CSE443 Compilers

Dr. Carl Alphonce
alphonce@buffalo.edu
343 Davis Hall

http://www.cse.buffalo.edu/faculty/alphonce/SP17/CSE443/index.php
https://piazza.com/class/iyn4ndqa1s3ei
Phases of a compiler

Target machine code generation

Figure 1.6, page 5 of text
Plan for ROS

<table>
<thead>
<tr>
<th></th>
<th>M</th>
<th>W</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>5/1</td>
<td>Peephole optimization</td>
<td>5/3</td>
<td>Misc. topics (not for project)</td>
</tr>
<tr>
<td>5/8</td>
<td>Misc. topics (not for project)</td>
<td>5/10</td>
<td>Who</td>
</tr>
<tr>
<td></td>
<td>PROJECT Q's</td>
<td></td>
<td>5/12</td>
</tr>
</tbody>
</table>
Final Exam

5/19/2017, Friday

8:00AM - 11:00AM

Talbert 107
register descriptor

"For each available register, a register descriptor keeps track of the variables names whose current value is in that register." [p. 543]

address descriptor

"For each program variable, an address descriptor keeps track of the location or locations where the current value of that variable can be found." [p. 543]
getReg function: \(x = y \text{ op } z \)

1. If \(y \) is currently in a register, pick a register already containing \(y \) as \(R_y \).

2. If \(y \) is not in a register, but there is a register currently empty, pick one such register as \(R_y \). \([LD \ R_y, \ y]\)

3. If \(y \) is not in a register, and there is no empty register:

 let \(R \) be a candidate register, and suppose \(v \) is one of the variables that the register descriptor for \(R \) says is in \(R \):

 (a) If \(v \) is somewhere besides \(R \), then OK.
 (b) If \(v \) is \(x \) and not an operand, then OK.
 (c) If \(v \) is not used later, then OK.
 (d) Generate \(ST \ v, \ R \) to copy \(v \) to memory.

Repeat (a) - (d) for each \(v \) in \(R \). The score of \(R \) is the number of \(ST \) instructions generated. Choose the \(R \) with lowest score.
getReg function: \(x = y \text{ op } z \)

Need a register for the result, \(Rx \). Since a new value of \(x \) is computed, a register that holds only \(x \) is always an acceptable choice for \(Rx \).

If \(y \) is not used after \(I \), and \(Ry/Rz \) holds only \(y/z \) after being loaded, if necessary then \(Ry/Rz \) can also be used as \(Rx \).

getReg function: \(x = y \)

For copy instruction, always choose \(Rx = Ry \).
Peephole optimization

"The peephole is a small, sliding window on a program." [p. 549]

"In general, repeated passes over the target code are necessary to get the maximum benefit." [p. 550]
Peephole optimization: redundant LD/ST

LD R0, a
ST a, R0

If the ST instruction has a label, cannot remove it. (If instructions are in the same block we're OK.)
Peephole optimization: unreachable code

if E=K goto L1
goto L2
L1: ...
... ...
L2: ...
... ...

Suppose K is a constant.
if E=K goto L1
goto L2
L1: ...do something...
...
L2: ...do something...
...

Eliminate jumps over jumps

Peephole optimization: unreachable code
Peephole optimization: unreachable code

if \(E=K \) goto L1

\[\text{L1: ...} \]

\[\text{L2: ...} \]

goto L2

\[\text{if } E\neq K \text{ goto L2} \]

L1: ...

\[\text{L2: ...} \]

Eliminate jumps over jumps
Peephole optimization: unreachable code

If there are no jumps to L1, we can remove label.
Peephole optimization: unreachable code

If E is set to a constant value other than K, then...

```plaintext
if $E = K$ goto L1
goto L2
L1: ...
...
L2: ...
```

```plaintext
if $E \neq K$ goto L2
...
...
L2: ...
```
Peephole optimization: unreachable code

- If $E = K$ goto L1
- goto L2

L1: ...
... ...
L2: ...
...

- If true goto L2

L2: ...
...

...conditional jump becomes unconditional...
Peephole optimization: unreachable code

if E=K goto L1

goto L2

L1: ...
...
L2: ...
...

goto L2
...
L2: ...
...

...and the unreachable code can be removed.
Peephole optimization: flow-of-control

goto L1
...
L1: goto L2
...
L2:
Peephole optimization: flow-of-control

goto L1
...
L1: goto L2
...
L2:

goto L2
...
L1: goto L2
...
L2:
Peephole optimization: flow-of-control

If there are no jumps to L1, and L1 is preceded by an unconditional jump...
Peephole optimization: flow-of-control

```
goto L1
...
L1: goto L2
...
L2:
```

```
goto L2
...
L2:
```

...then we can eliminate the statement labelled L1
Peephole optimization: flow-of-control

if a < b goto L1
...
L1: goto L2
...
L2:

if a < b goto L2
...
...
L2:

...similar arguments can be made for conditional jumps.
Project questions?