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THE SUCCESS OF AUTONOMOUS
navigation (or any sensor-based control sys-
tem) depends largely on how much we can
control the environment. In a controlled envi-
ronment, we can define a few known land-
marks (transponders, visual markers, and so
on) before system design, and the navigation
system can employ landmark detectors.

Such navigation systems typically employ
a model-based design method. However, as
we show, these methods have difficulties
dealing with learning in complex, changing
environments. Model-free design methods
present a potentially powerful alternative.

To overcome the limitations of model-
based methods, we have developed Shoslif
(Self-organizing Hierarchical Optimal Sub-
space Learning and Inference Framework),
a model-free, learning-based approach.
Shoslif belongs to the class of appearance-
based methods, which apply statistical tools
directly to normalized image pixels.1,2

Shoslif introduces mechanisms such as
automatic feature derivation, a self-orga-
nizing tree structure to reach a very low log-
arithmic time complexity, one-instance
learning, and incremental learning without
forgetting prior memorized information. In
addition, we’ve created a state-based ver-
sion of Shoslif that lets humans teach robots
to use past history (state) and local views
that are useful for disambiguation.

Shoslif-N, which we started developing in

1994, is a prototype autonomous navigation
system using Shoslif. We have tested Shoslif-
N primarily indoors, because our robot’s Help-
mate drivebase runs only on flat surfaces.
Indoor navigation encounters fewer lighting
changes than outdoor navigation. However, it
offers other, considerable challenges for
vision-based navigation. Such challenges
include a large variation in scenes, the lack of
stable prominent local features, the lack of sta-
ble global contrast regions, and other optical
phenomena such as the ubiquitous specularity
(mirror-like surface) of waxed floors and
painted walls. Shoslif-N has shown that it can
navigate in real time reliably in an unaltered
indoor environment for an extended amount
of time and distance, without any special
image-processing hardware.

The problem with model-
based methods

As an example of the application of a
model-based method, consider road follow-
ing. For a road vehicle to automatically fol-
low a road or a marked lane, the system
designer must first model the driving envi-
ronment (world). For example, you can
model a single-lane road as a stretch of uni-
form intensity of a certain shape with a high
contrast between the road and nonroad areas.
This modeling task becomes extremely chal-
lenging when the driving environment is less
controlled. For instance, the environment
might include multiple lanes, a driving sur-
face marked with traffic signs, roads with tree
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shadows, or rainy or snowy conditions.
Other driving tasks require more than just a

road-following capability, such as driving a
forklift in a warehouse, a cart in an airport build-
ing, or a wheelchair during everyday indoor
and outdoor use. Manually modeling every pos-
sible case and designing a reliable case detec-
tor for all possible cases become intractable.

In addition, the human designer must ana-
lyze all the visual scenes that the vehicle
might encounter and then develop a model
for each scene. Each model characterizes the
corresponding type of scene content and
defines a set of type-specific parameters to
be determined through experiments. For
example, two straight lines in the image
plane model a straight single-lane road, and
two quadratic curves model a smooth-turning
single-lane road. The lines’and curves’para-
meters are the roads’ parameters.

Figure 1 illustrates such a model-based

approach. As the figure indicates, unless the
scene with which we’re dealing is very
restricted, a single model is insufficient. So,
this approach uses multiple models, which
requires a model selector. The model selector
determines which model is the most appropri-
ate given the current scene. To avoid cata-
strophic accidents due to unpredicted visual
scenes, this approach requires an applicability
checker. The applicability checker determines
whether the current scene fits one of the mod-
els with a sufficient confidence.

The model-based approach has these
advantages:

• The system design uses specific human
knowledge about the environment, so the
system can be efficient for predictable
cases.

• Because a human designer explicitly
writes the control algorithms, humans can

interpret them more easily. (For example,
the programmed behavior “When the
reading from the front range detector is
less than 0.5 meters, back up” is easier to
interpret than an artificial neural net-
work’s weights.)

• Computational requirements are lower
because, given a scene model, this
approach processes only a relatively
small part of an image in a specific way.

It has these disadvantages:

• The human-designed models are restric-
tive; they are not always applicable in a
more general setting.

• The applicability checker, which is cru-
cial for a safe application, is difficult to
develop because it must be able to deal
with virtually any scene.

