)$$

=
$$\log \int_{\theta} P(D|G, \theta) P(\theta|G)$$

Structural complexity penalty
$$\stackrel{BIC}{\approx} \log P(D|G, \theta^{ML}) - \lambda \dim(G)$$

Summary:

why are graphical models useful?

- Factored representation may have exponentially fewer parameters than full joint $P(X_1,...,X_n) =>$
 - lower time complexity (less time for inference)
 - lower sample complexity (less data for learning)
- Graph structure supports
 - Modular representation of knowledge
 - Local, distributed algorithms for inference and learning
 - Intuitive (possibly causal) interpretation

The Bayes Net Toolbox for Matlab

- What is BNT?
- Why yet another BN toolbox?
- Why Matlab?
- An overview of BNT's design
- How to use BNT
- Other GM projects

What is BNT?

- BNT is an open-source collection of matlab functions for inference and learning of (directed) graphical models
- Started in Summer 1997 (DEC CRL), development continued while at UCB
- Over 100,000 hits and about 30,000 downloads since May 2000
- About 43,000 lines of code (of which 8,000 are comments)

Why yet another BN toolbox?

- In 1997, there were very few BN programs, and all failed to satisfy the following desiderata:
 - Must support real-valued (vector) data
 - Must support learning (params and struct)
 - Must support time series
 - Must support exact and approximate inference
 - Must separate API from UI
 - Must support MRFs as well as BNs
 - Must be possible to add new models and algorithms
 - Preferably free
 - Preferably open-source
 - Preferably easy to read/ modify
 - Preferably fast

BNT meets all these criteria except for the last

A comparison of GM software

Name	Authors	Src	$Ct_{\rm S}$	GUI	A	G	Free
Analytica	Lumina	N	$\overline{\mathbf{v}}$	W	N	N	N
Bavda	U. Helsinki	Java	Y	Y	Y	N	F
BayesBuilder	Nijman (Nijmegen)	Ν	Ν	Υ	Ν	Ν	Ν
B. Knl. Disc.	KMI/Open U.	Ν	D	Υ	Υ	Υ	F
B-course	U. Helsinki	Ν	D	Υ	Υ	Υ	F
BN pow. cstr.	Cheng (U.Alberta)	Ν	Ν	Υ	Υ	Υ	\mathbf{F}
BN Toolbox	Murphy (UCB)	Matlab	Υ	Ν	Υ	Υ	\mathbf{F}
BucketElim	Rish (UCI)	C++	Ν	Ν	Ν	Ν	F
BUGS	MRC/Imperial	Ν	Υ	W	Υ	Ν	F

www.ai.mit.edu/~murphyk/Software/Bayes/bnsoft.html

CIspace	Poole (UBC)	Java	Ν	Υ	Ν	Ν	F	
Ergo	Noetic Systems	Ν	Ν	Υ	Ν	Ν	Ν	
Genie/Smile	U. Pittsburgh	Ν	Ν	\mathbf{W}	Ν	Ν	F	
Hugin Light	Hugin	Ν	Υ	W	Ν	Ν	Ν	
Ideal	Rockwell	Lisp	Ν	Υ	Ν	Ν	F	
Java Bayes	Cozman (CMU)	Java	Ν	Υ	Ν	Ν	F	
MIM	HyperGraph	Ν	Υ	Υ	Υ	Υ	Ν	
MSBN	Microsoft	Ν	Ν	W	Ν	Ν	F	
Netica	Norsys	Ν	Υ	W	Υ	Ν	Ν	
Pronel	Hugin	Ν	Ν	W	Υ	Υ	F	
RISO	Dodier (Colorado)	Java	Υ	Υ	Ν	Ν	F	
Tetrad	CMU	Ν	Υ	Ν	Υ	Υ	F	

Summary of existing GM software

- ~8 commercial products (Analytica, BayesiaLab, Bayesware, Business Navigator, Ergo, Hugin, MIM, Netica), focused on data mining and decision support; most have free "student" versions
- ~30 academic programs, of which ~20 have source code (mostly Java, some C++/ Lisp)
- Most focus on exact inference in discrete, static, directed graphs (notable exceptions: BUGS and VIBES)
- Many have nice GUIs and database support

BNT contains more features than most of these packages combined!

Why Matlab?

