SorLuTioNs TO CSE 331 SAMPLE MID-TERM

Please do not read anything into the kind of problems in the sample mid-term. In par-
ticular, to save myself time I copied two problems from the homeworks. (Further, instead of
spelling out the solutions in this document I might refer you to the corresponding homework
solutions.) The actual mid term problems will not be such straight-forward lifts. Overall,
the mid-term will be a bit harder than this sample mid-term (but still much easier than
the homeworks). The main purpose of this sample mid-term was to give you an idea of the
format of questions. The actual mid term will also have true/false questions followed by two
other questions (with same points).

1. (4 x 10 = 40 points) Answer True or False to the following questions and briefly
JUSTIFY each answer. A correct answer with no or totally incorrect justification will
get you 4 out of the total 10 points. (Recall that a statement is true only if it is
logically true in all cases while it is is false if it is not true in some case).

(a)

(b)

For any instance of the stable marriage problem with n men and n women, there
are n! =n X (n — 1) X ... x 1 many possible perfect matchings.

True. See Solution to Problem 3 in HWO.

1010
Consider f(n) = loglogn and g(n) = 101" " Then f(n)is O(g(n)).
False. g(n) is a constant (albeit a big one) and does not increase with n. However,

f(n) does increase with n (though slowly). Thus, for some large enough n, g(n) <
f(n) and thus, g(n) is O(f(n)) (and not the other way round).

For any graph, there is a unique BFS tree for it.

False. Consider the cycle on four vertices: vy, vy, vs3,v4 such that (v;,vi4q) for
1 <4 < 3 and (vyg,v1) are the edges. Consider a BFS run that starts from v;.
Note that v4 can be discovered from either vy or vs and each choice leads to a
different BEF'S tree.

Given a graph on n vertices in its adjacency matrix, there is an O(n?) time
algorithm to convert it into its adjacency list representations.

True. In short here is the algorithm: go through the matrix row by row and for
the vertex u corresponding to the current row, add a list of vertices w such that
the entry for (u,w) is a 1. Each row takes O(n) time and there are n rows, which
makes for a total running time of O(n?).

2. (20 + 20 = 40 points) Given an array A of n integers, consider the the following
algorithm that computes a related value (and an intermediate matrix B):

Foreveryi=1,...,n
For every j =1,...,n
Assign Bli, j] to be the maximum value among A[i|, A[i +1],..., Alj].
Output the minimum value among all values in Bli, j| (over all i = 1,...,n and
J=1dy...,n).



(a) Prove that the algorithm runs in O(n?) time.

We are given an algorithm with two nested loops and some operations to perform
for each iteration. The outside (i) loop will perform n iterations, which is O(n).
For each of those iterations, the inside (j) loop will perform n — ¢ iterations,
which is also O(n). So regardless of what is going on inside the inside loop, this
algorithm performs O(n?) iterations. Visually, this should make sense, because
we are filling in the upper triangle of the B matrix with values that we compute,
and there are O(n?) entries in the upper triangle. For each of these iterations,
though, we find the maximum of j —i 4+ 1 (or O(n)) terms from the A array.
So we have O(n?) iterations, each of which require O(n) comparisons (which can
execute in O(1) time). Thus, the entire algorithm will execute in O(n?®) time.

(b) Present another algorithm that solves the same problem but runs in O(n?) time.
(Briefly justify the running time and correctness of your algorithm.)

We can develop a more efficient algorithm by isolating and removing any unneces-
sary or duplicated operations from the given algorithm. To see where these exist,
consider that for each iteration, we go back to the A array and found out the
maximum of a bunch of entries, ignoring the fact that in the previous iterations,
we’'ve found the maximum of many of those same terms together already. No-
tice that for any element of B except when j =i + 1, the entry in B[i, j| equals
max(Bli,j — 1], A[j]). This suggests the following algorithm:

fori=1,2,....,n—1do
forj=i+1,i+2, ...,ndo
if j =741 then
Bli, j] = max(Ali], A[j])
else
Bli, j] = max(Bi, j — 1], A[j)
end if
end for
end for

Although the structure of the algorithm is similar to the previous one, we have
only one comparison per iteration, instead of the earlier O(n) comparisons. So
the time complexity function for this algorithm just depends on the number of
iterations, which is O(n?). The running time is thus O(n?).

3. Let d > 1 be an integer. Then a d-dimension hypercube is a graph whose vertex set is
{0,1}¢. (Note that this implies that n = 2%.) Further, a pair (u,v) is an edge if and
only if the binary representations of v and v differ in exactly one of the d positions.

(a) (20 points) Figure out a function f(d) such that the d-dimension hypercube has a
cycle of length at least f(d). (You will get more points the larger the value f(d)
is.) Briefly justify your answer.



(Hint: You can assume the existence of the Gray code, which for any ¢ > 1,
outputs an ordering of binary vector of length ¢ such that one can go from one
vector to the next one in the ordering by flipping exactly one bit.)

We claim that f(d) = 2¢, i.e. there exists a cycle that contains all the vertices
in the graph. (Such a cycle is called a Hamiltonian cycle.) Let the Gray code
ordering of the n vertices be vy,...,v,. We claim that vy, vs,...,v,,v; is a cycle.
To show this we must argue that (v;,v;11) and (v,,v;) are all edges. This is true
by the definition of the Gray code and the hypergraph. For 1 <i <n —1, v,
can be obtained from v; by flipping one bit, i.e. v;;; and v; differ in exactly one
of the d positions and hence, (v;,v;41) is an edge. A similar argument shows that
(vn, v1) is an edge.

(Bonus) (10 points) A cut of a graph G = (V, E) is a partition of V' into two sets
S and S =V \'S. The value of a cut (S,S5) (denoted by E(S,S)) is the total
number of edges such that one end point is in S and the other is in S, i.e. it is
the number of edges “crossing” the cut. The maxcut value of G is

max E(9, 9).

S5CV
Figure out a function g(d) such that the maxcut value of a d-dimension hypergraph
is at least g(d). Justify your answer. (To receive any credit for this problem,
the function g(d) has to depend non-trivially on d- at the very least it has to be
asymptotically bigger than d. An answer without any justification will not receive
any credit.)

If you thought about this problem, contact us with your solution and we will be
happy to talk about it.



