# An introduction to Bayesian Networks and the Bayes Net Toolbox for Matlab 

Kevin Murphy
MIT AI Lab
19 May 2003

## Outline

- An introduction to Bayesian networks
- An overview of BNT


## What is a Bayes (belief) net?

Compact representation of joint probability distributions via conditional independence

Qualitative part:
Directed acyclic graph (DAG)

- Nodes - random vars.

Together:
Define a unique distribution in a factored form


Quantitative part:
Set of conditional
probability distributions
$P(B, E, A, C, R)=P(B) P(E) P(A \mid B, E) P(R \mid E) P(C \mid A)$
Figure from N. Friedman

## What is a Bayes net?

A node is conditionally independent of its ancestors given its parents, e.g.

C ? R, B, E I A Hence

$$
\begin{aligned}
& P(E, B, R, A, C) \\
& \quad=P(E) P(B \mid E) P(R \mid B, E) P(A \mid R, B, E) P(C \mid A, R, B, E) \\
& \quad=P(E) P(B) P(R \mid E) P(A \mid B, E) P(C \mid A)
\end{aligned}
$$



From $2^{5}-1=31$ parameters to $1+1+2+4+2=10$

## Why are Bayes nets useful?

- Graph structure supports
- Modular representation of knowledge
- Local, distributed algorithms for inference and learning
- Intuitive (possibly causal) interpretation
- Factored representation may have exponentially fewer parameters than full joint $\mathrm{P}\left(\mathrm{X}_{1}, \ldots, \mathrm{X}_{\mathrm{n}}\right)=>$
- lower sample complexity (less data for learning)
- lower time complexity (less time for inference)


## What can Bayes nets be used for?

- Posterior probabilities
- Probability of any event given any evidence
- Most likely explanation
- Scenario that explains evidence
- Rational decision making
- Maximize expected utility
- Value of Information
- Effect of intervention
- Causal analysis

Explaining away effect


Figure from N. Friedman

## A real Bayes net: Alarm

Domain: Monitoring Intensive-Care Patients

- 37 variables
- 509 parameters
...instead of $2^{37}$


Figure from N. Friedman

## More real-world BN applications

- "Microsoft's competitive advantage lies in its expertise in Bayesian networks"
-- Bill Gates, quoted in LA Times, 1996
- MS Answer Wizards, (printer) troubleshooters
- Medical diagnosis
- Genetic pedigree analysis
- Speech recognition (HMMs)
- Gene sequence/expression analysis
- Turbocodes (channel coding)



## Dealing with time

- In many systems, data arrives sequentially
- Dynamic Bayes nets (DBNs) can be used to model such time-series (sequence) data
- Special cases of DBNs include
- State-space models
- Hidden Markov models (HMMs)


# State-space model (SSM)/ Linear Dynamical System (LDS) 



## Example: LDS for 2D tracking

$\left(\begin{array}{l}x_{t} \\ y_{t} \\ \dot{x}_{t} \\ \dot{y}_{t}\end{array}\right)=\left(\begin{array}{cccc}1 & 0 & \Delta & 0 \\ 0 & 1 & 0 & \Delta \\ \mathrm{o} & 0 & 1 & 0 \\ 0 & \mathrm{O} & \mathrm{O} & 1\end{array}\right)\left(\begin{array}{l}x_{t-1} \\ y_{t-1} \\ \dot{x}_{t-1} \\ \dot{y}_{t-1}\end{array}\right)+v_{t} \quad$ Sparse linear Gaussian systems $\binom{x_{t}^{o}}{y_{t}^{o}}=\left(\begin{array}{llll}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0\end{array}\right)\left(\begin{array}{l}x_{t} \\ y_{t} \\ \dot{x}_{t} \\ \dot{y}_{t}\end{array}\right)+W_{t}$


