CSE 331: Introduction to Algorithm Analysis and Design Fall 2012

ANALYZING THE WORST-CASE RUN TIME OF AN ALGORITHM
Supplemental notes for the lecture on September 19, 2012

Let o/ be the algorithm we are trying to analyze. Then we will define T(N) to be the worst-case run-
time of ¢ over all inputs of size N. Slightly more formally, let z./(x) be the number of steps taken by the
algorithm .« on input x. Then

T(N)= max tgyX). (1)

x:x is of size N

In this note, we present two useful strategies to prove statements like T'(N) is O(g(NV)) or T(N) is
Q(h(N)). Then we will analyze the run time of a very simple algorithm.

1 Preliminaries

We now collect two properties of asymptotic notation that we will need in this note (we saw these in class
today).

Lemma 1. If f and g are both O(h) (Q(h) resp.) then f + g is O(h) (Q(h) resp.).

Lemma2. Iff is O(hy) (Q(hy) resp.) and g is O(hy) (Q(hy) resp.) then f - g is O(hy - hp) (Q(hy - hy) resp.).

2 Proving T(N)is O(f(N))

We start off with an analogy. Say you wanted prove that given m numbers ay, ..., ay, max; a; < U. Then
how would you go about doing so? One way is to argue that the maximum value is attained at i* and
then show that a;+ < U. Now this is a perfectly valid way to prove the inequality we are after but note that
you will also have to prove that the maximum value is attained at i*. Generally, this is a non-trivial task.
However, consider the following strategy:

Show that for every1 < i < m, a; < U. Then conclude that max; a; < U.

Mathematically the above two strategies are the same. However, in "practice,” using the strategy above
turns out to be much easier. Thus, here is the strategy to prove that T'(INV) is O(f(IV)):

For every large enough N, show that for every input x of size N, t,(x) is O(f(N)). Then
conclude that T'(N) is O(f (V).

3 Proving T(N) is Q(f(N))

We start off with the same analogy as in the previous section. Say you wanted prove that given m num-
bers ay, ..., an, max; a; = L. Then how would you go about doing so? Again, one way is to argue that the
maximum value is attained at i* and then show that a;- = L. Now this is a perfectly valid way to prove
the inequality we are after but note that you will also have to prove that the maximum value is attained
at i*. Generally, this is a non-trivial task. However, consider the following strategy:

Show that there existsan 1 < i < m, such that a; = L. Then conclude that max; a; = L.

Mathematically the above two strategies are the same. However, in "practice,” using the strategy above
turns out to be much easier. Thus, here is the strategy to prove that T'(N) is Q(f (IV)):

For every large enough N, show that there exists an input x of size N, t,(x) is Q(f(N)). Then
conclude that T'(N) is Q(f (V).

4 An Example

Now let us use all the above tools to asymptotically bound the run-time of a simple algorithm. Consider
the following simple problem: given n + 1 numbers ay,..., d,; v, we should output 1 <i < nif a; = v (if
there are multiple such i’s then output any one of them) else output —1. Below is a simple algorithm to
solve this problem.

Algorithm 1 Simple Search
INPUT: ay,...,an;V
OuTPUT: iif a; = v; —1 otherwise

1: FOReveryl <i<nDO
2: IF a; = v THEN RETURN i
3: RETURN —1

We will show the following:
Theorem 1. The Simple Search algorithm|[1 has a run time of ©(n).
We will prove Theorem [1{by provinéﬂ Lemmas|3|and
Lemma 3. T'(n) for Algorithm|[l]is O(n).

Proof. We will use the strategy outlined in Section |2} Let ay,...,a,; v be an arbitrary input. Then first
note that there are at most 7 iterations of the for loop in Step 1. Further, each iteration of the for loop
(i.e. Step 2) can be implemented in O(1) time (since it involves one comparison and a potential return of
the output value). Thus, by Lemma|2} the total times taken overall in Steps 1 and 2 is given by

Ti2=0(-1) =0(n).
Further, since Step 3 is a simple return statement, it takes time 73 = O(1) time. Thus, we have that
tAlgorithm (@1, .-, @n; V) = Ti2 + T3 < O(n) + O(1) = O(n),

where the last inequality follows from Lemma|[I]and the fact that O(1) is also O(n). Since the choice of
ai,..., an; v was arbitrary, the proof is complete. O

Lemma 4. T(n) for Algorithm|[1)is Q(n).

INote that I am not presenting separated out proof ideas so these are not "ideal" solutions for the HW.

Proof. We will follow the strategy laid out in Section For every n = 1, consider the specific input a; =
n+1—i(foreveryl<i<mn)and v =1.

For the above specific input, it can be easily checked that the condition in Step 2 is only satisfied
when i = n. In other words, the for loop runs at least (actually exactly) n times. Further, each iteration
of this loop (i.e. Step 2) has to perform at least one comparison, which means that this step takes Q(1)
time. Since n is Q(n), by Lemma (using notation from the proof of Lemma, we have

le =>Q(n-1)=Q(n).

Thus, we have
/ I
tAlgorithm(alr e Ay U)= T2 = Q(n).

Since we have shown the existence of one input for each n = 1 for which the run-time is Q(n), the proof
is complete. O

A quick remark on the proof of Lemmaf4] Since by Section[3} we only need to exhibit only one input
with runtime Q(#n), the input instance in the proof of Lemmais only one possibility. One can choose
other instances: e.g. we can choose an instance where the output has to be —1 (as a specific instance
consider a; = i and v = 0). For this instance one can make a similar argument as in the proof of Lemma
to show that T'(n) = Q(n).

Exercise. If you think you need more examples to work through to make yourself comfortable with
analyzing T'(n) for different algorithms, show that the binary search algorithm on 7 sorted numbers
takes ©(logn) time.

	Preliminaries
	Proving T(N) is O(f(N))
	Proving T(N) is (f(N))
	An Example

