CSE443
Compilers

Dr. Carl Alphonce
alphonce@buffalo.edu
343 Davis Hall
Phases of a compiler

Figure 1.7, page 5 of text
Abbreviated LALR discussion

Consider:
"Why can LR(0) automata be used to make shift-reduce decisions? The LR(0) automaton for a grammar characterizes the strings of grammar symbols that can appear on the stack... The stack contents must be a prefix of a right-sentential form. If the stack holds α and the rest of the input is x, then a sequence of reductions will take αx to S. In terms of derivations, $S \Rightarrow_{rm*} \alpha x.$" [p. 256]
Viable prefix

"Not all prefixes of right-sentential forms can appear on the stack...since the parser must not shift past the handle." [p. 256]

\[E \Rightarrow_{\text{rm}^*} F \ast \text{id} \Rightarrow_{\text{rm}} (E) \ast \text{id} \]
Viable prefix

\[
\begin{align*}
(\$, \"(\ id \)\) * id \$
(\$, \'(\ id \)\) * id \\
(\$, \'(id, \)\) * id \\
(\$, \'(F, \)\) * id \\
(\$, \'(T, \)\) * id \\
(\$, \'(E, \)\) * id \\
(\$, \'(E \)'\) * id \\
(\$, F * id \\
(\$, T * id \\
(\$, T * * id \\
etc.
\end{align*}
\]

Cannot shift '*' here, because \(\'(E \)'\) is a handle.
Viable prefix

"The prefixes of right sentential forms that can appear on the stack of a shift-reduce parser are called viable prefixes." [p. 256]
Viable prefix

\[
\begin{align*}
(\&, (\text{id}) \star \text{id} \\
(\& \text{(',' id ,')}) \star \text{id} \\
(\& \text{(',' id ,')}) \star \text{id} \\
(\& \text{(',' F ,')}) \star \text{id} \\
(\& \text{(',' T ,')}) \star \text{id} \\
(\& \text{(',' E ,')}) \star \text{id} \\
(\& \text{(',' E ')}) \star \text{id} \\
\text{F} \star \text{id} \\
\text{T} \star \text{id} \\
\text{T} \star \text{id} \\
\text{etc.}
\end{align*}
\]

Cannot shift '∗' here, because

\text{(' E ')}

is a handle.

Therefore

\text{(' E ')} \star

is not a viable prefix.
LR(1) items

"...in the SLR method, state I calls for reduction by $A \rightarrow \alpha$ if the set of items I_i contains item $[A \rightarrow \alpha \Box]$ and input symbol a is in FOLLOW(A)." [p. 260]
LR(1) items

"In some situations, however, when state I appears on top of the stack the viable prefix $\beta\alpha$ on the stack is such that βA cannot be followed by a in any right-sentential form." [p. 260]
Example 4.51 [p. 260]

Grammar from example 4.48:
\[
S \rightarrow L = R \mid R \\
L \rightarrow *R \mid id \\
R \rightarrow L
\]

State I2 from figure 4.39
\[
S \rightarrow L \ 0 = R \\
R \rightarrow L \ 0
\]

"Consider the set of items I2. The first item in this set makes ACTION[2,=] be 'shift 6'. Since FOLLOW(R) contains = [...] the second items sets ACTION[2,=] to reduce R \rightarrow L." [p. 255]

"...the SLR parser calls for reduction by R \rightarrow L in state 2 with = as the next input (the shift action is also called for ...). However, there is no right-sentential form of the grammar ... that begins R = Thus state 2, which is the state corresponding to viable prefix L only, should not really call for reduction of that L to R." [p. 260]
LR(1) items

"By splitting states when necessary, we can arrange to have each state ... indicate exactly which input symbols can follow a handle α for which there is a possible reduction to $A.$" [p. 260]

"The general form of an item becomes

\[
[A \rightarrow \alpha \cdot \beta, a]
\]

where $A \rightarrow \alpha\beta$ is a production and a is a terminal or ... $\$.$" [p. 260]

"The lookahead has no effect in an item of the form \([A \rightarrow \alpha \bullet \beta, a]\), where \(\beta\) is not \(\varepsilon\), but an item of the form \([A \rightarrow \alpha \bullet, a]\) calls for reduction by \(A \rightarrow \alpha\) only if the next input symbol is \(a\). […] The set of such \(a\)'s will always be a subset of \text{FOLLOW}(A), but it could be a proper subset …" [p. 260]
LALR (lookahead LR)

“SLR and LALR tables ... always have the same number of states.” [p. 266]

Idea: merge sets of LR(1) items with the same core.

Cannot introduce Shift/Reduce conflicts, may introduce Reduce/Reduce conflicts.

Bison and YACC produce LALR parsers.
Phases of a compiler

Figure 1.6, page 5 of text
Semantics

• “Semantics” has to do with the meaning of a program.

• We will consider two types of semantics:

 – Static semantics: semantics which can be enforced at compile-time.

 – Dynamic semantics: semantics which express the run-time meaning of programs.
Static semantics

• Semantic checking which can be done at compile-time

• Type-compatibility is a prime example
 – int can be assigned to double (type coercion)
 – double cannot be assigned to int without explicit type cast

• Type-compatibility can be captured in grammar, but only at expense of larger, more complex grammar
Ex: adding type rules in grammar

- Must introduce new non-terminals which encode types:
- Instead of a generic grammar rule for assignment:
 - `<stmt> → <var> '=' <expr> ';'
- we need multiple rules:
 - `<stmt> → <doubleVar> '=' <intExpr> | <doubleExpr> ';'
 - `<stmt> → <intVar> '=' <intExpr> ';'
- Of course, such rules need to handle all the relevant type possibilities (e.g. `byte, char, short, int, long, float` and `double`).
Alternative: attribute grammars

- Attribute grammars provide a neater way of encoding such information.
- Each syntactic rule of the grammar can be decorated with:
 - a set of semantic rules/functions
 - a set of semantic predicates
Attributes

- We can associate with each symbol X of the grammar a set of attributes $A(X)$. Attributes are partitioned into:

 - synthesized attributes $S(X)$ – pass info up parse tree
 - inherited attributes $I(X)$ – pass info down parse tree
Semantic rules/functions

• We can associate with each rule R of the grammar a set of semantic functions.

