
Error Correcting Codes: Combinatorics, Algorithms and Applications (Spring 2009)

Lecture 34: Expander Codes
April 13, 2009

Lecturer: Atri Rudra Scribe: Jesper Dybdahl Hede

In the last lecture we examined explicit linear codes that achieve BSCp capacity, polynomial
time decoding and exponentially small decoding error probability. We saw decoding time:

poly(N) +N · 2O(k), where k = θ(
log 1

γ

ε2
) and γ = ε3

A question to motivate this lecture is whether we can achieve BSCp capacity with poly(N, 1
ε
)

decoding. The answer is still open.

In this lecture we will examine if we can achieve BECα capacity with N · poly(1
ε
) decoding.

Theorem 1. For small enough β > 0, there exist an explicit binary linear code of rate 1
1+β

, and

can correct Ω( β2

(log 1
β

)2
) fraction of worst-case errors with O(N) encoding and decoding.

These codes are called expander codes. Note that they are optimal in running time (linear).
Using expander codes is the only other way to get asymptotically good binary codes besides code
concatenation.

1 Factor Graphs (for linear binary codes)
We examine a [n, k]2-code C.
The factor graph for C is the bipartite graph corresponding to C’s parity check matrix (when
thought of as an adjacency matrix).

As an example we regard the [7, 4]2-Hamming code:

HHAM =

 0 0 0 1 1 1 1
0 1 1 0 0 1 1
1 0 1 0 1 0 1

 p1

p2

p3

c1 c2 c3 c4 c5 c6 c7

The parity check matrix is displayed as a factor graph in figure 1. In the parity check matrix
the columns are named c1 to c7 and the rows are named p1 to p3. For a given row and column in
the matrix, if there is a 1 then there is a line between the row and column points in the graph.
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Figure 1: Parity check matrix for [7, 4]2-Hamming code as a factor graph.

Note that the parity check is done by calculating
l∑

i=1

cji = 0 (over F2).

In other words, if the parities sum to zero then the given symbol’s parity checks out. In a factor
graph this can be illustrated as figure 2. So to check the parity of an entire codeword we have that
all the parities must sum to zero:

(c1, ...cn) ∈ C iff ∀pj,
l∑

i=1

cji = 0

1.1 Linear Density Parity Check (LDPC) codes
A LDPC code is a linear binary code whose factor graph has O(n) edges, where the maximum
possible amount for any factor graph is O(n(n− k)).

2 Expander Codes
Expander codes are a specific form of general expanders. Factor graphs as we previously examined
is another kind of ”expander”.

See figure 2 for a graphical example of an expander graph. Every element c on the left has
exactly a number of neighbors on the right

∀v ∈ L, deg(v) = a.
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Figure 2: Example of single parity check.
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Figure 3: Expander as a factor graph.
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So the number of elements in N(S) is at most a times the length of S. Now, the factor graph is
only said to be an expander if the number of elements in N(S) is at least as high as the number of
elements in S:

Ω(|S|) ≤ |N(S)|.

Definition 1. A (n,m, a, β, α)-expander is an (L,R,E) left a-regular bipartite graph such that
∀S ⊆ L, |S| ≤ β · n, |N(S)| ≥ α · |S|

For all expanders we have
α ≤ a

and
aβn ≤ m.

A special kind of expander is a loss less expanders, for which it holds

α ≥ a(1− ε), ε > 0.

In other words, with a loss less expander α is very close to a.

Theorem 2. (Existence) ∀ε > 0,m ≤ n,∃β > 0 such that there is an (n,m, a, β, a(1 − ε))-

expander for which it holds a = θ(
log 2n

m

ε
), β = θ( ε

a
· m
n

).

By probabilistic method as well as knowing that 0 < n
m
< 1, ε = θ(1) we see that a is in the

order of 1
ε

and β is in the order of ε2:

a = θ(
1

ε
)

β = θ(ε2)

Theorem 3. For 0 < m
n
< 1, ε = θ(1), there exist a polynomial time construction of (n,m,O(1),Ω(1), a(1−

ε))-expander.
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