111

Chapter 7
LOCAL TESTING OF REED-MULLER CODES

From this chapter onwards, we will switch gears and talk about property testing of
codes.

7.1 Introduction

A low degree tester is a probabilistic algorithm which, given a degree parameter ¢ and
oracle access to a function f on n arguments (which take values from some finite field [F),
has the following behavior. If f is the evaluation of a polynomial on n variables with total
degree at most ¢, then the low degree tester must accept with probability one. On the other
hand, if f is “far” from being the evaluation of some polynomial on n variables with degree
at most £, then the tester must reject with constant probability. The tester can query the
function f to obtain the evaluation of f at any point. However, the tester must accomplish
its task by using as few probes as possible.

Low degree testers play an important part in the construction of Probabilistically Check-
able Proofs (or PCPs). In fact, different parameters of low degree testers (for example, the
number of probes and the amount of randomness used) directly affect the parameters of the
corresponding PCPs as well as various inapproximability results obtained from such PCPs
([36, 5]). Low degree testers also form the core of the proof of MIP = NEXPTIME in [9].

Blum, Luby, and Rubinfeld designed the first low degree tester, which handled the
linear case, i.e., t = 1 ([21]), although with a different motivation. This was followed by
a series of works that gave low degree testers that worked for larger values of the degree
parameter ([93, 42, 7]). However, these subsequent results as well as others which use low
degree testers ([9, 43]) only work when the degree is smaller than size of the field F. Alon
et al. proposed a low degree tester for any nontrivial degree parameter over the binary field
Fs [1].

A natural open problem was to give a low degree tester for all degrees for finite fields of
size between two and the degree parameter. In this chapter we (partially) solve this problem
by presenting a low degree test for multivariate polynomials over any prime field IF,,.

7.1.1 Connection to Coding Theory

The evaluations of polynomials in n variables of degree at most ¢ are well known Reed-
Muller codes (note that when n = 1, we have the Reed-Solomon codes, which we con-
sidered in Chapter 6). In particular, the evaluation of polynomials in n variables of degree

112

at most ¢ over IF, is the Reed-Muller code or RM,(¢,n) with parameters ¢ and n. These
codes have length g™ and dimension (™) (see [28, 29, 69] for more details). Therefore,
a function has degree ¢ if and only if (the vector of evaluations of) the function is a valid
codeword in RM,(n,t). In other words, low degree testing is equivalent to locally testing
Reed-Muller codes.

7.1.2 Overview of Our Results

It is easier to define our tester over [F3. To test if f has degree at most ¢, set k = [%1, and
leti = (¢ + 1) (mod 2). Pick k-vectors yi, - - , yx and b from IF§, and test if

k

Yo AFb+) ey) =0,

cng;c:(cl,...,ck)]:1

where for notational convenience we use 0° = 1 (and we will stick to this convention

throughout this chapter). We remark here that a polynomial of degree at most ¢ always

passes the test, whereas a polynomial of degree greater than ¢ gets caught with non-negligible
probability «.. To obtain a constant rejection probability we repeat the test ©(1/a) times.

The analysis of our test follows a similar general structure developed by Rubinfeld and
Sudan in [93] and borrows techniques from [93, 1]. The presence of a doubly-transitive
group suffices for the analysis given in [93]. Essentially we show that the presence of a
doubly-transitive group acting on the coordinates of the dual code does indeed allow us
to localize the test. However, this gives a weaker result. We use techniques developed in
[1] for better results, although the adoption is not immediate. In particular the interplay
between certain geometric objects described below and their polynomial representations
plays a pivotal role in getting results that are only about a quadratic factor away from
optimal query complexity.

In coding theory terminology, we show that Reed-Muller codes over prime fields are
locally testable. We further consider a new basis of Reed-Muller code over prime fields that
in general differs from the minimum weight basis. This allows us to present a novel exact
characterization of the multivariate polynomials of degree ¢ in n variables over prime fields.
Our basis has a clean geometric structure in terms of flats [69], and unions of parallel flats
but with different weights assigned to different parallel flats'. The equivalent polynomial
and geometric representations allow us to provide an almost optimal test.

