Phases of a compiler

Figure 1.6, page 5 of text
Correction?

I may have misspoken last time, so in case I did I want to clarify.
If \(L \) and \(M \) are regular, so are:

- \(L \cup M = \{ s \mid s \in L \text{ or } s \in M \} \) \text{ UNION}
- \(LM = \{ st \mid s \in L \text{ and } t \in M \} \) \text{ CONCATENATION}
- \(L^* = \bigcup_{i=0,\infty} L^i \) \text{ KLEENE CLOSURE}

I think I may have said that \(L^* \) is the infinite union \(L \cup L \cup L \ldots \cup L \), which is just \(L \). That would be a silly thing to do. \(L^* \) involves concatenation, not union! \(L^i \) is \(L \) concatenated with itself \(i \) times:

- \(L^0 = \{ \varepsilon \} \), by definition, \(L^1 = L \), \(L^2 = LL \), \(L^3 = LLL \), etc.
- \(L^* \) is the union of all these sets!
Example

Suppose L is $\{a, bb\}$
$L^0 = \{\varepsilon\}$, by definition
$L^1 = L = \{a, bb\}$
$L^2 = LL = \{aa, abb, bba, bbbb\}$
$L^3 = LLL = \{aaa, aabb, abba, abbbb, bbaa, bbbba, bbbaa, bbbabb, bbbbbba, bbaa, bbabb, bbbba, bbbbbbb, abbbb, bbabb\}$
$L^4 =$
...and so so...
$L^* = \bigcup_{i=0,\infty} L^i = \{\varepsilon, a, bb, aa, abb, bba, bbbb, aaa, aabb, abba, abbbb, bbaa, bbbba, bbbaa, bbabb, bbbba, bbbbbba, abbbb, bbabb, ... \}$
Process of building lexical analyzer

5) The minimal DFA is our lexical analyzer
Focus last time

regex -> NFA
focus today

NFA → DFA
(alb)*abb

first we construct an NFA
from this regular expression
(a|b)*abb
$(ab)^*abb$
\((a|b)^*abb\)
(a|b)*abb
\((a|b)*abb\)
The diagram represents a finite automaton with the regular expression \((a|b)*abb\). The automaton has states labeled with \(\epsilon\) (null), 'a', 'b', and transitions between these states marked with arrows. The final state is marked by a green circle.
(a|b)*abb
Operations

- ε-closure(t) is the set of states reachable from state t using only ε-transitions.

- ε-closure(T) is the set of states reachable from any state $t \in T$ using only ε-transitions.

- move(T,a) is the set of states reachable from any state $t \in T$ following a transition on symbol $a \in \Sigma$.
NFA -> DFA algorithm
(set of states construction - page 153 of text)

INPUT: An NFA \(N = (S, \Sigma, \delta, s_0, F) \)
OUTPUT: A DFA \(D = (S', \Sigma, \delta', s'_0, F') \) such that \(\mathcal{L}(D) = \mathcal{L}(N) \)

ALGORITHM:
Compute \(s'_0 = \varepsilon\text{-closure}(s_0) \), an unmarked set of states
Set \(S' = \{ s'_0 \} \)
while there is an unmarked \(T \in S' \)
 mark \(T \)
 for each symbol \(a \in \Sigma \)
 let \(U = \varepsilon\text{-closure}(\text{move}(T,a)) \)
 if \(U \notin S' \), add unmarked \(U \) to \(S' \)
 add transition: \(\delta'(T,a) = U \)
\(F' \) is the subset of \(S' \) all of whose members contain a state in \(F \).
NFA -> DFA algorithm
(set of states construction - page 153 of text)

\[S_0' = \{ A = \{0,1,2,4,7\} \} \]