## Hidden Markov model (HMM)



Sparse transition matrix $) /$ sparse graph

$$
\begin{aligned}
& P\left(X_{t}=j \mid X_{t-1}=i\right)=A(i, j){ }_{l}^{\text {transition }} \\
& p\left(Y_{t}=y \mid X_{t}=i\right)=\mathcal{N}\left(y ; \mu_{i}, \Sigma_{i}\right)
\end{aligned} \begin{aligned}
& \text { Gaussian } \\
& \text { observations }
\end{aligned}
$$

## Probabilistic graphical models

## Probabilistic models

## Graphical models



Undirected
(Markov nets)
Markov Random Field
Boltzmann machine
Ising model
Max-ent model
Log-linear models

## Toy example of a Markov net



$$
\begin{gathered}
\mathrm{X}_{\mathrm{i}} \text { ? } \mathrm{X}_{\text {rest }} \left\lvert\, \mathrm{X}_{\text {nbrs }} \quad \begin{array}{c}
\text { e.g, } \mathrm{X}_{1} \text { ? } \mathrm{X}_{4}, \mathrm{X}_{5} \mid \mathrm{X}_{2}, \mathrm{X}_{3} \\
P\left(X_{1: 5}\right)= \\
\text { Potential functions }
\end{array} \underbrace{1}_{\text {Partition function }} \psi\left(X_{1}, X_{2}, X_{3}\right) \psi\left(X_{3}, X_{4}\right) \psi\left(X_{4}, X_{5}\right)\right.
\end{gathered}
$$

## A real Markov net


-Estimate $\mathrm{P}\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}} \mid \mathrm{y}_{1}, \ldots, \mathrm{y}_{\mathrm{n}}\right)$

- $\Psi\left(x_{i}, y_{i}\right)=P\left(\right.$ observe $\left.y_{i} \mid x_{i}\right)$ : local evidence
- $\Psi\left(\mathrm{x}_{\mathrm{i}}, \mathrm{x}_{\mathrm{j}}\right) / \exp \left(-\mathrm{J}\left(\mathrm{x}_{\mathrm{i}}, \mathrm{x}_{\mathrm{j}}\right)\right)$ : compatibility matrix
c.f., Ising/Potts model


## Inference

- Posterior probabilities
- Probability of any event given any evidence
- Most likely explanation
- Scenario that explains evidence
- Rational decision making
- Maximize expected utility
- Value of Information
- Effect of intervention
- Causal analysis

Explaining away effect


Figure from N. Friedman

## Kalman filtering (recursive state estimation in an LDS)




Estimate $\mathrm{P}\left(\mathrm{X}_{\mathrm{t}} \mathrm{y}_{1: \mathrm{t}}\right)$ from $\mathrm{P}\left(\mathrm{X}_{\mathrm{t}-1} \mathrm{l}_{1: \mathrm{t}-1}\right)$ and $\mathrm{y}_{\mathrm{t}}$
-Predict: $\mathrm{P}\left(\mathrm{X}_{\mathrm{t}} \mathrm{y}_{1: t-1}\right)=\mathrm{s}_{\mathrm{Xt}-1} \mathrm{P}\left(\mathrm{X}_{\mathrm{t}} \mid \mathrm{X}_{\mathrm{t}-1}\right) \mathrm{P}\left(\mathrm{X}_{\mathrm{t}-1} \mathrm{y}_{1: \mathrm{t}-1}\right)$
-Update: $\mathrm{P}\left(\mathrm{X}_{\mathrm{t}} \mathrm{y}_{1: \mathrm{t}}\right) / \mathrm{P}\left(\mathrm{y}_{\mathrm{t}} \mid \mathrm{X}_{\mathrm{t}}\right) \mathrm{P}\left(\mathrm{X}_{\mathrm{t}} \mathrm{y}_{1: \mathrm{t}-1}\right)$

