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In the last lecture we examined explicit linear codes that achieve BSC), capacity, polynomial
time decoding and exponentially small decoding error probability. We saw decoding time:
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A question to motivate this lecture is whether we can achieve B.SC,, capacity with poly (N, %)
decoding. The answer is still open.

In this lecture we will examine if we can achieve BEC|, capacity with NV - poly(%) decoding.

Theorem 1. For small enough 3 > 0, there exist an explicit binary linear code of rate ﬁ and

can correct Q(%) fraction of worst-case errors with O(N) encoding and decoding.
E
These codes are called expander codes. Note that they are optimal in running time (linear).

Using expander codes is the only other way to get asymptotically good binary codes besides code
concatenation.

1 Factor Graphs (for linear binary codes)
We examine a [n, k]o-code C'.
The factor graph for C' is the bipartite graph corresponding to C’s parity check matrix (when

thought of as an adjacency matrix).

As an example we regard the [7, 4],-Hamming code:
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The parity check matrix is displayed as a factor graph in figure[I} In the parity check matrix
the columns are named c; to ¢; and the rows are named p; to p3. For a given row and column in
the matrix, if there is a 1 then there is a line between the row and column points in the graph.
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Figure 1: Parity check matrix for |7, 4]o-Hamming code as a factor graph.

Note that the parity check is done by calculating
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In other words, if the parities sum to zero then the given symbol’s parity checks out. In a factor

graph this can be illustrated as figure 2. So to check the parity of an entire codeword we have that
all the parities must sum to zero:
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1.1 Linear Density Parity Check (LDPC) codes

A LDPC code is a linear binary code whose factor graph has O(n) edges, where the maximum
possible amount for any factor graph is O(n(n — k)).

2 Expander Codes

Expander codes are a specific form of general expanders. Factor graphs as we previously examined
is another kind of “expander”.

See figure 2] for a graphical example of an expander graph. Every element ¢ on the left has
exactly a number of neighbors on the right

Yv € L,deg(v) = a.
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Figure 2: Example of single parity check.
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Figure 3: Expander as a factor graph.



So the number of elements in N (S) is at most a times the length of S. Now, the factor graph is
only said to be an expander if the number of elements in N (S) is at least as high as the number of

elements in S:
Q(IS]) < [N(S)|.

Definition 1. A (n,m,a, 3, a)-expander is an (L, R, E) left a-regular bipartite graph such that
VSCL, S| <B-n,|N(S)| >a-|S]

For all expanders we have
a<a

and
afn < m.

A special kind of expander is a loss less expanders, for which it holds
a>a(l—e¢),e>0.
In other words, with a loss less expander « is very close to a.
Theorem 2. (Existence) Ve > 0,m < n,35 > 0 such that there is an (n,m,a, 3,a(1l — €))-

expander for which it holds a = G(bg = ), B=0(- ™).

)

By probabilistic method as well as knowing that 0 < * < 1,e = (1) we see that a is in the
order of % and (3 is in the order of £%:

a=0()
5=0()

Theorem 3. For0 < ™ < 1,& = 0(1), there exist a polynomial time construction of (n, m, O(1), (1), a(1—
g))-expander.
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