CSE443
Compilers

Dr. Carl Alphonce
alphonce@buffalo.edu
343 Davis Hall

http://www.cse.buffalo.edu/faculty/alphonce/SP17/CSE443/index.php
https://piazza.com/class/iyn4ndqa1s3ei
Phases of a compiler

Figure 1.6, page 5 of text
Building the finite control for a bottom-up parser

- Build a finite state machine, whose states are sets of items
- Build a table \((M)\) incorporating shift/reduce decisions
Augment grammar

Given a grammar

\[G = (N,T,P,S) \]

we augment to a grammar

\[G' = (N \cup \{S'\}, T, P \cup \{S' \rightarrow S\}, S'), \text{ where } S' \not\in N \]

\[G' \] has exactly one rule with \[S' \] on left.
CLOSURE(I)

- I is a set of items
- CLOSURE(I) fixed point construction

\[
\text{CLOSURE}_0(I) = I \\
\text{repeat } \{ \\
\text{CLOSURE}_{i+1}(I) = \text{CLOSURE}_i(I) \cup \{ B \rightarrow \gamma \mid A \rightarrow \alpha \beta \in \text{CLOSURE}_i(I) \text{ and } B \rightarrow \gamma \in P \} \\
\} \text{ until } \text{CLOSURE}_{i+1}(I) = \text{CLOSURE}_i(I)
\]
Terminology

- **Kernel items**: $S' \rightarrow \bullet S$ and all items with \bullet not at left edge

- **Non-kernel items**: all items with \bullet at left edge, except $S' \rightarrow S$
GOTO(I,X)

- \textbf{GOTO(I,X)} is the closure of the set of items \(A \rightarrow \alpha X \beta \) s.t. \(A \rightarrow \alpha X \beta \in I \)

- \textbf{GOTO(I,X)} construction for \(G' \) (figure 4.32)

\begin{verbatim}
void items(G') {
 C = { CLOSURE({ S' \rightarrow •S }) }
 repeat {
 for each set of items \(I \in C \)
 for each grammar symbols \(X \in (NUT) \)
 if (GOTO(I,X) is not empty and not already in C)
 add GOTO(I,X) to C
 } until no new sets of items are added to C
}
\end{verbatim}
<table>
<thead>
<tr>
<th>Grammar G</th>
<th>Augmented Grammar G'</th>
</tr>
</thead>
<tbody>
<tr>
<td>S' -> E</td>
<td>S' -> E</td>
</tr>
<tr>
<td>E -> E + T</td>
<td>E -> E + T</td>
</tr>
<tr>
<td>E -> T</td>
<td>E -> T</td>
</tr>
<tr>
<td>T -> T * F</td>
<td>T -> T * F</td>
</tr>
<tr>
<td>T -> F</td>
<td>T -> F</td>
</tr>
<tr>
<td>F -> (E)</td>
<td>F -> (E)</td>
</tr>
<tr>
<td>F -> id</td>
<td>F -> id</td>
</tr>
</tbody>
</table>
Compute items(G') requires several steps, start with CLOSURE({ S'→•E })

<table>
<thead>
<tr>
<th>SET OF ITEMS (I)</th>
<th>i</th>
<th>CLOSURE_i(I)</th>
</tr>
</thead>
<tbody>
<tr>
<td>{ S' → • E }</td>
<td>0</td>
<td>{ S' → • E }</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>CLOSURE_0(I) \cup { E → • E + T , E → • T }</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>CLOSURE_1(I) \cup { T → • T * F , T → • F }</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>CLOSURE_2(I) \cup { F → • (E) , F → • id }</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>CLOSURE_3(I) \cup \emptyset</td>
</tr>
</tbody>
</table>
This gives us the first state of the finite state machine, I_0.

\[
\begin{array}{|c|}
\hline
S' \rightarrow \circ E \\
E \rightarrow \circ E + T \\
E \rightarrow \circ T \\
T \rightarrow \circ T \times F \\
T \rightarrow \circ F \\
F \rightarrow \circ (E) \\
F \rightarrow \circ id \\
\hline
\end{array}
\]

kernel item

non-kernel items are computed from CLOSURE(kernel), and therefore do not need to be explicitly stored.
Next we compute $\text{GOTO}(I_0, X) \forall X \in N \cup T$

$N \cup T = \{ E, T, F, +, *, (,), id \}$

N.B. - augmented start symbol S' can be ignored.

$\text{GOTO}(I_0, E) = \text{CLOSURE}(\{ S' \rightarrow E \cdot, E \rightarrow E \cdot + T \})$

$= \{ S' \rightarrow E \cdot, E \rightarrow E \cdot + T \}$

N.B. there is no non-terminal after the \cdot, so no new items are added by \text{CLOSURE} operation.

I_1

\begin{align*}
S' & \rightarrow E \cdot \\
E & \rightarrow E \cdot + T
\end{align*}

only kernel items
\[\text{GOTO}(I_0, T) = \text{CLOSURE}(\{ \ E \rightarrow T \odot, \ T \rightarrow T \odot \ast F \ \}) \]

\[= \{ \ E \rightarrow T \odot, \ T \rightarrow T \odot \ast F \ \} \]

\[I_2 \]

\[\begin{align*}
E & \rightarrow T \odot \\
T & \rightarrow T \odot \ast F
\end{align*} \]

N.B. there is no non-terminal after the \(\odot \), so no new items are added by \text{CLOSURE} operation

only kernel items
\[GOTO(I_0, F) = \text{CLOSURE}(\{ T \rightarrow F \circ \}) \]

\[= \{ T \rightarrow F \circ \} \]

N.B. there is no non-terminal after the \(\circ \), so no new items are added by CLOSURE operation

only kernel items
\[\text{GOTO}(I_0, \mathit{())} = \text{CLOSURE}(\{ F \rightarrow (\cdot E) \}) \]

\[= \{ F \rightarrow (\cdot E) \} \cup \{ E \rightarrow \cdot E + T, E \rightarrow \cdot T \} \cup \{ T \rightarrow \cdot T \cdot F, T \rightarrow \cdot F \} \cup \{ F \rightarrow \cdot (E), F \rightarrow \cdot \text{id} \} \]

N.B. there is a non-terminal after the \(\cdot \), so new items are added by CLOSURE operation.

Kernel Items

- \(F \rightarrow (\cdot E) \)

Non-Kernel Items

- \(E \rightarrow \cdot E + T \)
- \(E \rightarrow \cdot T \)
- \(T \rightarrow \cdot T \cdot F \)
- \(T \rightarrow \cdot F \)
- \(F \rightarrow \cdot (E) \)
- \(F \rightarrow \cdot \text{id} \)
\(\text{GOTO}(I_0, \text{id}) = \text{CLOSURE}(\{ T \rightarrow \text{id} \}) \)

\[= \{ T \rightarrow \text{id} \} \]

N.B. there is no non-terminal after the \(\bullet \), so no new items are added by \text{CLOSURE} operation

\(\text{Is} \)

\[T \rightarrow \text{id} \bullet \]

only kernel items

\(\text{GOTO}(I_0, _ _) = \text{GOTO}(I_0, +) = \text{GOTO}(I_0, * _) = \emptyset \)
The finite state machine as far as we developed it in lecture last class.

EXERCISE: complete the machine by computing \(\text{GOTO}(I_k, X) \) until no new states are added.

HINT: there will be 11 states in all.