## Forwards algorithm for HMMs

Predict:

$$
\begin{aligned}
& P\left(X_{t} \mid y_{1: t-1}\right)=\sum_{x_{t-1}} P\left(X_{t} \mid x_{t-1}\right) P\left(X_{t-1} \mid y_{1: t-1}\right) \\
& \alpha_{t \mid t-1}=A^{T} \alpha_{t-1}
\end{aligned}
$$

Update:
$P\left(X_{t}=i \mid y_{1: t}\right) \propto P\left(X_{t}=i \mid y_{1: t-1}\right) p\left(y_{t} \mid X_{t}=i\right)$
$\alpha_{t} \propto \alpha_{t \mid t-1} \cdot * b_{t}$
Discrete-state analog of Kalman filter
$\mathrm{O}\left(\mathrm{T} \mathrm{S}^{2}\right)$ time using dynamic programming

## Message passing view of forwards algorithm


$\alpha_{t} \propto \alpha_{t \mid t-1} * b_{t}$

## Forwards-backwards algorithm



Discrete analog of RTS smoother
$P\left(X_{t} \mid y_{1: T)} \propto P\left(X_{t} \mid y_{1: t-1}\right) P\left(y_{t} \mid X_{t}\right) P\left(y_{t+1: T} \mid X_{t}\right)\right.$
$\gamma_{t}(i) \propto \alpha_{t \mid t-1}(i) b_{t}(i) \beta_{t}(i)$

## Belief Propagation

aka Pearl's algorithm, sum-product algorithm

Generalization of forwards-backwards algo. /RTS smoother from chains to trees - linear time, two-pass algorithm

Collect


Distribute


Figure from P. Green

## BP: parallel, distributed version


$\operatorname{bel}\left(x_{3}\right) \propto$

$$
\begin{array}{r}
\frac{\mu_{1 \rightarrow 3}\left(x_{3}\right) \mu_{2 \rightarrow 3}\left(x_{3}\right) \mu_{4 \rightarrow 3}\left(x_{3}\right)}{\underline{\mu_{3 \rightarrow 4}\left(x_{4}\right)}=} \\
\sum_{x_{1}, x_{2}, x_{3}} \\
\mu_{1 \rightarrow 3}\left(x_{3}\right)
\end{array}
$$

## Representing potentials

- For discrete variables, potentials can be represented as multi-dimensional arrays (vectors for single node potentials)
- For jointly Gaussian variables, we can use

$$
\psi(\mathrm{X})=(\mu, \Sigma) \text { or } \psi(\mathrm{X})=\left(\Sigma^{-1} \mu, \Sigma^{-1}\right)
$$

- In general, we can use mixtures of Gaussians or non-parametric forms


## Manipulating discrete potentials

Marginalization

$$
\mu_{3}\left(x_{3}, x_{4}\right)=\sum_{x_{1}, x_{2}} \psi\left(x_{1}, x_{2}, x_{3}, x_{4}\right)
$$

Multiplication
$\phi\left(x_{1}, x_{3}, x_{4}\right)=\mu_{3}\left(x_{3}, x_{4}\right) \times \mu_{1}\left(x_{1}, x_{3}\right)$
$80 \%$ of time is spent manipulating such multi-dimensional arrays!

## Manipulating Gaussian potentials

- Closed-form formulae for marginalization and multiplication
- $\mathrm{O}(1) / \mathrm{O}\left(\mathrm{n}^{3}\right)$ complexity per operation
- Mixtures of Gaussian potentials are not closed under marginalization, so need approximations (moment matching)


## Semi-rings

- By redefining * and +, same code implements Kalman filter and forwards algorithm
- By replacing + with max, can convert from forwards (sum-product) to Viterbi algorithm (max-product)
- BP works on any commutative semi-ring!