Pick an unmarked set from \(S_0' \), \(A \), mark it, and \(\forall x \in \Sigma \) let \(U = \varepsilon\text{-closure}(\text{move}(A, x)) \),
if \(U \notin S' \), add unmarked \(U \) to \(S' \) and add transition: \(\delta'(A, x) = U \)

\[S_1' = \{ A' , B = \{1,2,3,4,6,7,8\} , C = \{1,2,4,5,6,7\}\} \]
\[\delta'(A,a) = B \]
\[\delta'(A,b) = C \]

Pick an unmarked set from \(S_1' \), \(B \), mark it, and \(\forall x \in \Sigma \) let \(U = \varepsilon\text{-closure}(\text{move}(B, x)) \),
if \(U \notin S' \), add unmarked \(U \) to \(S' \) and add transition: \(\delta'(B, x) = U \)

\[S_2' = \{ A' , B' , C , D = \{1,2,4,5,6,7,9\}\} \]
\[\delta'(B,a) = B \]
\[\delta'(B,b) = D \]

Pick an unmarked set from \(S_2' \), \(C \), mark it, and \(\forall x \in \Sigma \) let \(U = \varepsilon\text{-closure}(\text{move}(C, x)) \),
if \(U \notin S' \), add unmarked \(U \) to \(S' \) and add transition: \(\delta'(C, x) = U \)

\[S_3' = \{ A' , B' , C' , D \} \]
\[\delta'(C,a) = B \]
\[\delta'(C,b) = C \]
Pick an unmarked set from S_3', D, mark it, and $\forall x \in \Sigma$ let $U = \varepsilon$-closure(move(D,x)), if $U \notin S'$, add unmarked U to S' and add transition: $\delta'(D,x) = U$

$S_4' = \{ A^\vee, B^\vee, C^\vee, D^\vee, E = \{1,2,4,5,6,7,10\} \}$
$\delta'(D,a) = B$
$\delta'(D,b) = E$

Pick an unmarked set from S_4', E, mark it, and $\forall a \in \Sigma$ let $U = \varepsilon$-closure(move(E,a)), if $U \notin S'$, add unmarked U to S' and add transition: $\delta'(E,a) = U$

$S_5' = \{ A^\vee, B^\vee, C^\vee, D^\vee, E^\vee \}$
$\delta'(E,a) = B$
$\delta'(E,b) = C$

Since there are no unmarked sets in S_5' the algorithm has reached a fixed point.
STOP.

F' is the subset of S' all of whose members contain a state in F: $\{E\}$
The original NFA
The resulting DFA

DFA = (\{ A, B, C, D, E \}, \{ a, b \}, A, \delta', \{ E \}), where

\delta'(A,a) = B
\delta'(A,b) = C
\delta'(B,a) = B
\delta'(B,b) = D
\delta'(C,a) = B
\delta'(C,b) = C
\delta'(D,a) = B
\delta'(D,b) = E
\delta'(E,a) = B
\delta'(E,b) = C
Process of building lexical analyzer

5) The minimal DFA is our lexical analyzer
focus last time

NFA to DFA conversion
focus today
DFA minimization
NFA for \((a|b)^*abb\)
DFA for \((a|b)^*abb\)
Minimization Algorithm
DFA -> minimal DFA algorithm

INPUT: An DFA D = (S, Σ, δ, s₀, F)
OUTPUT: A DFA D' = (S', Σ, δ', s₀', F') such that
 S' is as small as possible, and
 L(D) = L(D')

ALGORITHM:
1. Let π = { F, S-F }
2. Let π' = π. For every group G of π:
 - partition G into subgroups such that two states s and t are in the same
 subgroup iff for all input symbols a, states s and t have transitions on
 a to states in the same group of π
 - Replace G in π' by the set of all subgroups formed
3. if π' = π let π" = π, otherwise set π = π' and repeat 2.
4. Choose one state in each group of π" as a representative for that group.
 a) The start state of D' is the representative of the group containing the
 start state of D
 b) The accepting states of D' are the representatives of those groups that
 contain an accepting state of D
 c) Adjust transitions from representatives to representatives.
ORIGINAL DFA