- Pros
 - Excellent interactive development environment
 - Excellent numerical algorithms (e.g., SVD)
 - Excellent data visualization
 - Many other toolboxes, e.g., netlab
 - Code is high-level and easy to read (e.g., Kalman filter in 5 lines of code)
 - Matlab is the lingua franca of engineers and NIPS
- Cons:
 - Slow
 - Commercial license is expensive
 - Poor support for complex data structures
- Other languages I would consider in hindsight:
 - Lush, R, Ocaml, Numpy, Lisp, Java

BNT's class structure

- Models bnet, mnet, DBN, factor graph, influence (decision) diagram
- CPDs Gaussian, tabular, softmax, etc
- Potentials discrete, Gaussian, mixed
- Inference engines
 - Exact junction tree, variable elimination
 - Approximate (loopy) belief propagation, sampling
- Learning engines
 - Parameters EM, (conjugate gradient)
 - Structure MCMC over graphs, K2

Example: mixture of experts

1. Making the graph

Graphs are (sparse) adjacency matrices
GUI would be useful for creating complex graphs
Repetitive graph structure (e.g., chains, grids) is best created using a script (as above)

Г(X	
	Ų	
	Q	
'		
4(Y)

2. Making the model

```
node_sizes = [1 2 1];
dnodes = [2];
bnet = mk_bnet(dag, node_sizes, ...
'discrete', dnodes);
```


- •X is always observed input, hence only one effective value
- •Q is a hidden binary node
- •Y is a hidden scalar node
- •bnet is a struct, but should be an object
- •mk_bnet has many optional arguments, passed as string/value pairs

3. Specifying the parameters

bnet.CPD{X} = root_CPD(bnet, X); bnet.CPD{Q} = softmax_CPD(bnet, Q); bnet.CPD{Y} = gaussian_CPD(bnet, Y);

•CPDs are objects which support various methods such as

Convert_from_CPD_to_potential

•Maximize_params_given_expected_suff_stats

- •Each CPD is created with random parameters
- •Each CPD constructor has many optional arguments

4. Training the model

load data -ascii; ncases = size(data, 1); cases = cell(3, ncases); observed = [X Y]; cases(observed, :) = num2cell(data');

Training data is stored in cell arrays (slow!), to allow for variable-sized nodes and missing values
cases{i,t} = value of node i in case t

engine = jtree_inf_engine(bnet, observed);

Any inference engine could be used for this trivial model
bnet2 = learn_params_em(engine, cases);
We use EM since the Q nodes are hidden during training
learn_params_em is a function, but should be an object

Before training

5. Inference/ prediction

```
engine = jtree_inf_engine(bnet2);
evidence = cell(1,3);
evidence{X} = 0.68; % Q and Y are hidden
engine = enter_evidence(engine, evidence);
m = marginal_nodes(engine, Y);
m.mu % E[Y|X]
m.Sigma % Cou[Y|Y]
```

m.Sigma % Cov[Y|X]

Other kinds of models that BNT supports

- Classification/ regression: linear regression, logistic regression, cluster weighted regression, hierarchical mixtures of experts, naïve Bayes
- Dimensionality reduction: probabilistic PCA, factor analysis, probabilistic ICA
- Density estimation: mixtures of Gaussians
- State-space models: LDS, switching LDS, treestructured AR models
- HMM variants: input-output HMM, factorial HMM, coupled HMM, DBNs
- Probabilistic expert systems: QMR, Alarm, etc.
- Limited-memory influence diagrams (LIMID)
- Undirected graphical models (MRFs)

Summary of BNT

- Provides many different kinds of models/ CPDs – lego brick philosophy
- Provides many inference algorithms, with different speed/ accuracy/ generality tradeoffs (to be chosen by user)
- Provides several learning algorithms (parameters and structure)
- Source code is easy to read and extend

What is wrong with BNT?

- It is slow
- It has little support for undirected models
- Models are not bona fide objects
- Learning engines are not objects
- It does not support online inference/learning
- It does not support Bayesian estimation
- It has no GUI
- It has no file parser
- It is more complex than necessary

Some alternatives to BNT?

- HUGIN: commercial
 - Junction tree inference only, no support for DBNs
- PNL: Probabilistic Networks Library (Intel)
 - Open-source C++, based on BNT, work in progress (due 12/03)
- GMTk: Graphical Models toolkit (Bilmes, Zweig/UW)
 Open source C++, designed for ASR (HTK), binary avail now
- AutoBayes: code generator (Fischer, Buntine/NASA Ames)
 Prolog generates matlab/C, not avail. to public
- VIBES: variational inference (Winn / Bishop, U. Cambridge)
 - conjugate exponential models, work in progress
- **BUGS**: (Spiegelhalter et al., MRC UK)
 - Gibbs sampling for Bayesian DAGs, binary avail. since '96

Why yet another GM toolbox?

- In 2003, there are still very few GM programs that satisfy the following desiderata:
 - Must support real-valued (vector) data
 - Must support learning (params and struct)
 - Must support time series
 - Must support exact and approximate inference
 - Must separate API from UI
 - Must support MRFs as well as BNs
 - Must be possible to add new models and algorithms
 - Preferably free
 - Preferably open-source
 - Must be easy to read/ modify
 - Must be fast (smarter algorithms, not better coding!)
 - Must be integrated with data analysis environment