## Inference in general graphs

- BP is only guaranteed to be correct for trees
- A general graph should be converted to a junction tree, by clustering nodes
- Computationally complexity is exponential in size of the resulting clusters (NP-hard)



## Approximate inference

- Why?
- to avoid exponential complexity of exact inference in discrete loopy graphs
- Because cannot compute messages in closed form (even for trees) in the non-linear/non-Gaussian case
- How?
- Deterministic approximations: loopy BP, mean field, structured variational, etc
- Stochastic approximations: MCMC (Gibbs sampling), likelihood weighting, particle filtering, etc
- Algorithms make different speed/accuracy tradeoffs
- Should provide the user with a choice of algorithms


## Learning

- Parameter estimation
- Model selection (structure learning)


## Parameter learning

iid data

| $\mathrm{X}_{1}$ | $\mathrm{X}_{2}$ | $\mathrm{X}_{3}$ | $\mathrm{X}_{4}$ | $\mathrm{X}_{5}$ | $\mathrm{X}_{6}$ |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 0 | 1 | 0 | 0 | 0 | 0 |
| 1 | $?$ | 1 | 1 | $?$ | 1 |
|  |  | $\cdots$ |  |  |  |
| 1 | 1 |  | 0 | 1 | 1 |

Conditional Probability Tables (CPTs)

If some values are missing (latent variables), we must use
 gradient descent or EM to compute the (locally) maximum likelihood estimates

Figure from M. Jordan

## Structure learning (data mining)

## Gene expression data



Genetic pathway


Figure from N. Friedman

## Structure learning

-Learning the optimal structure is NP-hard (except for trees)

- Hence use heuristic search through space of DAGs or PDAGs or node orderings
-Search algorithms: hill climbing, simulated annealing, GAs -Scoring function is often marginal likelihood, or an approximation like BIC/MDL or AIC

$$
\begin{aligned}
G^{*} & =\arg \max _{G} \log P(D \mid G) P(G) \\
& =\log \int_{\theta} P(D \mid G, \theta) P(\theta \mid G) \\
& \stackrel{B I C}{\approx} \log P\left(D \mid G, \theta^{M L}\right)-\lambda \operatorname{dim}(G)
\end{aligned}
$$

## Summary: <br> why are graphical models useful?

- Factored representation may have exponentially fewer parameters than full joint $\mathrm{P}\left(\mathrm{X}_{1}, \ldots, \mathrm{X}_{\mathrm{n}}\right)=>$
- lower time complexity (less time for inference)
- lower sample complexity (less data for learning)
- Graph structure supports
- Modular representation of knowledge
- Local, distributed algorithms for inference and learning
- Intuitive (possibly causal) interpretation


## The Bayes Net Toolbox for Matlab

- What is BNT?
- Why yet another BN toolbox?
- Why Matlab?
- An overview of BNT's design
- How to use BNT
- Other GM projects


## What is BNT?

- BNT is an open-source collection of matlab functions for inference and learning of (directed) graphical models
- Started in Summer 1997 (DEC CRL), development continued while at UCB
- Over 100,000 hits and about 30,000 downloads since May 2000
- About 43,000 lines of code (of which 8,000 are comments)


## Why yet another BN toolbox?

- In 1997, there were very few BN programs, and all failed to satisfy the following desiderata:
- Must support real-valued (vector) data
- Must support learning (params and struct)
- Must support time series
- Must support exact and approximate inference
- Must separate API from UI
- Must support MRFs as well as BNs
- Must be possible to add new models and algorithms
- Preferably free
- Preferably open-source
- Preferably easy to read/ modify
- Preferably fast

BNT meets all these criteria except for the last

## A comparison of GM software

| Name | Authors | Sr. | 辰完 $\theta$ G |
| :---: | :---: | :---: | :---: |
| Analytica | Lumina | N | Y W N N N |
| Bayda | U. Helsinki | Java | Y Y Y N F |
| BayesBuilder | Nijman (Nijmegen) | N | N Y N N N |
| B. Knl. Disc. | KMI/Open U. | N | D Y Y Y F |
| B-course | U. Helsinki | N | D Y Y Y F |
| BN pow. cstr. | Cheng (U.Alberta) | N | N Y Y Y |
| BN Toolbox | Murphy (UCB) | Matlab | Y N Y |
| BucketElim | Rish (UCI) | C+ | N N |
| BUGS | MRC/Imperial | N | Y W Y N F |