• This approach requires a potentially huge
number of models, unless the scene is very
well known. An everyday real-world traf-
fic situation might require potentially tens
of thousands of complex models. Design-
ing and fully testing all these models takes
considerable effort. Furthermore, the
model selector and applicability checker
become increasingly complex, unreliable,
and slow when the number and complex-
ity of the models increase.

Model-free methods

Model-free methods lack any predefined
model of the driving environment during sys-
tem design. In other words, a human pro-
grammer does not specify any environment
model, either explicit or implicit; the system
itself must automatically derive the model.
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Related work

Several experimental road-following systems have used model-
free design methods. Two such systems are Carnegie Mellon’s
Alvinn1 and the University of Maryland’s Robin.2 For its learn-
ing architecture, Alvinn used a multilayer feed-forward network,
trained by a back-propagation learning algorithm. Robin used a
radial basis function network with hand-selected centers for the
radial basis functions. RBFN reportedly achieved smoother
behavior than MFFN in a road-following experiment.2

Both systems used offline batch learning (see “Incremental
online learning” in the main article). MFFN uses the training set
to tune the network’s size parameters, including the number of
hidden nodes. RBFN uses the training set to tune the number of
radial basis functions and the center of each radio basis function.
Each additional environment situation requires retraining the

entire network and retuning the manually selected parameters.
Both MFFN and RBFN are stateless networks.

Unlike Shoslif, MFFN and RBFN are not appearance-based
methods because they do not use statistical tools to derive feature
subspaces. For example, they do not use the covariance of the
input vector.
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Figure 1. The model-based approach to navigation control. Dashed lines indicate that the human must create the 
corresponding module’s content during system design and development.



In model-free methods, we consider the
vision-based navigation controller as the
function

Yt+1 = f(Xt). (1)

Xt is a vector consisting of all the sensory
inputs at time t with possibly other naviga-
tional instructions at time t (such as the
desired heading direction at an intersection).
Yt+1 is a vector consisting of the desired vehi-
cle control signal at time t + 1. Without loss
of generality, we have assumed discrete time
instances: t = 0, 1, 2, ....

The challenge of model-free learning is to
construct an approximate function f̂ so that
f̂ (X) is very close to the desired output f(X)
for all the possible X inputs. To accomplish
this goal, we use a set of training samples 
L = {(Xi, f(Xi)) | i = 0, 1, ..., n}, which come
from either synthetically generated inputs or
the real sensory inputs. We use this set to
train a system implemented by some learn-
ing architecture.

For a look at two other model-free meth-
ods, see the “Related work” sidebar.

Learning-based navigation
control

Because a learning-based approach (see
Figure 2) such as Shoslif uses a model-free
design method, it relieves the human de-
signer from hand-developing world models.
(A method that uses some learning tech-
niques is not necessarily free of world mod-
els. For example, a line-fitting method esti-
mates the predefined line parameters based
on a set of observed image points. However,
a line model for an image is a specific aspect
of a world model.)

In this approach, the learning system
deals with raw image input directly, so its
image representation must be very gen-
eral. We consider a digital image X of r
rows and c columns as a point in a rc-
dimensional space S (see the sidebar,
“Vector representation for an image”). For
example, for images of size 30 × 40, S has
a dimensionality of 30 × 40 = 1,200. The
control signal vector Y, which might con-
tain navigation signals such as heading
direction and speed, is a point in the out-
put space C. We perform a normalization
so that the average intensity is zero and the
variance of pixels of the image is a unit;
the system uses the resulting image pixel

array. However, the system makes no
assumption that the world is 2D. For the
same reason, the human retina is 2D, but
humans perceive a 3D world. What mat-
ters is how the 2D information is mapped
to perception and actions. So, as we
explained earlier, the learning task is to
efficiently approximate function f, which
maps space S into space C, using an appro-
priate architecture.

Building trees. Shoslif uses a tree approxi-
mator; Figure 3 illustrates the concept. In
that figure, the bounded space S is two-
dimensional. To characterize the distribution
of the training samples shown in Figure 3a,
the tree approximator automatically gener-
ates the recursive partition tree (RPT) in Fig-
ure 3b.3 Statistical researchers call such a tree
that outputs numerical values a regression
tree.4 In the tree, each leaf node represents a
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Figure 2. The learning-based approach to navigation control: (a) the learning phase; (b) the performance phase. The
dashed lines indicate that the human must create the corresponding module’s content during learning.
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Figure 3. The Shoslif tree approximator: (a) A 2D view of the partition. A label indicates a cell’s center. Because of position
overlap, the figure does not show the child’s label if the parent covers the child. A number pair i,j marks each training 
sample X in space S; i is the level number and j the child number in the (b) corresponding resulting recursive partition tree.