Main Result

Our results may be stated quantitatively as follows. For a given integer t > (p — 1) and a
given real € > 0, our testing algorithm queries f at O (% +t- pz’%“) points to determine

I'The natural basis given in [28, 29] assigns the same weight to each parallel flat.

113

whether f can be described by a polynomial of degree at most ¢. If f is indeed a polynomial
of degree at most ¢, our algorithm always accepts, and if f has a relative Hamming distance
at least ¢ from every degree ¢ polynomial, then our algorithm rejects f with probability
at least % (In the case t < (p — 1), our tester still works but more efficient testers are
known). Our result is almost optimal since any such testing algorithm must query f in at

least Q(% + p:%) many points (see Corollary 7.5).

We extend our analysis also to obtain a self-corrector for f (as defined in [21]), in case
the function f is reasonably close to a degree ¢ polynomial. Specifically, we show that the
value of the function f at any given point z € F}; may be obtained with good probability
by querying f on ©(p*?) random points. Using pairwise independence we can achieve
even higher probability by querying f on p®/?) random points and using majority logic
decoding.

7.1.3 Overview of the Analysis

The design of our tester and its analysis follows the following general paradigm first for-
malized by Rubinfeld and Sudan [93]. The analysis also uses additional ideas used in [1].
In this section, we review the main steps involved.

The first step is coming up with an exact characterization for functions that have low
degree. The characterization identifies a collection of subsets of points and a predicate
such that an input function is of low degree if and only if for every subset in the collection,
the predicate is satisfied by the evaluation of the function at the points in the subset. The
second step entails showing that the characterization is a robust characterization, that is,
the following natural tester is indeed a local tester (see section 2.3 for a formal definition):
Pick one of the subsets in the collection uniformly at random and check if the predicate is
satisfied by the evaluation of the function on the points in the chosen subset. Note that the
number of queries made by the tester is bounded above by the size of the largest subset in
the collection.

There is a natural characterization for polynomials of low degree using their alternative
interpretation as a RM code. As RM code is a linear code, a function is of low degree if
and only if it is orthogonal to every codeword in the dual of the corresponding RM code.
The problem with the above characterization is that the resulting local tester will have to
make as many queries as the maximum number of non-zero position in any dual codeword,
which can be large. To get around this problem, instead of considering all codewords in the
dual of the RM code, we consider a collection of dual codewords that have few non-zero
positions. To obtain an exact characterization, note that this collection has to generate the
dual code.

We use the well known fact that the dual of a RM code is a RM code (with different
parameters). Thus, to obtain a collection of dual codewords with low weight that generate
the dual of a RM code it is enough to find low weight codewords that generate every RM
code. To this end we show that the characteristic vector of any affine subspace (also called a

114

flat in RM terminology [69]) generates certain RM codes. To complete the characterization,
we show that any RM code can be generated by flats and certain weighted characteristic
vectors of affine subspaces (which we call pseudoflats). To prove these we look at the affine
subspaces as the intersection of (a fixed number of) hyperplanes and alternatively represent
the characteristic vectors as polynomials.

To prove that the above exact characterization is robust we use the self-correcting ap-
proach ([21, 93]). Given an input f we define a related function g as follows. The value
of g(x) is defined to be the most frequently occurring value, or plurality, of f at correlated
random points. The major part of the analysis is to show that if f disagrees from all low
degree polynomials in a lot of places then the tester rejects with high probability.

The analysis proceeds by first showing that f and g agree on most points. Then we show
that if the tester rejects with low enough probability then g is a low degree polynomial. In
other words, if f is far enough from all low degree polynomials, then the tester rejects with
high probability. To complete the proof, we take care of the case when f is close to some
low degree polynomial separately.