www.ai.mit.edu/~murphyk/Software/Bayes/bnsoft.html

| CIspace | Poole (UBC) | Java | N Y | N | N | F |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Ergo | Noetic Systems | N | N | Y | N | N | N |
| Genie/Smile | U. Pittsburgh | N | N | W | N | N | F |
| Hugin Light | Hugin | N | Y | W | N | N | N |
| Ideal | Rockwell | Lisp | N | Y | N | N | F |
| Java Bayes | Cozman (CMU) | Java | N | Y | N | N | F |
| MIM | HyperGraph | N | Y | Y | Y | Y | N |
| MSBN | Microsoft | N | N | W | N | N | F |
| Netica | Norsys | N | Y | W | Y | N | N |
| Pronel | Hugin | N | N | W | Y | $Y$ | F |
| RISO | Dodier (Colorado) | Java | Y | $Y$ | N | N | F |
| Tetrad | CMU | N | Y | N | Y | $Y$ | F |

## Summary of existing GM software

- $\sim 8$ commercial products (Analytica, BayesiaLab, Bayesware, Business Navigator, Ergo, Hugin, MIM, Netica), focused on data mining and decision support; most have free "student" versions
- $\sim 30$ academic programs, of which $\sim 20$ have source code (mostly Java, some C++/ Lisp)
- Most focus on exact inference in discrete, static, directed graphs (notable exceptions: BUGS and VIBES)
- Many have nice GUIs and database support

BNT contains more features than most of these packages combined!

## Why Matlab?

- Pros
- Excellent interactive development environment
- Excellent numerical algorithms (e.g., SVD)
- Excellent data visualization
- Many other toolboxes, e.g., netlab
- Code is high-level and easy to read (e.g., Kalman filter in 5 lines of code)
- Matlab is the lingua franca of engineers and NIPS
- Cons:
- Slow
- Commercial license is expensive
- Poor support for complex data structures
- Other languages I would consider in hindsight:
- Lush, R, Ocaml, Numpy, Lisp, Java


## BNT's class structure

- Models - bnet, mnet, DBN, factor graph, influence (decision) diagram
- CPDs - Gaussian, tabular, softmax, etc
- Potentials - discrete, Gaussian, mixed
- Inference engines
- Exact - junction tree, variable elimination
- Approximate - (loopy) belief propagation, sampling
- Learning engines
- Parameters - EM, (conjugate gradient)
- Structure - MCMC over graphs, K2


## Example: mixture of experts



$P(Q=i \mid x)=\frac{e^{w_{i}^{T} x}}{\sum_{j} e^{w_{j}^{T} x}}$ softmax/logistic function
$p(y \mid Q=i, x)=\mathcal{N}\left(y ; \mu_{i}+\beta_{i}^{T} x, \sigma_{i}\right)$

## 1. Making the graph

$$
\begin{aligned}
& \mathrm{X}=1 ; \mathrm{Q}=2 ; \mathrm{Y}=3 ; \\
& \operatorname{dag}=\operatorname{zeros}(3,3) ; \\
& \operatorname{dag}(\mathrm{X},[\mathrm{Q} \mathrm{Y}])=1 ; \\
& \operatorname{dag}(\mathrm{Q}, \mathrm{Y})=1 ;
\end{aligned}
$$

-Graphs are (sparse) adjacency matrices
-GUI would be useful for creating complex graphs
-Repetitive graph structure (e.g., chains, grids) is best
 created using a script (as above)

## 2. Making the model

```
node_sizes = [1 2 1];
dnodes = [2];
bnet = mk_bnet(dag, node_sizes, ...
    'discrete', dnodes);
```

