In the previous lecture, we introduced the notion of Group Testing. In group testing, we are given a pair of integers (d, n) such that $d \leq n$. We need to compute an unknown vector $x \in \{0, 1\}^n$, where $|x| \leq d$ using as few number of tests t as possible. There are two kinds of tests. The first method is called adaptive testing. For adaptive testing $t^a(d, n)$ is used to denote the minimum number of adaptive tests needed for a pair (d, n). Adaptive tests are done by performing a test and then basing the next test to perform off of the results. The second method is called non-adaptive testing. For non-adaptive testing $t(d, n)$ is used to denote the minimum number of non-adaptive tests needed for a pair (d, n). Non-adaptive tests are done by fixing all tests apriori.

Group testing can be formalized as follows:

- **Input**: (d, n) such that $d \leq n$ and (unknown) $x \in \{0, 1\}^n$
- **Tests**: Query/test any subset $S \subseteq [n]$. The answer given is $\bigvee_{i \in S} x_i$. Note that the combination of all tests can be represented as a matrix T, where $a_{j,k}$ is 1 if for test j, $k \in S$. Then $T \times x = r$ where r is the result of the matrix multiplication where multiplication is logical AND and addition is logical OR. After performing the jth test, the value r_j is obtained.
- **Output**: x

From discussion in last lecture and the definition of adaptive and non-adaptive tests we have

$$1 \leq t^a(d, n) \leq t(d, n) \leq n$$

The reason for $t^a(d, n) \leq t(d, n)$ is due to the fact that any non-adaptive test can be performed by an adaptive test by running all of the tests in the first step of the adaptive test. Adaptive tests can be faster than non-adaptive tests since the test can be changed after certain things are discovered.

In todays lecture, we will prove sharper bounds on $t^a(d, n)$ and $t(d, n)$.

1 Lower Bound on $t^a(d, n)$

Proposition 1.1. $t^a(d, n) \geq d \log\frac{n}{d}$

Fix any valid group testing scheme $t^a(d, n)$ with t tests. Observe that if $x \neq y \in \{0, 1\}^n$, with $|x|, |y| \leq d$ then $r(x) \neq r(y)$, where $r(x)$ denotes the result vector for running the tests on x and similarly for $r(y)$. The reason for this is because two valid inputs cannot give the same result. If this were the case and the results of the tests gave $r(x) = r(y) = r$ then it would not be possible to obtain both x and y. This fact gives us the following:
Total number of distinct test results = $Vol_2(d, n)$

The number of possible distinct t-bit vectors is 2^t, and since $2^t \geq Vol_2(d, n)$ it implies $t \geq \log Vol_2(d, n)$.

Recall that $Vol_2(d, n) \geq \binom{n}{d} \geq (\frac{n}{d})^d$ so $t \geq d \log Vol_2(d, n)$. Therefore, since $t^a(d, n) \leq t(d, n)$, no matter which scheme is used it cannot perform better (use fewer) than $d \log \frac{n}{d}$ tests.

2 Upper Bound on $t^a(d, n)$

Proposition 2.1. $t^a(d, n) \leq O(d \log n)$

The following is an example of an $O(d \log n)$ adaptive group testing scheme. The idea of the overall algorithm is to use a binary search and repeat until at most d values are found or no more values remain to be found.

Toy Problem: Give a scheme that uses $O(\log n)$ adaptive tests to figure out ONE i such that $x_i = 1$ (otherwise report $|x| = 0$).

Warmup: Query $[n]$ to check if $|x| = 0$ (i.e. check if $\bigvee_{i=1}^{n} x_i = 0$.)

General Case: Split $[n]$ into two equal halves. Query the first half and if the result is 1 then recurse on that set by splitting those indices in half and repeating this process. If the query on the first half is not 1 then query the second half (note that if the query of the entire set was performed then querying the second half is redundant since it would be known there is a 1 here). If querying the second half of the indices gives a result of 0 then report there is no 1 exists in this section. Continue this process on the subset containing a 1 until either the set only contains one element or no 1 is found. If a 1 is found and the set contains only one element report that index as being valued 1.

This will take $2 \lceil \log n \rceil$ or, provided the first test is performed querying the whole set, $\lfloor \log n \rfloor + 1$ queries given that if one half is 0 it implies the other half 1.

General Algorithm: Let $S = [n]$

1. Find one $i \in S$ such that $x_i = 1$ using the algorithm described in the General Case above.

2. Let $S = S \setminus \{i\}$ and then repeat the algorithm on S. If the first step reports there are no values left then stop. Also stop after d iterations.

This algorithm will run for d iterations of the first algorithm, giving an overall runtime of $O(d \log n)$. Since this is a general algorithm for an adaptive test any adaptive test is bounded by this, so $t^a(n, d) \leq O(d \log n)$.

Note that the algorithm above is inherently adaptive and thus the argument above does not give an upper bound for $t(d, n)$. It is impossible to have this as a lower bound for $t(d, n)$ since there is a known (not proved in class) bound $t(d, n) \geq \Omega(\frac{d^2 \log n}{\log d})$.

2
3 Upper Bound on $t(1, n)$

Proposition 3.1. $t(1, n) \leq \lceil \log n \rceil$

The group test matrix that is the parity check matrix for $[2^m - 1, 2^m - m - 1, 3]_2$, i.e. H_m where the i-th column is the binary representation of i, will work for any unknown x where $|x| \leq 1$. This works because when performing $H_m x = r$, if $|x| \leq 1$ then r will correspond to the binary representation of i. Therefore the lower bound for $t(1, n)$ is $\lceil \log n \rceil$. If $n \neq 2^m - 1$ for some m, the matrix H_m corresponding to the m such that $2^{m-1} - 1 < n < 2^m - 1$ can be used by adding 0s to the end of x. By doing this, decoding is "trivial" for both cases since the binary representation is given for the location. So the number of tests is $\lceil \log n \rceil$. Therefore since the number of tests is an integer, we have $t(1, n)$ is upper-bounded by $\lceil \log n \rceil$.

Recall the lowerbound for $t(d, n)$ is $d \log \frac{n}{d}$, so with $d = 1$ we have $\log n \leq t(1, n) \leq \log n$, so $t(1, n) = \lceil \log n \rceil$ is an efficient code. Such tight bounds are not known for general d.