7.2 Preliminaries

Throughout this chapter, we use p to denote a prime and ¢ to denote a prime power (p°
for some positive integer s) to be a prime power. In this chapter, we will mostly deal with
prime fields. We therefore restrict most definitions to the prime field setting.

For any t € [n(gq — 1)], let P; denote the family of all functions over F that are poly-
nomials of total degree at most ¢ (and w.l.o.g. individual degree at most ¢ — 1) in n vari-
ables. In particular f € P, if there exists coefficients a(e,,... .,y € Fy, for every i € [n],
e; € {0,---,¢—1}, D", e; < t, such that

n

f= Z Q(ey, en) H l’f’ (7.1)

(617"'7en)€{07"'7q71}n;0<21"n:1 eigt =1

The codeword corresponding to a function will be the evaluation vector of f. We recall the
definition of the (Primitive) Reed-Muller code as described in [69, 29].

Definition 7.1. Let V' = IF} be the vector space of n-tuples, for n > 1, over the field IF,.
For any k such that 0 < k < n(q — 1), the k** order Reed-Muller code RM,(k,n) is the

subspace of]FLV| of all n-variable polynomial functions (reduced modulo x} — x;) of degree
at most k.

This implies that the code corresponding to the family of functions P; is RM,(t, n).
Therefore, a characterization for one will simply translate into a characterization for the
other.

We will be using terminology defined in Section 2.3. We now briefly review the defi-
nitions that are relevant to this chapter. For any two functions f, g : Fy — [, the relative

115

distance 6(f,g) € [0,1] between f and g is defined as o(f, g) def Pryer [f(z) # 9(2)].
For a function g and a family of functions F' (defined over the same domain and range), we
say g is e- close to F, for some 0 < ¢ < 1, if, there exists an f € F, where §(f,g) < e.
Otherwise it is e- far from F'.

A one sided testing algorithm (one-sided tester) for P, is a probabilistic algorithm that
is given query access to a function f and a distance parameter €, 0 < ¢ < 1. If f € Py, then
the tester should always accept f (perfect completeness), and if f is e-far from P,, then
with probability at least % the tester should reject f.

For vectors z,y € I}, the dot (scalar) product of z and y, denoted z - y, is defined to be
Zle x;;, Where w; denotes the i** co-ordinate of w.

To motivate the next notation which we will use frequently, we give a definition.

Definition 7.2. For any k > 0, a k-flat in ¥} is a k-dimensional affine subspace. Let
Y1, Yk € B} be linearly independent vectors and b €) be a point. Then the subset

k
L= {Z CilYi + b|VZ S [k] C; € Fp}
i=1
is a k-dimensional flat. We will say that L is generated by yy,--- ,yg at b. The incidence

vector of the points in a given k-flat will be referred to as the codeword corresponding to
the given k-flat.

Given a function f : F) — Ty, foryy,- - , 41, b € F) we define
def
Ty, ob) = > FO+) aw), (7.2)
c:(cl,-n,cl)E]F]l,, i€(l]
which is the sum of the evaluations of function f over an [-flat generated by y4,--- ,y;, at
b. Alternatively, as we will see later in Observation 7.4, this can also be interpreted as the
dot product of the codeword corresponding to the /-flat generated by y4, - - - , y; at b and that

corresponding to the function f.
While k-flats are well-known, we define a new geometric object, called a pseudoflat. A
k-pseudoflat is a union of (p — 1) parallel (k — 1)-flats.

Definition 7.3. Let Ly, Lo, - - , L,y be parallel (k — 1)-flats (k > 1), such that for some
y € Fy and allt € [p — 2], Lyy1 = y + Ly, where for any set S C Fy and y € Fp,

y+S < {z+ylz € S}. We define a k-pseudoflat to be the union of the set of points
Ly to L,_y. Further, given an v (where 1 < r < p — 2) and a k-pseudoflat, we define
a (k,r)pseudoflat vector as follows. Let I; be the incidence vector of L; for j € [p — 1].
Then the (k,r)-pseudoflat vector is defined to be f;i J"I;. We will also refer to the (k,r)-
pseudoflat vector as a codeword.