• For rule $X_0 \rightarrow X_1 X_2 \ldots X_n$
 - synthesized attribute of LHS: $S(X_0) = f(A(X_1), A(X_2), \ldots, A(X_n))$
 - inherited attribute of RHS member: for $1 \leq j \leq n$, $I(X_j) = f(A(X_0), \ldots, A(X_{j-1}))$

 (note that dependence is on siblings to left only)
Predicates

• We can associate with each rule R of the grammar a set of semantic predicates.

• Boolean expression involving the attributes and a set of attribute values

 • If true, node is ok

 • If false, node violates a semantic rule
Example

\[\text{<assign> } \rightarrow \text{ <var> = <expr> } \]

Start with a production of the grammar
Example

<assign> → <var> = <expr>
<expr>.expType

Associate an attribute with a non-terminal, <expr>, on the right of the production: expType (the expected type of the expression)
Example

\[<\text{assign}> \rightarrow <\text{var}> = <\text{expr}>\]
\[<\text{expr}>.\text{expType} \leftarrow <\text{var}>.\text{actType}\]

Assign to \(<\text{expr}>.\text{expType}\) the value of \(<\text{var}>.\text{actType}\), the actual type of the variable (the type the variable was declared as).
Example

\[\text{assign} \rightarrow \text{var} = \text{expr} \]
\[\text{expr}.\text{expType} \leftarrow \text{var}.\text{actType} \]

In other words, we expect the expression whose value is being assigned to a variable to have the same type as the variable.
Example

\[<\text{assign}> \rightarrow <\text{var}> = <\text{expr}> \]
\[<\text{expr}> . \text{expType} \leftarrow <\text{var}> . \text{actType} \]
\[<\text{expr}> \rightarrow <\text{var}>[2] + <\text{var}>[3] \]

Another grammar production

Syntactic rule
Semantic rule/function
Semantic predicate
Example

\(<assign> \rightarrow <var> = <expr>\>
\<expr>.expType \leftarrow <var>.actType\>

\(<expr> \rightarrow <var>[2] + <var>[3]\>
\<expr>.actType \leftarrow \text{if (var}[2].actType = \text{int) and (var}[3].actType = \text{int) then int else real}\>

This production has a more involved semantic rule: it handles type coercion. This rule assume that there are only two numeric types (int and real) and that int can be coerced to real.
Here is our first semantic predicate, which enforces a type-checking constraint: the actual type of <expr> must match the expected type (from elsewhere in the tree)
Example

<assign> \rightarrow <var> = <expr>
<expr>.expType \leftarrow <var>.actType

<expr>.actType \leftarrow \text{if (var}[2].actType = \text{int) and}
\hspace{1cm} \text{(var}[3].actType = \text{int)}
\hspace{1cm} \text{then int}
\hspace{1cm} \text{else real}
<expr>.actType == <expr>.expType

Another production, with a semantic rule and a semantic predicate.
Example

\[<\text{assign}> \rightarrow <\text{var}> = <\text{expr}>\]
\[<\text{expr}>.\text{expType} \leftarrow <\text{var}>.\text{actType}\]

\[<\text{expr}> \rightarrow <\text{var}>[2] + <\text{var}>[3]\]
\[<\text{expr}>.\text{actType} \leftarrow \text{if (var}[2].\text{actType} = \text{int}) \text{ and} \]
\[\quad \quad \text{(var}[3].\text{actType} = \text{int})\]
\[\quad \quad \text{then int} \]
\[\quad \quad \text{else real}\]
\[<\text{expr}>.\text{actType} == <\text{expr}>.\text{expType}\]

\[<\text{expr}> \rightarrow <\text{var}>\]
\[<\text{expr}>.\text{actType} \leftarrow <\text{var}>.\text{actType}\]
\[<\text{expr}>.\text{actType} == <\text{expr}>.\text{expType}\]

\[<\text{var}> \rightarrow \text{A | B | C}\]
\[<\text{var}>.\text{actType} \leftarrow \text{lookUp(<var>.string)}\]

This semantic rule says that the type of an identifier is determined by looking up its type in the symbol table.
All the productions, rules and predicates

<assign> → <var> = <expr>
<expr>.expType ← <var>.actType

<expr>.actType ← if (var[2].actType = int) and
 (var[3].actType = int)
 then int
 else real
<expr>.actType == <expr>.expType

<expr> → <var>
<expr>.actType ← <var>.actType
<expr>.actType == <expr>.expType

<var> → A | B | C
<var>.actType ← lookUp(<var>.string)
Suppose:

\[A \text{ is int} \]
\[B \text{ is int} \]
Suppose:
A is int
B is int

Effects of the syntactic rules is shown in red.
Suppose:

A is real
B is int

This is the same example structure, but now assume A is of type real and B is of type int.
This is the same example structure, but now assume A is of type real and B is of type int.
Suppose:

- A is real
- B is int

This is the same example structure, but now assume A is of type real and B is of type int.

Generate code to do conversion.
Suppose:

A is int

B is real

This is the same example structure, but now assume A is of type int and B is of type real.
Suppose:
A is int
B is real

actual type = int
actual type = int
expected type = int
actual type = int
actual type = real
actual type = real

Houston, we have a problem!
Semantic predicate is false.