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• An introduction to Bayesian networks

• An overview of BNT



Qualitative part: 

Directed acyclic graph 

(DAG)

0.9 0.1

e

e

0.2 0.8

be

b

b

BE P(A | E,B)
Family of Alarm

Earthquake Burglary

Compact representation of joint probability 

distributions via conditional independence

What is a Bayes (belief) net?

(DAG)

• Nodes - random vars. 

• Edges - direct influence
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What is a Bayes net?

Earthquake

Radio

Burglary

Alarm

C ? R,B,E | A

A node is conditionally independent of its

ancestors given its parents, e.g.

Hence 

Call

From 25 – 1 = 31 parameters to 1+1+2+4+2=10



Why are Bayes nets useful?

- Graph  structure supports
- Modular representation of knowledge

- Local, distributed algorithms for inference and learning

- Intuitive (possibly causal) interpretation

- Factored representation may have exponentially 
fewer parameters than full joint P(X1,…,Xn) =>

- lower sample complexity (less data for learning)

- lower time complexity (less time for inference)



What can Bayes nets be used for?

• Posterior probabilities

– Probability of any event given any evidence

• Most likely explanation

– Scenario that explains evidence

Explaining away effect

• Rational decision making

– Maximize expected utility

– Value of Information

• Effect of intervention

– Causal analysis
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Domain: Monitoring Intensive-Care Patients

• 37 variables

• 509 parameters

…instead of  237 VENTLUNG VENITUBE
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More real-world BN applications

• “Microsoft’s competitive advantage lies in its 
expertise in Bayesian networks”
-- Bill Gates, quoted in LA Times, 1996

• MS Answer Wizards, (printer) troubleshooters

• Medical diagnosis• Medical diagnosis

• Genetic pedigree analysis

• Speech recognition (HMMs)

• Gene sequence/expression analysis 

• Turbocodes (channel coding) 



Dealing with time

• In many systems, data arrives sequentially

• Dynamic Bayes nets (DBNs) can be used to 

model such time-series (sequence) datamodel such time-series (sequence) data

• Special cases of DBNs include

– State-space models

– Hidden Markov models (HMMs)



State-space model (SSM)/

Linear Dynamical System (LDS)

X1 X2 X3 “True”  state

Y1 Y3Y2
Noisy observations



Example: LDS for 2D tracking

Sparse linear Gaussian systems
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Hidden Markov model (HMM)

Y Y

X1 X2 X3 Phones/ words

Y1 Y3Y2 acoustic signal

transition

matrix

Gaussian

observations

Sparse transition matrix ) sparse graph



Probabilistic graphical models

Probabilistic models

Directed Undirected

Graphical models

(Bayesian belief nets) (Markov nets)
Alarm network

State-space models

HMMs

Naïve Bayes classifier

PCA/ ICA

Markov Random Field

Boltzmann machine

Ising model

Max-ent model

Log-linear models

(Bayesian belief nets) (Markov nets)



Toy example of a Markov net

X1 X2

X5

X3

X4

e.g, X1 ? X4, X5 | X2, X3Xi ? Xrest | Xnbrs

Potential functions

Partition function



A real Markov net

Observed pixels

Latent causes

•Estimate P(x1, …, xn | y1, …, yn)

• Ψ(xi, yi) = P(observe yi | xi): local evidence

• Ψ(xi, xj) / exp(-J(xi, xj)): compatibility matrix

c.f., Ising/Potts model



Inference

• Posterior probabilities

– Probability of any event given any evidence

• Most likely explanation

– Scenario that explains evidence

• Rational decision making

Explaining away effect

• Rational decision making

– Maximize expected utility

– Value of Information

• Effect of intervention

– Causal analysis
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Kalman filtering (recursive state 

estimation in an LDS) 