Let L be a k-pseudofiat. Also, for j € [p — 1), let L; be the (k — 1)-flat generated by
Y1, s Yk—1 atb+j-y, whereyy, - -+ yg_1 are linearly independent. Then we say that the

116

(k,r)-pseudoflat vector corresponding to L as well as the pseudoflat L, are generated by
Y, Y1, ,Ye—1 at b exponentiated along y.

See Figure 7.1 for an illustration of the Definition 7.3.

o o o o o 0 0 0 0 0
LTS e Ta e s |
,,,,,,,,,,,,,,,,, |
Liie e e e o B 3 13 |3 [3 |3
ELQ[;iiioiiioiii;iiioiw 2 2 2 2 2
W el T
L __b--------=-=-=-=-=-=-=2=2

(2, 1)-pseudoflat vector corresponding to L

Figure 7.1: Ilustration of a k-pseudoflat L defined over F;; with k = 2,p = 5 and n = 5.
Picture on the left shows the points in L (recall that each of L4, ..., L, are 1-flats or lines).
Each L; (for 1 < 4 < 4) has p*~! = 5 points in it. The points in L are shown by filled
circles and the points in F2 \ L are shown by unfilled circles. The picture on the right is the
(2, 1)-pseudoflat corresponding to L.

Given a function f : Fy — I, fory;,--- ,y;,b € Fy, for all i € [p — 2], we define
i def i
Ti(y, b)) = D A fb+) cy). (7.3)
C:(Cl,-",Cl)E]Fé,]e[l]

As we will see later in Observation 7.5, the above can also be interpreted as the dot product
of the codeword corresponding to the (I, r)-pseudoflat vector generated by yq,--- ,y; at b
exponentiated along y; and the codeword corresponding to the function f.

7.2.1 Facts from Finite Fields

In this section we spell out some facts from finite fields which will be used later. We begin
with a simple lemma.

Lemma 7.1. Foranyt € [g — 1], 3 5 a' # 0 ifand only ift = g — 1.

Proof. First note that }° . a’ = D acF; a'. Observing that for any a € I}, a?7! = 1, it
follows that 3, a7 = 3 cp. 1 = —1 0.

117

Next we show that for all ¢ # ¢ — 1, Zaem a' = 0. Let a be a generator of IF;. The sum
t(q 1) 1

can be re-written as y i, 2 ot . The denominator is non-zero for ¢ # ¢ — 1 and

thus, the fraction is well defined. The proof is complete by noting that o9~ = 1. L]

This immediately implies the following lemma.

Lemma 7.2. Lettq,--- ,t; € [q¢ — 1]. Then

Z ctllc?---cfl#Oifandonlyiftl:tzz---:t,:q—l. (7.4)
(c1y 7Cl)€(]Fq)l
Proof. Note that the left hand side can be rewritten as [[, el (ZCZ cF, cf’)) O

We will need to transform products of variables to powers of linear functions in those
variables. With this motivation, we present the following identity.

Lemma 7.3. For each k, s.t. 0 < k < (p — 1) there exists ¢, € Fy, such that

k
Ck 1_[1'z = Z k 'S; where S;= Z <Z xj)) (7.5)

i=1 OAIC[k];|I|=i \j€EI

Proof. Consider the right hand side of the (7.5). Note that all the monomials are of degree
exactly k. Also note that Hle x; appears only in the Sy and nowhere else. Now consider
any other monomial of degree k that has a support of size j, where 0 < j < k: w.lo.g.
assume that this monomial is M = z%z% - - - 27 such that ¢y + - - - +4; = k. Now note that

for any I D [4], M appears with a coefficient of (i1 o) in the expansion of (3, z¢)*.

Further for every i > j, the number of choices of I D [j] with |I| = 1 is exactly (ﬁj)
Therefore, summing up the coefficients of M in the various summands .S; (along with the
(—1)’“*1' factor), we get that the coefficient of M in the right hand side of (7.5) is

(i) (S (2) = (ol) (B (552)
(o 5) 01
0.

