
An introduction to Bayesian

Networks

and the Bayes Net Toolbox

for Matlabfor Matlab

Kevin Murphy

MIT AI Lab

19 May 2003

Outline

• An introduction to Bayesian networks

• An overview of BNT

Qualitative part:

Directed acyclic graph

(DAG)

0.9 0.1

e

e

0.2 0.8

be

b

b

BE P(A | E,B)
Family of Alarm

Earthquake Burglary

Compact representation of joint probability

distributions via conditional independence

What is a Bayes (belief) net?

(DAG)

• Nodes - random vars.

• Edges - direct influence

Quantitative part:
Set of conditional

probability distributions

b

e
0.01 0.99

0.9 0.1b

e
Radio Alarm

Call

Together:
Define a unique distribution

in a factored form

)|()|(),|()()(),,,,(ACPERPEBAPEPBPRCAEBP =
Figure from N. Friedman

What is a Bayes net?

Earthquake

Radio

Burglary

Alarm

C ? R,B,E | A

A node is conditionally independent of its

ancestors given its parents, e.g.

Hence

Call

From 25 – 1 = 31 parameters to 1+1+2+4+2=10

Why are Bayes nets useful?

- Graph structure supports
- Modular representation of knowledge

- Local, distributed algorithms for inference and learning

- Intuitive (possibly causal) interpretation

- Factored representation may have exponentially
fewer parameters than full joint P(X1,…,Xn) =>

- lower sample complexity (less data for learning)

- lower time complexity (less time for inference)

What can Bayes nets be used for?

• Posterior probabilities

– Probability of any event given any evidence

• Most likely explanation

– Scenario that explains evidence

Explaining away effect

• Rational decision making

– Maximize expected utility

– Value of Information

• Effect of intervention

– Causal analysis

Earthquake

Radio

Burglary

Alarm

Call

Radio

Call

Figure from N. Friedman

Domain: Monitoring Intensive-Care Patients

• 37 variables

• 509 parameters

…instead of 237 VENTLUNG VENITUBE

DISCONNECT

MINVOLSET

VENTMACHKINKEDTUBEINTUBATIONPULMEMBOLUS

PAP SHUNT

PRESS

A real Bayes net: Alarm

PCWP CO

HRBP

HREKG HRSAT

ERRCAUTERHRHISTORY

CATECHOL

SAO2 EXPCO2

ARTCO2

VENTALV

ANAPHYLAXIS

MINOVL

PVSAT

FIO2

PRESS

INSUFFANESTHTPR

LVFAILURE

ERRBLOWOUTPUTSTROEVOLUMELVEDVOLUME

HYPOVOLEMIA

CVP

BP

Figure from N. Friedman

More real-world BN applications

• “Microsoft’s competitive advantage lies in its
expertise in Bayesian networks”
-- Bill Gates, quoted in LA Times, 1996

• MS Answer Wizards, (printer) troubleshooters

• Medical diagnosis• Medical diagnosis

• Genetic pedigree analysis

• Speech recognition (HMMs)

• Gene sequence/expression analysis

• Turbocodes (channel coding)

Dealing with time

• In many systems, data arrives sequentially

• Dynamic Bayes nets (DBNs) can be used to

model such time-series (sequence) datamodel such time-series (sequence) data

• Special cases of DBNs include

– State-space models

– Hidden Markov models (HMMs)

State-space model (SSM)/

Linear Dynamical System (LDS)

X1 X2 X3 “True” state

Y1 Y3Y2
Noisy observations

Example: LDS for 2D tracking

Sparse linear Gaussian systems

) sparse graphs

Y1 Y3

X1 X2
X3

Y2

X1

X1 X2

X2

X1 X2

y1

y1 y2

y2

y2y1

oo

o o

Hidden Markov model (HMM)

Y Y

X1 X2 X3 Phones/ words

Y1 Y3Y2 acoustic signal

transition

matrix

Gaussian

observations

Sparse transition matrix) sparse graph

Probabilistic graphical models

Probabilistic models

Directed Undirected

Graphical models

(Bayesian belief nets) (Markov nets)
Alarm network

State-space models

HMMs

Naïve Bayes classifier

PCA/ ICA

Markov Random Field

Boltzmann machine

Ising model

Max-ent model

Log-linear models

(Bayesian belief nets) (Markov nets)