X1 X2
X3

Y1 Y3Y2

Estimate P(Xt|y1:t) from P(Xt-1|y1:t-1) and yt

•Predict: P(Xt|y1:t-1) = sXt-1 P(Xt|Xt-1) P(Xt-1|y1:t-1)

•Update: P(Xt|y1:t) / P(yt|Xt) P(Xt|y1:t-1)



Forwards algorithm for HMMs

Predict:

Update:

O(T S2) time using dynamic programming

Discrete-state analog of Kalman filter



Message passing view of 

forwards algorithm

Xt-1 Xt
Xt+1
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Forwards-backwards algorithm

Y Y

Xt-1 Xt Xt+1

Y

αt|t-1
βt

bt

Yt-1 Yt+1Yt

Discrete analog of RTS smoother



Belief Propagation

Collect Distribute

Generalization of forwards-backwards algo. /RTS smoother 

from chains to trees  - linear time, two-pass algorithm

aka Pearl’s algorithm, sum-product algorithm

rootroot

Collect

rootroot

Distribute

Figure from P. Green



BP: parallel, distributed version
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Representing potentials

• For discrete variables, potentials can be 

represented as multi-dimensional arrays (vectors 

for single node potentials)

• For jointly Gaussian variables, we can use• For jointly Gaussian variables, we can use

ψ(X) = (µ, Σ) or ψ(X) = (Σ-1 µ ,Σ-1) 

• In general, we can use mixtures of Gaussians or 

non-parametric forms



Manipulating discrete potentials
Marginalization

Multiplication

80% of time is spent manipulating such multi-dimensional arrays!



Manipulating Gaussian potentials

• Closed-form formulae for marginalization 

and multiplication 

• O(1)/O(n3) complexity per operation

• Mixtures of Gaussian potentials are not 

closed under marginalization, so need 

approximations (moment matching)



Semi-rings

• By redefining * and +, same code 

implements Kalman filter and forwards 

algorithmalgorithm

• By replacing + with max, can convert from 

forwards (sum-product) to Viterbi algorithm 

(max-product)  

• BP works on any commutative semi-ring!



Inference in general graphs
• BP is only guaranteed to be correct for trees

• A general graph should be converted to a 

junction tree, by clustering nodes

• Computationally complexity is exponential 

in size of the resulting clusters (NP-hard)in size of the resulting clusters (NP-hard)



Approximate inference
• Why?

– to avoid exponential complexity of exact inference in 
discrete loopy graphs

– Because cannot compute messages in closed form (even 
for trees) in the non-linear/non-Gaussian case

• How?

– Deterministic approximations: loopy BP, mean field, – Deterministic approximations: loopy BP, mean field, 
structured variational, etc

– Stochastic approximations: MCMC (Gibbs sampling), 
likelihood weighting, particle filtering, etc

- Algorithms make different speed/accuracy tradeoffs

- Should provide the user with a choice of algorithms



Learning

• Parameter estimation

• Model selection (structure learning)



Parameter learning

Conditional Probability Tables (CPTs)

X1 X2 X3 X4 X5 X6

0 1 0 0 0 0

1 ? 1 1 ? 1

…

iid data

Figure from M. Jordan

…

1 1 1 0 1 1

If some values are missing

(latent variables), we must use

gradient descent or EM to compute the

(locally) maximum likelihood estimates



Structure learning (data mining)

Gene expression data

Genetic pathway

Figure from N. Friedman



Structure learning
•Learning the optimal structure is NP-hard (except for trees)

•Hence use heuristic search through space of DAGs or

PDAGs or node orderings

•Search algorithms: hill climbing, simulated annealing, GAs

•Scoring function is often marginal likelihood, or an

approximation like BIC/MDL or AICapproximation like BIC/MDL or AIC

Structural complexity penalty



Summary:

why are graphical models useful?