\[D = (S, \Sigma, s_0, \delta, F) \]

\[S = \{A, B, C, D, E\} \]
\[\Sigma = \{a, b\} \]
\[s_0 = A \]
\[\delta = \{(A,a)\rightarrow B, (A,b)\rightarrow C, (B,a)\rightarrow B, (B,b)\rightarrow D, (C,a)\rightarrow B, (C,b)\rightarrow C, (D,a)\rightarrow B, (D,b)\rightarrow E, (E,a)\rightarrow B, (E,b)\rightarrow C\} \]
\[F = \{E\} \]
Finding the minimal set of distinct sets of states

\[\pi_0 = \{ F, S-F \} = \{ \{E\}, \{A,B,C,D\} \} \]

Pick a non-singleton set \(X = \{A,B,C,D\} \) from \(\pi_0 \) and check behavior of states on all transitions on symbols in \(\Sigma \) (are they to states in \(X \) or to other groups in the partition?)

\[(A,a)\to B, (B,a)\to B, (C,a)\to B, (D,a)\to B\]
\[(A,b)\to C, (B,b)\to D, (C,b)\to C, (D,b)\to E\]

D behaves differently, so put it in its own partition.
Finding the minimal set of distinct sets of states

$\pi_1 = \{ \{E\}, \{A, B, C\}, \{D\} \}$

Pick a non-singleton set $X = \{A, B, C\}$ from π_1 and check behavior of states on all transitions on symbols in Σ (are they to states in X or to other groups in the partition?)

$(A, a) \rightarrow B, (B, a) \rightarrow B, (C, a) \rightarrow B$
$(A, b) \rightarrow C, (B, b) \rightarrow D, (C, b) \rightarrow C$

B behaves differently, so put it in its own partition.
Finding the minimal set of distinct sets of states

\[\pi_2 = \{ \{E\}, \{A, C\}, \{B\}, \{D\} \} \]

Pick a non-singleton set \(X = \{A, C\} \) from \(\pi_2 \) and check behavior of states on all transitions on symbols in \(\Sigma \) (are they to states in \(X \) or to other groups in the partition?)

\[
\begin{align*}
(A,a) &\rightarrow B, \ (C,a) \rightarrow B \\
(A,b) &\rightarrow C, \ (C,b) \rightarrow C
\end{align*}
\]

A and C both transition outside the group on symbol a, to the same group (the one containing B). Therefore A and C are indistinguishable in their behaviors, so do not split this group.
Finding the minimal set of distinct sets of states

$$\pi_3 = \{ \{E\}, \{A, C\}, \{B\}, \{D\} \} = \pi_2$$

We have reached a fixed point! STOP
Pick a representative from each group

$$\pi_{\text{FINAL}} = \{ \{E\}, \{A, C\}, \{B\}, \{D\} \}$$
MINIMAL DFA

\[D' = (S', \Sigma, s'_0, \delta', F') \]

-\(S' = \{ B, C, D, E \} \rightarrow \) the representatives
-\(\Sigma = \{ a, b \} \rightarrow \) no change
-\(s'_0 = C \rightarrow \) the representative of the group that contained D's starting state, A
-\(\delta = \) (on next slide)
-\(F = \{ E \} \rightarrow \) the representatives of all the groups that contained any of D's final states (which, in this case, was just \{E\})
The new transition function δ'

- For each state $s \in S'$, consider its transitions in D, on each $a \in \Sigma$.

- if $\delta(s,a) = t$, then $\delta'(s,a) = r$, where r is the representative of the group containing t.
$$\delta = \{(B,a) \rightarrow B, \ (B,b) \rightarrow D, \ (C,a) \rightarrow B, \ (C,b) \rightarrow C, \ (D,a) \rightarrow B, \ (D,b) \rightarrow E, \ (E,a) \rightarrow B, \ (E,b) \rightarrow C\}$$
Minimal DFA for \((a|b)^*abb\)