Toy example of a Markov net

X1 X2

X5

X3

X4

e.g, X1 ? X4, X5 | X2, X3Xi ? Xrest | Xnbrs

Potential functions

Partition function

A real Markov net

Observed pixels

Latent causes

•Estimate P(x1, …, xn | y1, …, yn)

• Ψ(xi, yi) = P(observe yi | xi): local evidence

• Ψ(xi, xj) / exp(-J(xi, xj)): compatibility matrix

c.f., Ising/Potts model

Inference

• Posterior probabilities

– Probability of any event given any evidence

• Most likely explanation

– Scenario that explains evidence

• Rational decision making

Explaining away effect

• Rational decision making

– Maximize expected utility

– Value of Information

• Effect of intervention

– Causal analysis

Earthquake

Radio

Burglary

Alarm

Call

Radio

Call

Figure from N. Friedman

Kalman filtering (recursive state

estimation in an LDS)

X1 X2
X3

Y1 Y3Y2

Estimate P(Xt|y1:t) from P(Xt-1|y1:t-1) and yt

•Predict: P(Xt|y1:t-1) = sXt-1 P(Xt|Xt-1) P(Xt-1|y1:t-1)

•Update: P(Xt|y1:t) / P(yt|Xt) P(Xt|y1:t-1)

Forwards algorithm for HMMs

Predict:

Update:

O(T S2) time using dynamic programming

Discrete-state analog of Kalman filter

Message passing view of

forwards algorithm

Xt-1 Xt
Xt+1

αt|t-1

b bt+1

Yt-1 Yt+1Yt

bt
bt+1

Forwards-backwards algorithm

Y Y

Xt-1 Xt Xt+1

Y

αt|t-1
βt

bt

Yt-1 Yt+1Yt

Discrete analog of RTS smoother

Belief Propagation

Collect Distribute

Generalization of forwards-backwards algo. /RTS smoother

from chains to trees - linear time, two-pass algorithm

aka Pearl’s algorithm, sum-product algorithm

rootroot

Collect

rootroot

Distribute

Figure from P. Green

BP: parallel, distributed version

X1

X

X3 X4

X1

X2

X3 X4

Stage 1. Stage 2.

X2
X2

Representing potentials

• For discrete variables, potentials can be

represented as multi-dimensional arrays (vectors

for single node potentials)

• For jointly Gaussian variables, we can use• For jointly Gaussian variables, we can use

ψ(X) = (µ, Σ) or ψ(X) = (Σ-1 µ ,Σ-1)

• In general, we can use mixtures of Gaussians or

non-parametric forms

Manipulating discrete potentials
Marginalization

Multiplication

80% of time is spent manipulating such multi-dimensional arrays!

Manipulating Gaussian potentials

• Closed-form formulae for marginalization

and multiplication

• O(1)/O(n3) complexity per operation

• Mixtures of Gaussian potentials are not

closed under marginalization, so need

approximations (moment matching)

Semi-rings

• By redefining * and +, same code

implements Kalman filter and forwards

algorithmalgorithm

• By replacing + with max, can convert from

forwards (sum-product) to Viterbi algorithm

(max-product)

• BP works on any commutative semi-ring!

Inference in general graphs
• BP is only guaranteed to be correct for trees

• A general graph should be converted to a

junction tree, by clustering nodes

• Computationally complexity is exponential

in size of the resulting clusters (NP-hard)in size of the resulting clusters (NP-hard)

Approximate inference
• Why?

– to avoid exponential complexity of exact inference in
discrete loopy graphs

– Because cannot compute messages in closed form (even
for trees) in the non-linear/non-Gaussian case

• How?