- X is always observed input, hence only one effective value

$\bullet$ Q is a hidden binary node
$\bullet$ Y is a hidden scalar node
-bnet is a struct, but should be an object
$\bullet$ •mk_bnet has many optional arguments, passed as string/value pairs


## 3. Specifying the parameters

```
bnet.CPD{X} = root_CPD(bnet, X);
bnet.CPD{Q} = softmax_CPD(bnet, Q);
bnet.CPD{Y} = gaussian_CPD(bnet, Y);
```

-CPDs are objects which support various methods such as -Convert_from_CPD_to_potential

- Maximize_params_given_expected_suff_stats

-Each CPD is created with random parameters
-Each CPD constructor has many optional arguments


## 4. Training the model

```
load data -ascii;
ncases = size(data, 1);
cases = cell(3, ncases);
observed = [X Y];
cases(observed, :) = num2cell(data');
```

-Training data is stored in cell arrays (slow!), to allow for variable-sized nodes and missing values - cases $\{i, t\}=$ value of node $i$ in case $t$
engine = jtree_inf_engine(bnet, observed);
-Any inference engine could be used for this trivial model bnet2 = learn_params_em(engine, cases);
-We use EM since the Q nodes are hidden during training -learn_params_em is a function, but should be an object

## Before training



## After training



## 5. Inference/ prediction

engine = jtree_inf_engine(bnet2);
evidence = cell(1,3);
evidence\{X\} $=0.68$; $\% \mathrm{Q}$ and Y are hidden
engine = enter_evidence(engine, evidence);
m = marginal_nodes(engine, Y);
m.mu \% E[Y|X]
m.Sigma \% Cov[Y|X]


## Other kinds of models that BNT supports

- Classification/ regression: linear regression, logistic regression, cluster weighted regression, hierarchical mixtures of experts, naïve Bayes
- Dimensionality reduction: probabilistic PCA, factor analysis, probabilistic ICA
- Density estimation: mixtures of Gaussians
- State-space models: LDS, switching LDS, treestructured AR models
- HMM variants: input-output HMM, factorial HMM, coupled HMM, DBNs
- Probabilistic expert systems: QMR, Alarm, etc.
- Limited-memory influence diagrams (LIMID)
- Undirected graphical models (MRFs)


## Summary of BNT

- Provides many different kinds of models/ CPDs - lego brick philosophy
- Provides many inference algorithms, with different speed/ accuracy/ generality tradeoffs (to be chosen by user)
- Provides several learning algorithms (parameters and structure)
- Source code is easy to read and extend


## What is wrong with BNT?

- It is slow
- It has little support for undirected models
- Models are not bona fide objects
- Learning engines are not objects
- It does not support online inference/learning
- It does not support Bayesian estimation
- It has no GUI
- It has no file parser
- It is more complex than necessary


## Some alternatives to BNT?

- HUGIN: commercial
- Junction tree inference only, no support for DBNs
- PNL: Probabilistic Networks Library (Intel)
- Open-source C++, based on BNT, work in progress (due 12/03)
- GMTk: Graphical Models toolkit (Bilmes, Zweig/ UW)
- Open source C++, designed for ASR (HTK), binary avail now
- AutoBayes: code generator (Fischer, Buntine/NASA Ames)
- Prolog generates matlab/C, not avail. to public
- VIBES: variational inference (Winn / Bishop, U. Cambridge)
- conjugate exponential models, work in progress
- BUGS: (Spiegelhalter et al., MRC UK)
- Gibbs sampling for Bayesian DAGs, binary avail. since '96


## Why yet another GM toolbox?

- In 2003, there are still very few GM programs that satisfy the following desiderata:
- Must support real-valued (vector) data
- Must support learning (params and struct)
- Must support time series
- Must support exact and approximate inference
- Must separate API from UI
- Must support MRFs as well as BNs
- Must be possible to add new models and algorithms

Preferably free

- Preferably open-source
- Must be easy to read/ modify
- Must be fast (smarter algorithms, not better coding!)
- Must be integrated with data analysis environment

