Phases of a compiler

Figure 1.6, page 5 of text
Process of building lexical analyzer

5) The minimal DFA is our lexical analyzer.

Diagram:

- Language
- Regex
- NFA
- DFA
- DFA (DFA)
 - Character stream
 - Token stream
 - Lexical analyzer
focus last time

NFA to DFA conversion
focus today
DFA minimization
NFA for \((a|b)^*abb\)
DFA for \((a|b)^*abb\)
Minimization Algorithm
NFA -> DFA algorithm

(set of states construction - page 153 of text)

INPUT: An DFA $D = (S, \Sigma, \delta, s_0, F)$

OUTPUT: A DFA $D' = (S', \Sigma, \delta', s'_0, F')$ such that

- S' is as small as possible, and
- $L(D) = L(D')$

ALGORITHM:

1. Let $\pi = \{ F, S-F \}$
2. Let $\pi' = \pi$. For every group G of π:
 - partition G into subgroups such that two states s and t are in the same subgroup iff for all input symbols a, states s and t have transitions on a to states in the same group of π
 - Replace G in π' by the set of all subgroups formed
3. if $\pi' = \pi$ let $\pi'' = \pi$, otherwise set $\pi = \pi'$ and repeat 2.
4. Choose one state in each group of π'' as a representative for that group.
 - a) The start state of D' is the representative of the group containing the start state of D
 - b) The accepting states of D' are the representatives of those groups that contain an accepting state of D
 - c) Adjust transitions from representatives to representatives.
DFA

D = (S, Σ, s₀, δ, F)

S = {A, B, C, D, E}
Σ = {a, b}
s₀ = A
δ = {(A,a)→B, (A,b)→C,
(B,a)→B, (B,b)→D,
(C,a)→B, (C,b)→C,
(D,a)→B, (D,b)→E,
(E,a)→B, (E,b)→C
}
F = {E}
Finding the minimal set of distinct sets of states

\[\pi_0 = \{ F, S-F \} = \{ \{ E \}, \{ A, B, C, D \} \} \]

Pick a non-singleton set \(X = \{ A, B, C, D \} \) from \(\pi_0 \) and check behavior of states on all transitions on symbols in \(\Sigma \) (are they to states in \(X \) or to other groups in the partition?)

\[
\begin{align*}
(A,a) & \rightarrow B, \ (B,a) \rightarrow B, \ (C,a) \rightarrow B, \ (D,a) \rightarrow B \\
(A,b) & \rightarrow C, \ (B,b) \rightarrow D, \ (C,b) \rightarrow C, \ (D,b) \rightarrow E
\end{align*}
\]

\(D \) behaves differently, so put it in its own partition.
Finding the minimal set of distinct sets of states

$$\pi_1 = \{ \{E\}, \{A, B, C\}, \{D\} \}$$

Pick a non-singleton set $$X = \{A, B, C\}$$ from $$\pi_1$$ and check behavior of states on all transitions on symbols in $$\Sigma$$ (are they to states in $$X$$ or to other groups in the partition?)

$$(A, a) \rightarrow B, \ (B, a) \rightarrow B, \ (C, a) \rightarrow B$$

$$(A, b) \rightarrow C, \ (B, b) \rightarrow D, \ (C, b) \rightarrow C$$

B behaves differently, so put it in its own partition.
Finding the minimal set of distinct sets of states

\(\pi_2 = \{ \{E\}, \{A, C\}, \{B\}, \{D\} \} \)

Pick a non-singleton set \(X = \{A, C\} \) from \(\pi_2 \) and check behavior of states on all transitions on symbols in \(\Sigma \) (are they to states in \(X \) or to other groups in the partition?)

\((A,a)\to B, (C,a)\to B \)
\((A,b)\to C, (C,b)\to C \)

A and C both transition outside the group on symbol a, to the same group (the one containing B). Therefore A and C are indistinguishable in their behaviors, so do not split this group.
Finding the minimal set of distinct sets of states

$$\pi_3 = \{ \{E\}, \{A, C\}, \{B\}, \{D\} \} = \pi_2$$

We have reached a fixed point! STOP
Pick a representative from each group

\[\pi_{\text{final}} = \{ \{E\}, \{A, C\}, \{B\}, \{D\} \} \]
MINIMAL DFA

\[D' = (S', \Sigma, s'_0, \delta', F') \]

\[S' = \{B, C, D, E\} \rightarrow \text{the representatives} \]
\[\Sigma = \{a, b\} \rightarrow \text{no change} \]
\[s'_0 = C \rightarrow \text{the representative of the group that contained D's starting state, A} \]
\[\delta = (\text{on next slide}) \]
\[F = \{E\} \rightarrow \text{the representatives of all the groups that contained any of D's final states (which, in this case, was just \{E\})} \]
The new transition function δ'

- For each state $s \in S'$, consider its transitions in D, on each $a \in \Sigma$.

- If $\delta(s,a) = t$, then $\delta'(s,a) = r$, where r is the representative of the group containing t.
\[\delta = \{(B,a) \rightarrow B, (B,b) \rightarrow D, (C,a) \rightarrow B, (C,b) \rightarrow C, (D,a) \rightarrow B, (D,b) \rightarrow E, (E,a) \rightarrow B, (E,b) \rightarrow C\} \]