– Deterministic approximations: loopy BP, mean field, – Deterministic approximations: loopy BP, mean field,
structured variational, etc

– Stochastic approximations: MCMC (Gibbs sampling),
likelihood weighting, particle filtering, etc

- Algorithms make different speed/accuracy tradeoffs

- Should provide the user with a choice of algorithms

Learning

• Parameter estimation

• Model selection (structure learning)

Parameter learning

Conditional Probability Tables (CPTs)

X1 X2 X3 X4 X5 X6

0 1 0 0 0 0

1 ? 1 1 ? 1

…

iid data

Figure from M. Jordan

…

1 1 1 0 1 1

If some values are missing

(latent variables), we must use

gradient descent or EM to compute the

(locally) maximum likelihood estimates

Structure learning (data mining)

Gene expression data

Genetic pathway

Figure from N. Friedman

Structure learning
•Learning the optimal structure is NP-hard (except for trees)

•Hence use heuristic search through space of DAGs or

PDAGs or node orderings

•Search algorithms: hill climbing, simulated annealing, GAs

•Scoring function is often marginal likelihood, or an

approximation like BIC/MDL or AICapproximation like BIC/MDL or AIC

Structural complexity penalty

Summary:

why are graphical models useful?

- Factored representation may have exponentially
fewer parameters than full joint P(X1,…,Xn) =>

- lower time complexity (less time for inference)
- lower sample complexity (less data for learning)- lower sample complexity (less data for learning)

- Graph structure supports
- Modular representation of knowledge
- Local, distributed algorithms for inference and learning
- Intuitive (possibly causal) interpretation

The Bayes Net Toolbox for Matlab

• What is BNT?

• Why yet another BN toolbox?

• Why Matlab?• Why Matlab?

• An overview of BNT’s design

• How to use BNT

• Other GM projects

What is BNT?

• BNT is an open-source collection of matlab

functions for inference and learning of

(directed) graphical models

• Started in Summer 1997 (DEC CRL),

development continued while at UCBdevelopment continued while at UCB

• Over 100,000 hits and about 30,000

downloads since May 2000

• About 43,000 lines of code (of which 8,000

are comments)

Why yet another BN toolbox?
• In 1997, there were very few BN programs, and

all failed to satisfy the following desiderata:

– Must support real-valued (vector) data

– Must support learning (params and struct)

– Must support time series

– Must support exact and approximate inference

– Must separate API from UI– Must separate API from UI

– Must support MRFs as well as BNs

– Must be possible to add new models and algorithms

– Preferably free

– Preferably open-source

– Preferably easy to read/ modify

– Preferably fast

BNT meets all these criteria except for the last

A comparison of GM software

www.ai.mit.edu/~murphyk/Software/Bayes/bnsoft.html

Summary of existing GM software
• ~8 commercial products (Analytica, BayesiaLab,

Bayesware, Business Navigator, Ergo, Hugin, MIM,

Netica), focused on data mining and decision
support; most have free “student” versions

• ~30 academic programs, of which ~20 have
source code (mostly Java, some C++/ Lisp)source code (mostly Java, some C++/ Lisp)

• Most focus on exact inference in discrete,
static, directed graphs (notable exceptions:
BUGS and VIBES)

• Many have nice GUIs and database support

BNT contains more features than most of these packages combined!

Why Matlab?
• Pros

– Excellent interactive development environment

– Excellent numerical algorithms (e.g., SVD)

– Excellent data visualization

– Many other toolboxes, e.g., netlab

– Code is high-level and easy to read (e.g., Kalman filter
in 5 lines of code)in 5 lines of code)

– Matlab is the lingua franca of engineers and NIPS

• Cons:

– Slow

– Commercial license is expensive

– Poor support for complex data structures

• Other languages I would consider in hindsight:

– Lush, R, Ocaml, Numpy, Lisp, Java

BNT’s class structure

• Models – bnet, mnet, DBN, factor graph,

influence (decision) diagram

• CPDs – Gaussian, tabular, softmax, etc

• Potentials – discrete, Gaussian, mixed

• Inference engines• Inference engines

– Exact - junction tree, variable elimination

– Approximate - (loopy) belief propagation, sampling

• Learning engines

– Parameters – EM, (conjugate gradient)

– Structure - MCMC over graphs, K2

Example: mixture of experts

X

Q

Y

softmax/logistic function

1. Making the graph

X

Q

X = 1; Q = 2; Y = 3;

dag = zeros(3,3);

dag(X, [Q Y]) = 1;

dag(Q, Y) = 1;

Y

•Graphs are (sparse) adjacency matrices

•GUI would be useful for creating complex graphs

•Repetitive graph structure (e.g., chains, grids) is best

created using a script (as above)

2. Making the model

node_sizes = [1 2 1];

dnodes = [2];

bnet = mk_bnet(dag, node_sizes, …

‘discrete’, dnodes);

