
CSE 331: Introduction to Algorithm Analysis and Design Fall 2012

ANALYZING THE WORST-CASE RUN TIME OF AN ALGORITHM
Supplemental notes for the lecture on September 19, 2012

Let A be the algorithm we are trying to analyze. Then we will define T (N) to be the worst-case run-
time of A over all inputs of size N . Slightly more formally, let tA (x) be the number of steps taken by the
algorithm A on input x. Then

T (N) = max
x:x is of size N

tA (x). (1)

In this note, we present two useful strategies to prove statements like T (N) is O(g (N)) or T (N) is
Ω(h(N)). Then we will analyze the run time of a very simple algorithm.

1 Preliminaries

We now collect two properties of asymptotic notation that we will need in this note (we saw these in class
today).

Lemma 1. If f and g are both O(h) (Ω(h) resp.) then f + g is O(h) (Ω(h) resp.).

Lemma 2. If f is O(h1) (Ω(h1) resp.) and g is O(h2) (Ω(h2) resp.) then f · g is O(h1 ·h2) (Ω(h1 ·h2) resp.).

2 Proving T (N) is O(f (N))

We start off with an analogy. Say you wanted prove that given m numbers a1, . . . , am , maxi ai ≤U . Then
how would you go about doing so? One way is to argue that the maximum value is attained at i∗ and
then show that ai∗ ≤U . Now this is a perfectly valid way to prove the inequality we are after but note that
you will also have to prove that the maximum value is attained at i∗. Generally, this is a non-trivial task.
However, consider the following strategy:

Show that for every 1 ≤ i ≤ m, ai ≤U . Then conclude that maxi ai ≤U .

Mathematically the above two strategies are the same. However, in "practice," using the strategy above
turns out to be much easier. Thus, here is the strategy to prove that T (N) is O(f (N)):

For every large enough N , show that for every input x of size N , tA (x) is O(f (N)). Then
conclude that T (N) is O(f (N)).

3 Proving T (N) isΩ(f (N))

We start off with the same analogy as in the previous section. Say you wanted prove that given m num-
bers a1, . . . , am , maxi ai ≥ L. Then how would you go about doing so? Again, one way is to argue that the
maximum value is attained at i∗ and then show that ai∗ ≥ L. Now this is a perfectly valid way to prove
the inequality we are after but note that you will also have to prove that the maximum value is attained
at i∗. Generally, this is a non-trivial task. However, consider the following strategy:

1

Show that there exists an 1 ≤ i ≤ m, such that ai ≥ L. Then conclude that maxi ai ≥ L.

Mathematically the above two strategies are the same. However, in "practice," using the strategy above
turns out to be much easier. Thus, here is the strategy to prove that T (N) isΩ(f (N)):

For every large enough N , show that there exists an input x of size N , tA (x) isΩ(f (N)). Then
conclude that T (N) isΩ(f (N)).

4 An Example

Now let us use all the above tools to asymptotically bound the run-time of a simple algorithm. Consider
the following simple problem: given n +1 numbers a1, . . . , an ; v , we should output 1 ≤ i ≤ n if ai = v (if
there are multiple such i ’s then output any one of them) else output −1. Below is a simple algorithm to
solve this problem.

Algorithm 1 Simple Search
INPUT: a1, . . . , an ; v
OUTPUT: i if ai = v ; −1 otherwise

1: FOR every 1 ≤ i ≤ n DO

2: IF ai = v THEN RETURN i

3: RETURN −1

We will show the following:

Theorem 1. The Simple Search algorithm 1 has a run time ofΘ(n).

We will prove Theorem 1 by proving1 Lemmas 3 and 4.

Lemma 3. T (n) for Algorithm 1 is O(n).

Proof. We will use the strategy outlined in Section 2. Let a1, . . . , an ; v be an arbitrary input. Then first
note that there are at most n iterations of the for loop in Step 1. Further, each iteration of the for loop
(i.e. Step 2) can be implemented in O(1) time (since it involves one comparison and a potential return of
the output value). Thus, by Lemma 2, the total times taken overall in Steps 1 and 2 is given by

T12 ≤O(n ·1) =O(n).

Further, since Step 3 is a simple return statement, it takes time T3 =O(1) time. Thus, we have that

tAlgorithm 1(a1, . . . , an ; v) = T12 +T3 ≤O(n)+O(1) ≤O(n),

where the last inequality follows from Lemma 1 and the fact that O(1) is also O(n). Since the choice of
a1, . . . , an ; v was arbitrary, the proof is complete.

Lemma 4. T (n) for Algorithm 1 isΩ(n).

1Note that I am not presenting separated out proof ideas so these are not "ideal" solutions for the HWs.

2

Proof. We will follow the strategy laid out in Section 3. For every n ≥ 1, consider the specific input a′
i =

n +1− i (for every 1 ≤ i ≤ n) and v ′ = 1.
For the above specific input, it can be easily checked that the condition in Step 2 is only satisfied

when i = n. In other words, the for loop runs at least (actually exactly) n times. Further, each iteration
of this loop (i.e. Step 2) has to perform at least one comparison, which means that this step takes Ω(1)
time. Since n isΩ(n), by Lemma 2 (using notation from the proof of Lemma 3), we have

T12 ≥Ω(n ·1) =Ω(n).

Thus, we have
tAlgorithm 1(a′

1, . . . , a′
n ; v ′) ≥ T12 ≥Ω(n).

Since we have shown the existence of one input for each n ≥ 1 for which the run-time is Ω(n), the proof
is complete.

A quick remark on the proof of Lemma 4. Since by Section 3, we only need to exhibit only one input
with runtime Ω(n), the input instance in the proof of Lemma 4 is only one possibility. One can choose
other instances: e.g. we can choose an instance where the output has to be −1 (as a specific instance
consider ai = i and v = 0). For this instance one can make a similar argument as in the proof of Lemma 4
to show that T (n) ≥Ω(n).

Exercise. If you think you need more examples to work through to make yourself comfortable with
analyzing T (n) for different algorithms, show that the binary search algorithm on n sorted numbers
takesΘ(logn) time.

3

	Preliminaries
	Proving T(N) is O(f(N))
	Proving T(N) is (f(N))
	An Example