Vector representation for an image

We can represent a digital image with r pixel rows and c pixel columns by a vector
in (rc)-dimensional space S without any information loss. For example, we can write
the set of image pixels {I(i, j) | 0 ≤ i < r, 0 ≤ j < c} as a vector X = (x1, x2, L, xd)t where
xri+j+1 = I(i, j) and d = rc. The actual mapping from the 2D position of every pixel to a
component in the d-dimensional vector X is not essential but is fixed once it is selected.
Because the pixels of all the practical images can only take values in a finite range, we
can view S as bounded. If we consider X as a random vector in S, the corresponding
element of the covariance matrix Σx of X represents the cross-pixel covariance. Using
this vector representation, our appearance-based method considers the correlation
between any two pixels in Σx, not just between neighboring pixels.



single training sample (X, Y) = (X, f(X)) (or
a set of nearby training samples in S that have
the same control vector Y). Given an
unknown input image X′, Shoslif uses the
RPT to find the nearest X among all the train-
ing samples. It then uses the corresponding
control vector Y = f(X) stored in the corre-
sponding leaf node as the next control vec-
tor. In practice, we preprocess an image rep-
resented by a vector X. First, we perform the
normalization mentioned earlier by trans-
forming the value of every pixel by a linear
function. This reduces the effect of the light-
ing’s absolute brightness and the global con-
trast.

Time complexity motivated us to use a
tree for finding the match. Given an un-
known input, finding the nearest neighbor
from a set of n samples using linear search
requires O(n) time, which is impractical for
real-time navigation with even a moderately
large n. The time complexity for retrieving
the output from an RPT with n stored sam-
ples is O(log(n)). This scheme tends to build
trees that are roughly balanced, as we see in
the section “Automatic feature derivation.”
Also, we do not need to store every training
sample, as we see in the section “Incremen-
tal online learning.”

The learning phase. We discuss the batch
learning method here; we look at incremen-
tal learning later. Batch learning requires that
all the training samples are available before
the training starts. In the learning phase, the
approximator generates an RPT based on the
training data set. The RPT serves as the
memory in Figure 2. The RPT’s root repre-
sents the entire input space S. The approxi-
mator analyzes the training set L, dividing
the space S into b (b > 1) cells, each repre-
sented by a child of the root. We define the
mean of the samples falling into each cell as
that cell’s center, as marked in Figure 3a. The
analysis involves automatic derivation of lin-
ear features, each of which corresponds to
the normal of a hyperplane in Figure 3a. (We

discuss the feature derivation for each non-
leaf node in “Automatic feature derivation.”)
The analysis proceeds this way recursively,
based on the samples falling into each cell,
to subdivide the cell into smaller cells. Such
a recursive partition proceeds for each node
until the resulting node contains only one
sample or several samples that all have vir-
tually the same output vector Y.

The performance phase. In this phase, the
learning-based approach grabs the current
input image X′ and uses it to retrieve the con-
trol signal from the RPT. To do this, it exam-
ines the center of every child of the root. In
the same way, it further explores the cell
whose center is closest to X′ recursively until
it reaches a leaf node. Then, it uses the cor-
responding Y vector stored in the leaf node
as the resulting control vector for X′.

The faster our approach can search the
RPT this way, the faster it will update the con-
trol parameters. To speed up the processing,
we use a binary RPT (b = 2), taking into
account the computation in each node and the
tree’s depth. To reduce the chance of missing
the best-matched leaf node, we explore k > 1
paths down the tree, instead of the single-path
exploration we described earlier. At each level
of the tree, our modified approach explores
the top k cells and compares their children,
kb of them in general, to find the top k near-
est centers. Finally, it finds k leaf nodes. The
output control vector is the weighted sum of
all the corresponding Y vectors of these leaf
nodes. A faraway leaf node uses a smaller
weight than the near ones. So, faraway leaf
nodes do not affect the output vector much.