X

Q‘discrete’, dnodes);

Y
•X is always observed input, hence only one effective value

•Q is a hidden binary node

•Y is a hidden scalar node

•bnet is a struct, but should be an object

•mk_bnet has many optional arguments, passed as string/value pairs

3. Specifying the parameters

X

Q

bnet.CPD{X} = root_CPD(bnet, X);

bnet.CPD{Q} = softmax_CPD(bnet, Q);

bnet.CPD{Y} = gaussian_CPD(bnet, Y);

Y
•CPDs are objects which support various methods such as

•Convert_from_CPD_to_potential

•Maximize_params_given_expected_suff_stats

•Each CPD is created with random parameters

•Each CPD constructor has many optional arguments

4. Training the model
load data –ascii;

ncases = size(data, 1);

cases = cell(3, ncases);

observed = [X Y];

cases(observed, :) = num2cell(data’);

•Training data is stored in cell arrays (slow!), to allow for

variable-sized nodes and missing values

X

Y

Q

variable-sized nodes and missing values

•cases{i,t} = value of node i in case t

engine = jtree_inf_engine(bnet, observed);

•Any inference engine could be used for this trivial model

bnet2 = learn_params_em(engine, cases);

•We use EM since the Q nodes are hidden during training

•learn_params_em is a function, but should be an object

Before training

After training

5. Inference/ prediction

engine = jtree_inf_engine(bnet2);

evidence = cell(1,3);

evidence{X} = 0.68; % Q and Y are hidden

engine = enter_evidence(engine, evidence);

m = marginal_nodes(engine, Y);

m.mu % E[Y|X]

m.Sigma % Cov[Y|X]

X

Y

Q

Other kinds of models that BNT supports

• Classification/ regression: linear regression,
logistic regression, cluster weighted regression,
hierarchical mixtures of experts, naïve Bayes

• Dimensionality reduction: probabilistic PCA,
factor analysis, probabilistic ICA

• Density estimation: mixtures of Gaussians• Density estimation: mixtures of Gaussians

• State-space models: LDS, switching LDS, tree-
structured AR models

• HMM variants: input-output HMM, factorial
HMM, coupled HMM, DBNs

• Probabilistic expert systems: QMR, Alarm, etc.

• Limited-memory influence diagrams (LIMID)

• Undirected graphical models (MRFs)

Summary of BNT

• Provides many different kinds of models/
CPDs – lego brick philosophy

• Provides many inference algorithms, with
different speed/ accuracy/ generality

• Provides many inference algorithms, with
different speed/ accuracy/ generality
tradeoffs (to be chosen by user)

• Provides several learning algorithms
(parameters and structure)

• Source code is easy to read and extend

What is wrong with BNT?
• It is slow

• It has little support for undirected models

• Models are not bona fide objects

• Learning engines are not objects

• It does not support online inference/learning• It does not support online inference/learning

• It does not support Bayesian estimation

• It has no GUI

• It has no file parser

• It is more complex than necessary

Some alternatives to BNT?

• HUGIN: commercial

– Junction tree inference only, no support for DBNs

• PNL: Probabilistic Networks Library (Intel)

– Open-source C++, based on BNT, work in progress (due 12/03)

• GMTk: Graphical Models toolkit (Bilmes, Zweig/ UW)

– Open source C++, designed for ASR (HTK), binary avail now

• AutoBayes: code generator (Fischer, Buntine/NASA Ames)

– Prolog generates matlab/C, not avail. to public

• VIBES: variational inference (Winn / Bishop, U. Cambridge)

– conjugate exponential models, work in progress

• BUGS: (Spiegelhalter et al., MRC UK)

– Gibbs sampling for Bayesian DAGs, binary avail. since ’96

Why yet another GM toolbox?
• In 2003, there are still very few GM programs that

satisfy the following desiderata:

– Must support real-valued (vector) data

– Must support learning (params and struct)

– Must support time series

– Must support exact and approximate inference

– Must separate API from UI– Must separate API from UI

– Must support MRFs as well as BNs

– Must be possible to add new models and algorithms

– Preferably free

– Preferably open-source

– Must be easy to read/ modify

– Must be fast (smarter algorithms, not better coding!)

– Must be integrated with data analysis environment

