

## Lecture 34: Expander Codes

April 13, 2009

Lecturer: Atri Rudra

Scribe: Jesper Dybdahl Hede

In the last lecture we examined explicit linear codes that achieve  $BSC_p$  capacity, polynomial time decoding and exponentially small decoding error probability. We saw decoding time:

$$poly(N) + N \cdot 2^{O(k)}, \text{ where } k = \theta\left(\frac{\log \frac{1}{\gamma}}{\varepsilon^2}\right) \text{ and } \gamma = \varepsilon^3$$

A question to motivate this lecture is whether we can achieve  $BSC_p$  capacity with  $poly(N, \frac{1}{\varepsilon})$  decoding. The answer is still open.

In this lecture we will examine if we can achieve  $BEC_\alpha$  capacity with  $N \cdot poly(\frac{1}{\varepsilon})$  decoding.

**Theorem 1.** *For small enough  $\beta > 0$ , there exist an explicit binary linear code of rate  $\frac{1}{1+\beta}$ , and can correct  $\Omega\left(\frac{\beta^2}{(\log \frac{1}{\beta})^2}\right)$  fraction of worst-case errors with  $O(N)$  encoding and decoding.*

These codes are called *expander codes*. Note that they are optimal in running time (linear). Using expander codes is the only other way to get asymptotically good binary codes besides code concatenation.

## 1 Factor Graphs (for linear binary codes)

We examine a  $[n, k]_2$ -code  $C$ .

The factor graph for  $C$  is the bipartite graph corresponding to  $C$ 's parity check matrix (when thought of as an adjacency matrix).

As an example we regard the  $[7, 4]_2$ -Hamming code:

$$H_{HAM} = \begin{pmatrix} 0 & 0 & 0 & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 0 & 0 & 1 & 1 \\ 1 & 0 & 1 & 0 & 1 & 0 & 1 \end{pmatrix} \begin{matrix} p_1 \\ p_2 \\ p_3 \\ c_1 \\ c_2 \\ c_3 \\ c_4 \\ c_5 \\ c_6 \\ c_7 \end{matrix}$$

The parity check matrix is displayed as a factor graph in figure 1. In the parity check matrix the columns are named  $c_1$  to  $c_7$  and the rows are named  $p_1$  to  $p_3$ . For a given row and column in the matrix, if there is a 1 then there is a line between the row and column points in the graph.

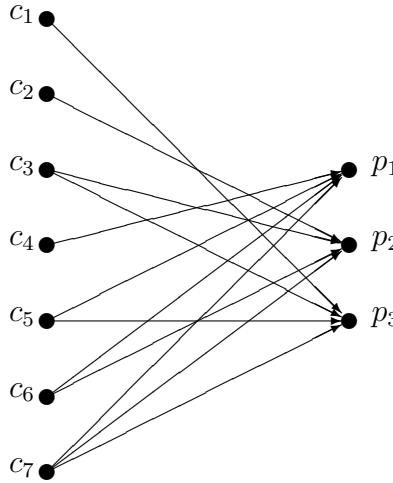


Figure 1: Parity check matrix for  $[7, 4]_2$ -Hamming code as a factor graph.

Note that the parity check is done by calculating

$$\sum_{i=1}^l c_{j_i} = 0 \text{ (over } \mathbb{F}_2\text{)}.$$

In other words, if the parities sum to zero then the given symbol's parity checks out. In a factor graph this can be illustrated as figure 2. So to check the parity of an entire codeword we have that all the parities must sum to zero:

$$(c_1, \dots, c_n) \in C \text{ iff } \forall p_j, \sum_{i=1}^l c_{j_i} = 0$$

## 1.1 Linear Density Parity Check (LDPC) codes

A LDPC code is a linear binary code whose factor graph has  $O(n)$  edges, where the maximum possible amount for any factor graph is  $O(n(n - k))$ .

## 2 Expander Codes

Expander codes are a specific form of general expanders. Factor graphs as we previously examined is another kind of "expander".

See figure 2 for a graphical example of an expander graph. Every element  $c$  on the left has exactly  $a$  number of neighbors on the right

$$\forall v \in L, \deg(v) = a.$$

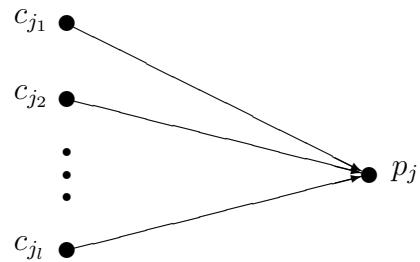


Figure 2: Example of single parity check.

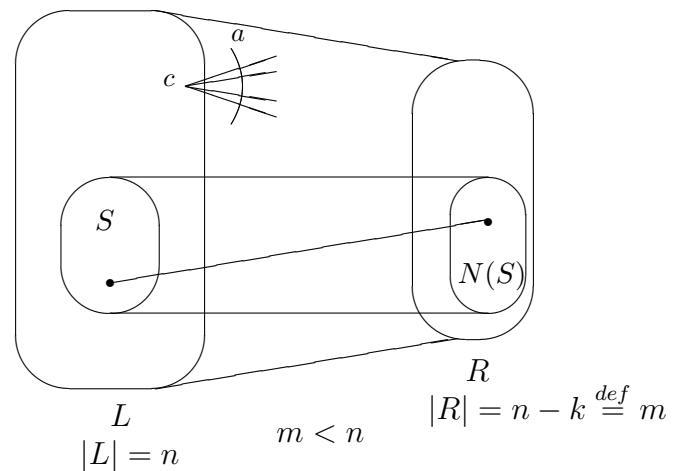


Figure 3: Expander as a factor graph.

So the number of elements in  $N(S)$  is at most  $a$  times the length of  $S$ . Now, the factor graph is only said to be an expander if the number of elements in  $N(S)$  is at least as high as the number of elements in  $S$ :

$$\Omega(|S|) \leq |N(S)|.$$

**Definition 1.** A  $(n, m, a, \beta, \alpha)$ -expander is an  $(L, R, E)$  left  $a$ -regular bipartite graph such that  $\forall S \subseteq L, |S| \leq \beta \cdot n, |N(S)| \geq \alpha \cdot |S|$

For all expanders we have

$$\alpha \leq a$$

and

$$a\beta n \leq m.$$

A special kind of expander is a loss less expanders, for which it holds

$$\alpha \geq a(1 - \varepsilon), \varepsilon > 0.$$

In other words, with a loss less expander  $\alpha$  is very close to  $a$ .

**Theorem 2.** (Existence)  $\forall \varepsilon > 0, m \leq n, \exists \beta > 0$  such that there is an  $(n, m, a, \beta, a(1 - \varepsilon))$ -expander for which it holds  $a = \theta(\frac{\log \frac{2n}{m}}{\varepsilon})$ ,  $\beta = \theta(\frac{\varepsilon}{a} \cdot \frac{m}{n})$ .

By probabilistic method as well as knowing that  $0 < \frac{n}{m} < 1, \varepsilon = \theta(1)$  we see that  $a$  is in the order of  $\frac{1}{\varepsilon}$  and  $\beta$  is in the order of  $\varepsilon^2$ :

$$\begin{aligned} a &= \theta\left(\frac{1}{\varepsilon}\right) \\ \beta &= \theta(\varepsilon^2) \end{aligned}$$

**Theorem 3.** For  $0 < \frac{m}{n} < 1, \varepsilon = \theta(1)$ , there exist a polynomial time construction of  $(n, m, O(1), \Omega(1), a(1 - \varepsilon))$ -expander.