Automatic feature derivation. Automatic
feature derivation is different from feature
selection or feature extraction. Feature selec-
tion selects a few features from a set of
human-defined features. Feature extraction
extracts selected features (for example, edges
and color) from images. Automatic feature
derivation must derive features from high-

dimensional raw vector inputs. The pro-
grammers program rules for deriving fea-
tures, but not the actual features.

The dimensionality of the image space S is
large, typically larger than the number of
training images. For effective space partition,
finding the subspace S′ in which the training
samples lie is useful. Principal-component
analysis5 is appropriate for this purpose.

Figure 4a shows how we use PCA to par-
tition the space S recursively on the basis of
the training samples points. In Figure 4a, var-
ious symbols in the entire space S represent
samples. Suppose we use n samples, from
which PCA computes n principal component
vectors V1, V2, ..., Vn in S, ranked by the
decreasing eigenvalues (see the sidebar,
“Principal-component analysis”). Given a
number m (m ≤ n), we call the top m vectors
the most expressive features because they
best explain the variation of the sample dis-
tribution. Each MEF vector corresponds to
an image. The first principal component vec-
tor V1 indicates the direction with the most
significant variation for the samples in S. We
need only to compute a single MEF V1 for
the binary RPT construction.

Put geometrically, we determine a hyper-
plane that has V1 as its normal vector and that
goes through the centroid of the samples. This
plane defines the level-0 splitter that partitions
the corresponding cell (root). The samples that
fall on one side of the splitter are assigned to
the root’s left child; the samples falling on the
other side go to the right child. In Figure 4a,
the thickest line indicates the hyperplane, par-
titioning the entire space into two cells. The
PCA for each child uses the samples that fall
into the cell represented by the child.

However, if we know the class informa-
tion of the training samples, we can gener-
ally do better. The symbols of the same type
in Figure 4a denote input images associated
with the same control vector—that is, be-
longing to the same class. The MEF-based
recursive partition in Figure 4a does not give
an ideal partition, because the partition’s
boundaries do not cut along the class bound-
ary. For example, the normal of the thickest
line does indicate the sample cluster’s long
axis, but the long axis does not necessarily
align with most class boundaries, as Figure
4a indicates. Consequently, the resulting tree
is larger than necessary. The main reason for
this phenomenon is that such an MEF-based
recursive partition does not use the class
information in the training samples.

How do we define classes for navigation
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Principal-component analysis

This method computes an orthonormal basis from a set of sample vectors.1 Com-
putationally, it computes the eigenvectors and the associated eigenvalues of the sam-
ple covariance matrix Γ of the samples. When the number of samples n is smaller than
the dimensionality d of the sample vectors, we can compute the eigenvectors and
eigenvalues of a smaller n × n matrix instead of a large d × d matrix.
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control? For example, we can predivide the
training samples into different classes,
according to the scene’s type (for instance, a
straight passageway or a corner) and the
desired control signal in each type (for
instance, heading increments of 10o, 5o, 0o,
−5o, or −10o). We can use these preclassified
training samples to more effectively partition
the sample space (see Figure 4b), using multi-
class, multidimensional linear discriminant
analysis (see the related sidebar). LDA com-
putes the basis of a linear subspace of a given
dimensionality so that, projected onto the lin-
ear subspace,

• samples of different classes are far apart
as much as possible, and

• the average size of clusters of samples
from the same class is constant.

We call the top basis vectors the most dis-
criminating features.

As in the MEF case, the binary RPT needs
only a single MDF vector; this vector gives
the hyperplane’s normal. First, we compute
the first MDF as the splitter of the root, given
all the preclassified samples. Then, also as in
the MEF case, the samples that fall on one
side of the hyperplane go to the left child and
the other samples go to the right child. We
perform LDA for each child on the basis of
the samples each has received. This process
continues until each cell contains only sam-
ples of the same class.

Figure 4b shows the recursive partition
represented by the MDF RPT. The partition
boundary tends to cut along the class bound-
ary, resulting in a tree much smaller than the

MEF RPT in Figure 4a. Such a concise tree
not only enables faster retrieval but also tends
to approximate the class boundary better.

Figure 5 shows sample training images
collected by Michigan State University’s
ROME (robotic mobile experiment) robot
inside the MSU Engineering Building. In
one of our tests, we used 210 images along
a straight corridor and 108 images at a cor-
ner, grouped into six classes. The first five
classes are straight corridors classified
according to the next heading direction
needed to recover the correct heading—that
is, Class 0 for 10o, Class 1 for 5o, Class 2 for
0o, Class 3 for −5o, and Class 4 for −10o.
Class 5 consists of the 108 corner images.

Figures 6a and 6b show the first five of the
computed MEFs and MDFs. The MEFs
mainly record large areas of contrast, while
MDFs record locations of edges with increas-
ing spatial resolutions. These MEFs and
MDFs play the same role that traditional edge

detectors (for example, the Laplacian-of-
Gaussian operator) do. However, they are
much better because they are not local (not
just single edges, but a combination of edges)
and are optimal (expressiveness for MEF or
disciminativeness for MDF). Figure 6c shows
the training samples projected onto the sub-
space spanned by the first two MEFs, and Fig-
ure 6d shows those corresponding to the first
two MDFs. In the MEF subspace, each class’s
samples spread out widely, and the samples
of different classes tend to mix together. But
in the MDF subspace, each class’s samples
are clustered more tightly, and the samples
from different classes are farther apart. From
Figure 6, we can see that for classifying an
unknown image from the same environment
using the nearest-neighbor rule, the MEF sub-
space is not as good as the MDF subspace.

Shoslif with states

In the previous section, we explained a
stateless system. Because the visual varia-
tion among views can be very large, such a
stateless system is sufficient only for rela-
tively benign scenes.

Why states? In principle, the nearest-neigh-
bor rule will perform well as long as we use
enough samples to cover all the cases with
sufficient density. MDFs can disregard unre-
lated parts of the image, if enough of the pro-
vided images show that the parts are indeed
unrelated. However, in practice, providing
all the necessary images is impossible. For
example, if the navigation scene contains a
big poster on a wall and that poster changes
every day, training the system for all the pos-
sible posters is impractical. (Vision-based
navigation is much more difficult than range-
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Figure 4. Recursive partitions represented by (a) the MEF (most expressive feature) binary tree and (b) the MDF (most
discriminating feature) binary tree, which is smaller. Symbols of the same type indicate samples of the same class.

Linear discriminant analysis

Ronald Aylmer Fisher developed linear discriminant analysis to discriminate two
classes; researchers have extended the result to more than two classes. LDA defines
two matrices from the preclassified training samples: the within-class scatter matrix
W and the between-class scatter matrix B. It computes a basis of a linear subspace of
a given dimensionality in S so as to maximize the ratio of the between-class scatter over
the within-class scatter in the subspace. This basis defines the MDF (most discrimi-
nating feature) vectors. Computationally, these vectors are the eigenvectors of W−1B
associated with the largest eigenvalues.1 When W is a degenerate matrix, we can per-
form LDA in the subspace of principal-component analysis (see the related sidebar).
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based navigation that uses, for example, laser
range finders.) Therefore, a monolithic treat-
ment of an input image significantly limits
the generalization power.

So, our objective is to train the system to
actively pay attention to critical parts of the
scene—landmarks—according to each situ-

ation, and to disregard unrelated parts in the
scene. For learning-based methods, using
landmarks is not trivial. We must systemati-
cally incorporate the attention selection
mechanism into the learning system instead
of explicitly programming it into a naviga-
tion program. This is because of human lim-

itations in deriving rules for complex atten-
tion selection.

States. We define a system state vector St at
each time t. This state keeps information
about the context needed for task execution.
For example, the information about attention
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Figure 5. Sample learning images: (a) a straight corridor; (b) a left turn.

(a)

(b)

Figure 6. The difference between MEFs and MDFs in representing learning samples from a straight corridor and a corner. The first five (a) MEFs and (b) MDFs of the learning set. Each
MEF is a vector in the space S, the space of all possible images. Each MEF and MDF is a weighted sum of all the training images and is automatically derived. The bottom graphs 
illustrate the learning samples projected onto the subspace spanned by the first two (c) MEFs and (d) MDFs. The numbers in the plot space are the class labels of the learning samples.
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action is a part of the state. In scenes that
require visual attention, the system moves
into the particular state defined for that atten-
tion need. At the next time instant, the sys-
tem directs its visual attention to a part of the
view, as a learned behavior depending on that
state. The attention’s relative position can
also be associated with the state.

Symbolically, at time t, the system is at
state St and observes image Xt. It gives con-
trol vector Yt+1 and enters the next state St+1.
So, we can represent the corresponding map-
ping as

(St+1, Yt+1) = f (St, Xt) (2)

where Yt+1 includes the attention control
parameters. The formulation in Equation 2
would correspond to a finite-state machine if
the number of states were finite. However,
this is not the case, because the state space
and the sensory input space are both contin-
uous. The programmer designs the vector
representation of each state in the state
space, but Shoslif automatically derives the
composite features that it uses to analyze the
combined space of St, Xt. So, we consider
state St and input Xt as random, to take into
account the uncertainty in these observations
and estimates. This results in an observation-
driven Markov model (ODMM).6

Computational considerations. However,
we must avoid the computationally intractable
task of estimating the high-dimensional dis-
tribution density conditioned on the current
state and observation. Fortunately, Shoslif
effectively approximates the mean of (St+1,
Yt+1) given the estimated (St, Xt) using train-
ing samples. We can still consider the map-
ping in Equation 2 as a mapping from input
(St, Xt) to output (St+1, Yt+1). The funda-
mental difference between this state-based
Shoslif and the stateless version is that state-
based Shoslif uses a part of output St+1 at
time t as a part of the input at time t + 1.

Figure 7 shows several types of corridor
segments on the third floor of MSU’s Engi-
neering Building. For our experiments, the
trainer created several states corresponding
to some of these segment types. A special
state A (ambiguous) indicates that local
visual attention is needed. The trainer de-
fined this state for a segment right before a
turn. In this segment, the image area that
revealed the visual difference between dif-
ferent turn types (that is, a landmark) was
mainly in a small part of the scene. The local

attention action in A directs the system to
look at such landmarks through a prespeci-
fied image subwindow so that the system
issues the correct steering action before it is
too late. Figure 8 shows the states and their
transitions, which the trainer teaches Shoslif
incrementally and online.

Incremental online learning. Learning
methods fall into two categories: batch or
incremental.

As we mentioned before, a batch learning
method requires that all the training data are
available at the same time when the system
learns. Figuring out beforehand how many
and what kinds of training images we need
to reach a required performance level is dif-

ficult. So, a batch learning method requires
repeated cycles of collecting data, training,
and testing. The limited space available to
store training images and the need for more
images for better performance are two con-
flicting factors. Thus, experience has taught
us that collecting a sufficiently rich yet small
set of training samples is tedious. Further-
more, batch learning must occur offline,
because processing the entire training set
takes considerable time.

With an incremental learning method,
training samples are available only one at a
time. This method discards each sample as
soon as it is used for training. The required
stream of training samples is typically so
long that the number of samples is virtually
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Figure 7. Different types of corridor segments in an indoor environment.
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Figure 8. An observation-driven Markov model for indoor vision-based navigation. The label of the form x/y denotes a
state x with associated attention action y. Actions a and g denote local-view and global-view attentions, respectively. At
each state, the transition to the next state depends on the image view, either local or global, indicated by the attention
action. Each arrow corresponds to a very complex set of image appearances learned by Shoslif-N. In our experiments,
we taught our robot to turn in a specific direction at each intersection. However, the robot must disambiguate each 
current situation from many other perceptually similar but physically different situations, based on the current visual
input and estimated state.



infinite. In incremental learning, many sim-
ilar samples are not stored at all if they are
found very close to a stored element. In other
words, the system can look at a spot for a
long time, but the memory does not grow.
With a batch method, all those similar images
of the same spot must be stored first. So,
batch learning is not practical for very long
training streams.

We have developed an incremental-learn-
ing version of Shoslif. This version builds the
RPT incrementally online. During training,
the human operator controls the navigator
through a joystick. At each time instant,
Shoslif grabs an image from the camera and
uses it to query the current RPT. If the dif-
ference between the current RPT’s output
and the desired control signal (given by the
human operator) is beyond a prespecified tol-
erance, Shoslif learns the current sample to
update the RPT. Otherwise, it rejects the
image case without learning it. This selec-
tive-learning mechanism effectively prevents
redundant learning, keeping the RPT small.
This incremental-learning mode also makes
learning convenient. As soon as the system
rejects most of the recent training samples at
a given location, we know that we can move
to other locations. Little time is wasted. As
long as the system has rejected most samples
at all locations, we can set the system free to
navigate on its own.

Experimental results

A major issue of visual learning is how
well Shoslif compares with other con-
strained-search methods such as regression
trees and neural networks. We discuss our
comparison experiments before presenting
the results of our navigation tests.

Shoslif versus other methods. AI research
on methods using classification and regres-
sion trees has been extensive. The book by
Leo Breiman and his colleagues gives a bal-
anced exposition.4 However, in statistics,
available samples for statistical decisions are
typically human-provided feature vectors
where each component corresponds to the
measurement of a meaningful parameter.
Consequently, each node there uses only one
component of the input vector. We face the
challenging problems of dealing with high-
dimensional input such as images or image
sequences, where each component corre-
sponds to a pixel. Univariate trees (based on

a single component at a time), such as CART
and C5.0, or multivariate trees for lower-
dimensional data, such as OC1, certainly
were not designed for high-dimensional,
highly correlated data. Our method uses all
input components at each node to derive fea-
tures that utilize the information of correla-
tion among input components, not just a sin-
gle component.

In our tests using highly correlated Feret
image data sets (5,632-dimensional), we
obtained these error rates: CART, 41%; C5.0,
41%; OC1, 56%; and our incremental Shoslif
tree, 0.00% (perfect). The error rates of our
prior versions of the Shoslif tree range from
3% to 7%. (The error rates of CART, C5.0
and OC1 are comparable with Shoslif only

in tests for lower-dimensional data sets)
Because the Shoslif RPTs perform automatic
feature derivation, they are more than just
classification and regression trees.

In our previous work, we compared
Shoslif with feedforward neural networks
and radial basis function networks for
approximating stateless appearance-based
navigation systems.7 We selected the best
FFN from 100 FFNs, each with a random ini-
tial guess. FFNs performed the worst. RBF
was slightly better than FFN, but only when
humans, using human vision, manually
selected its centers. Shoslif performed sig-
nificantly better than FFNs and RBFs.

Navigation tests. We have tested the state-
based Shoslif-N navigator on our ROME
robot (see Figure 9) with a single video cam-
era, without using any other sensor. A slow,
onboard Sun Sparc-1 workstation with a Sun-
Video frame grabber performed the computa-
tion, without any special-purpose image-
processing hardware. We trained ROME
online and interactively, on the third floor of

our Engineering Building. After the system
accepts 272 samples to update the tree, it can
navigate on its own. It successfully extended
its experience to many hallway sections where
we had not trained it. The refresh rate is 6 Hz,
meaning that the system processes six image
frames and performs six state-transitions with
the trained RPT per second.

We have conducted many test runs to
observe the trained robot’s performance sta-
bility. Moving at 40 to 50 millimeters per sec-
ond, ROME finished one large loop in our
building in approximately 20 minutes. Fig-
ure 10 shows a few frames from a video of
the robot roaming during a test. As Figures 5
and 10 illustrate, the scene presents very
severe specularities and a wide variety of
floor tile patterns. The corridor structure
changes drastically from one spot to another.
Our prior stateless system could only navi-
gate correctly through approximately one-
quarter of the long loop. The state-based sys-
tem can now reliably cover the entire loop.
ROME continuously roamed for longer than
five hours until the onboard batteries became
low. It has performed flawlessly in dozens of
such tests, in the natural presence of passers-
by. Our experiment also demonstrated that if
we do not use states, the robot will run into
walls during complex turns.

AS WE’VE SHOWN, OUR LEARN-
ing method does not require human pro-
grammers to program information that is spe-
cific to the environment (such as indoors or
outdoors) and the actions (such as heading
direction or arm joint increments). In fact,
we have also used this method for other tasks,
such as face recognition, hand gesture recog-
nition, speech recognition, and vision-based
robot arm action learning.3 These tasks can
be learned reliably if the environment, al-
though very complex, does not vary too much.
If the number of environment types increases,
the number of required states will also increase.
So, defining internal states for training can
become overwhelming for humans. The result-
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ing issue is how to enable the machine learner
to automatically generate internal representa-
tion online in real time—that is, to fully auto-
mate the learning process. Some work in this
direction has been reported.8
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Figure 10. Controlled by the state-based Shoslif-N, ROME navigates autonomously: (a)–(e) behind ROME; (f)–(h) in front of ROME.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 9. The ROME (robotic mobile experiment) robot,
which Shoslif-N controls.
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