Moreover, it is clear that ¢ = (,,* |) = k! (mod p) and ¢, # 0 for the choice of k. O

118

7.3 Characterization of Low Degree Polynomials over I,

In this section we present an exact characterization for the family P; over prime fields.
Specifically we prove the following:

Theorem 7.1. Lett = (p—1)-k+7r. (Note0 <r <p—2.) Leti =p—2—r. Thena
Junction f belongs to Py, if and only if for every y1,- -+ ,yr11,b € Fy, we have

Ti(y1, * ,Yrs1,b) =0 (7.6)

As mentioned previously, a characterization for the family P, is equivalent to a char-
acterization for RM,,(¢,n). It turns out that it is easier to characterize P, when viewed as
RM,(t,n). Therefore our goal is to determine whether a given word belongs to the RM
code. Since we deal with a linear code, a simple strategy will then be to check whether
the given word is orthogonal to all the codewords in the dual code. Though this yields a
characterization, this is computationally inefficient. Note however that the dot product is
linear in its input. Therefore checking orthogonality with a basis of the dual code suffices.
To make it computationally efficient, we look for a basis with small weights. The above
theorem essentially is a clever restatement of this idea.

We recall the following useful lemma which can be found in [69].

Lemma 7.4. RM,(k, n) is a linear code with block length q" and minimum distance (R +
1)g® where R is the remainder and Q the quotient resulting from dividing (g — 1) -n — k
by (g — 1). Then RMy(k,n)* = RM,((¢g — 1) -n — k — 1,n).

Since the dual of a RM code is again a RM code (of appropriate order), we therefore
need the generators of RM code (of arbitrary order). We first establish that flats and pseud-
oflats (of suitable dimension and exponent) indeed generate the Reed-Muller code. We then
end the section with a proof of Theorem 7.1 and a few remarks.

We begin with few simple observations about flats. Note that an [-flat L is the inter-
section of (n — I) hyperplanes in general position. Equivalently, it consists of all points
v that satisfy (n — [) linear equations over F, (i.e., one equation for each hyperplane):
Vi € [n—1] 7 cijz; = b where c;;,b; defines the it" hyperplane (i.e., v satisfies
i1 Cijvj = b;). General position means that the matrix {c;;} has rank (n —). Note that
then the characteristic function (and by abuse of notation the incidence vector) of L can be

written as
l

j=1

paiey 0 otherwise

3

We now record a lemma here that will be used later in this section.

Lemma 7.5. For k > [, the incidence vector of any k-flat is a linear sum of the incidence
vectors of l-flats.

119

Proof. Letk = [+ and let W be an k-flat. We want to show that it is generated by a linear
combination of [flats.
Let W be generated by y1,- -+ ,y;1,w1, -+ ,w,y1 at b. For each non-zero vector ¢; =
(Cit, - -+, Ciry1)) in Tyt define:
r+1

V; = E Cij Wy .
Jj=1

Clearly there are (p"*! — 1) such v;. Now for each i € [p™*! — 1], define an [-flat L;

generated by yi,- -+ ,y;_1,v; at b. Denote the incidence vector of a flat V' by 1y, then we
claim that
p'r+1_1
lw=(p-1)) L. (7.8)
i=1
Since the vectors yy,...,¥y1, W1, . .., W,11 are all linearly independent, we can divide the

proof in three sub cases:

e v € W is of the form b + Zi;i e;y;, for some eq,...,e;_1 € F,: Then each flat
L; contributes 1 to the right hand side of (7.8), and therefore, the right hand side is
(p—1(p*t—1)=1inTF,.

e v € W is of the form b + Z:;rll d;w; for some dy, . ..,d.11 € F,: Then the flats L;
that contribute have V; = a - Z:;Lll d;w;, fora = 1,...,p — 1. Therefore, the right

hand side of (7.8) is (p — 1) = 1 in .

o v € W is of the form b + