Segmentation via Graph Cuts - Prep Reading

Balakrishna Thiagarajan

Computer Science and Engineering State University of New York at Buffalo

Segmentation

- Segmentation refers to the process of partitioning a digital image into multiple segments ie. sets of pixels.
- Image segmentation is typically used to locate objects and boundaries like lines, curves, etc. in images.
- Important property of segmentation is that adjacent regions are significantly different with respect to the same characteristic(s)

Important Definitions in Graphs

Edge Connectivity:

- It is the minimum number of edges whose removal results in a disconnected graph. It is denoted by $k(G)$.
- For a graph G, if $k(G)=1$ then G is called an l-connected graph.

Important Definitions in Graphs

Example:

GRAPH 1

The edge connectivity for the GRAPH 1 is 2 .
The edge connectivity for the GRAPH 2 is 3 .

Important Definitions in Graphs

Cut:

- A cut in a graph is a set of edges whose removal disconnects the graph.
- A minimum cut is a cut with a minimum number of edges. It is denoted by S .
- For a non-trivial graph G iff $|\mathrm{S}|=\mathrm{k}(\mathrm{G})$.

Important Definitions in Graphs

Example:

GRAPH 1

GRAPH 2

The min-cut for GRAPH 1 is across the vertex B or D.
The min-cut for GRAPH 2 is across the vertex A, B, C or D.

Important Definitions in Graphs

Distance d(u,v):

- The distance $\mathrm{d}(\mathrm{u}, \mathrm{v})$ between vertices u and v in G is the minimum length of a path joining u and v.
- The length of a path is the number of edges in it.

Important Definitions in Graphs

Diameter of a connected graph:

- It is the longest distance between any two vertices in G. It is denoted by diam(G).

Degree of vertex:

- Its is the number of edges incident with the vertex v . It is denoted by $\operatorname{deg}(\mathrm{v})$.
- The minimum degree of a vertex in G is denoted by delta(G).

Important Definitions in Graphs

Example:

$\mathrm{d}(\mathrm{A}, \mathrm{D})=1 \quad \mathrm{~d}(\mathrm{~B}, \mathrm{D})=2 \quad \mathrm{~d}(\mathrm{~A}, \mathrm{E})=2$
Diameter of the above graph $=2$
$\operatorname{deg}(\mathrm{A})=3 \quad \operatorname{deg}(\mathrm{~B})=2 \quad \operatorname{deg}(\mathrm{E})=1$
Minimum degree of a vertex in $G=1$

Thank You!!