- Factored representation may have exponentially 
fewer parameters than full joint P(X1,…,Xn) =>

- lower time complexity (less time for inference)
- lower sample complexity (less data for learning)- lower sample complexity (less data for learning)

- Graph  structure supports
- Modular representation of knowledge
- Local, distributed algorithms for inference and learning
- Intuitive (possibly causal) interpretation



The Bayes Net Toolbox for Matlab

• What is BNT?

• Why yet another BN toolbox?

• Why Matlab?• Why Matlab?

• An overview of BNT’s design

• How to use BNT

• Other GM projects



What is BNT?

• BNT is an open-source collection of matlab 

functions for inference and learning of 

(directed) graphical models

• Started in Summer 1997 (DEC CRL), 

development continued while at UCBdevelopment continued while at UCB

• Over 100,000 hits and about 30,000 

downloads since May 2000

• About 43,000 lines of code (of which 8,000 

are comments) 



Why yet another BN toolbox?
• In 1997, there were very few BN programs, and 

all failed to satisfy the following desiderata:

– Must support real-valued (vector) data

– Must support learning (params and struct)

– Must support time series

– Must support exact and approximate inference

– Must separate API from UI– Must separate API from UI

– Must support MRFs as well as BNs

– Must be possible to add new models and algorithms

– Preferably free

– Preferably open-source

– Preferably easy to read/ modify

– Preferably fast

BNT meets all these criteria except for the last



A comparison of GM software

www.ai.mit.edu/~murphyk/Software/Bayes/bnsoft.html



Summary of existing GM software
• ~8 commercial products (Analytica, BayesiaLab, 

Bayesware, Business Navigator, Ergo, Hugin, MIM,  

Netica), focused on data mining and decision 
support; most have free “student” versions

• ~30 academic programs, of which ~20 have 
source code (mostly Java, some C++/ Lisp)source code (mostly Java, some C++/ Lisp)

• Most focus on exact inference in discrete, 
static, directed graphs (notable exceptions: 
BUGS and VIBES)

• Many have nice GUIs and database support

BNT contains more features than most of these packages combined!



Why Matlab?
• Pros

– Excellent interactive development environment

– Excellent numerical algorithms (e.g., SVD)

– Excellent data visualization

– Many other toolboxes, e.g., netlab

– Code is high-level and easy to read (e.g., Kalman filter 
in 5 lines of code)in 5 lines of code)

– Matlab is the lingua franca of engineers and NIPS

• Cons:

– Slow

– Commercial license is expensive

– Poor support for complex data structures

• Other languages I would consider in hindsight:

– Lush, R, Ocaml, Numpy, Lisp, Java 



BNT’s class structure

• Models – bnet, mnet, DBN, factor graph, 

influence (decision) diagram

• CPDs – Gaussian, tabular, softmax, etc 

• Potentials – discrete, Gaussian, mixed

• Inference engines• Inference engines

– Exact - junction tree, variable elimination

– Approximate - (loopy) belief propagation, sampling

• Learning engines

– Parameters – EM, (conjugate gradient)

– Structure - MCMC over graphs, K2 



Example: mixture of experts

X

Q

Y

softmax/logistic function



1. Making the graph

X

Q

X = 1; Q = 2; Y = 3;

dag = zeros(3,3);

dag(X, [Q Y]) = 1;

dag(Q, Y) = 1;

Y

•Graphs are (sparse) adjacency matrices

•GUI would be useful for creating complex graphs

•Repetitive graph structure (e.g., chains, grids) is best

created using a script (as above) 



2. Making the model

node_sizes = [1 2 1];

dnodes = [2];

bnet = mk_bnet(dag, node_sizes, …

‘discrete’, dnodes);

X

Q‘discrete’, dnodes);

Y
•X is always observed input, hence only one effective value

•Q is a hidden binary node

•Y is a hidden scalar node

•bnet is a struct, but should be an object

•mk_bnet has many optional arguments, passed as string/value pairs



3. Specifying the parameters

X

Q

bnet.CPD{X} = root_CPD(bnet, X);

bnet.CPD{Q} = softmax_CPD(bnet, Q);

bnet.CPD{Y} = gaussian_CPD(bnet, Y);

Y
•CPDs are objects which support various methods such as

•Convert_from_CPD_to_potential

•Maximize_params_given_expected_suff_stats

•Each CPD is created with random parameters

•Each CPD constructor has many optional arguments



4. Training the model
load data –ascii;

ncases = size(data, 1);

cases = cell(3, ncases);

observed = [X Y];

cases(observed, :) = num2cell(data’);

•Training data is stored in cell arrays (slow!), to allow for

variable-sized nodes and missing values

X

Y

Q

variable-sized nodes and missing values

•cases{i,t} = value of node i in case t 

engine = jtree_inf_engine(bnet, observed);

•Any inference engine could be used for this trivial model

bnet2 = learn_params_em(engine, cases);

•We use EM since the Q nodes are hidden during training

•learn_params_em is a function, but should be an object



Before training



After training



5. Inference/ prediction

engine = jtree_inf_engine(bnet2);

evidence = cell(1,3);

evidence{X} = 0.68; % Q and Y are hidden

engine = enter_evidence(engine, evidence);

m = marginal_nodes(engine, Y);

m.mu % E[Y|X]

m.Sigma % Cov[Y|X]

X

Y

Q



Other kinds of models that BNT supports

• Classification/ regression: linear regression, 
logistic regression, cluster weighted regression,  
hierarchical mixtures of experts, naïve Bayes

• Dimensionality reduction: probabilistic PCA, 
factor analysis, probabilistic ICA

• Density estimation: mixtures of Gaussians• Density estimation: mixtures of Gaussians

• State-space models: LDS, switching LDS, tree-
structured AR models

• HMM variants: input-output HMM, factorial 
HMM, coupled HMM, DBNs

• Probabilistic expert systems: QMR, Alarm, etc.

• Limited-memory influence diagrams (LIMID)

• Undirected graphical models (MRFs)



Summary of BNT

• Provides many different kinds of models/ 
CPDs – lego brick philosophy

• Provides many inference algorithms, with 
different speed/ accuracy/ generality 

• Provides many inference algorithms, with 
different speed/ accuracy/ generality 
tradeoffs (to be chosen by user)

• Provides several learning algorithms 
(parameters and structure)

• Source code is easy to read and extend



What is wrong with BNT?
• It is slow

• It has little support for undirected models

• Models are not bona fide objects

• Learning engines are not objects

• It does not support online inference/learning• It does not support online inference/learning

• It does not support Bayesian estimation

• It has no GUI

• It has no file parser

• It is more complex than necessary



Some alternatives to BNT?

• HUGIN: commercial

– Junction tree inference only, no support for DBNs

• PNL: Probabilistic Networks Library (Intel)

– Open-source C++, based on BNT, work in progress (due 12/03)

• GMTk: Graphical Models toolkit (Bilmes, Zweig/ UW)

– Open source C++, designed for ASR (HTK), binary avail now

• AutoBayes: code generator (Fischer, Buntine/NASA Ames)

– Prolog generates matlab/C, not avail. to public

• VIBES: variational inference (Winn / Bishop, U. Cambridge)

– conjugate exponential models, work in progress

• BUGS: (Spiegelhalter et al., MRC UK)

– Gibbs sampling for Bayesian DAGs, binary avail. since ’96



Why yet another GM toolbox?
• In 2003, there are still very few GM programs that 

satisfy the following desiderata:

– Must support real-valued (vector) data

– Must support learning (params and struct)

– Must support time series

– Must support exact and approximate inference

– Must separate API from UI– Must separate API from UI

– Must support MRFs as well as BNs

– Must be possible to add new models and algorithms

– Preferably free

– Preferably open-source

– Must be easy to read/ modify

– Must be fast (smarter algorithms, not better coding!)

– Must be integrated with data analysis environment


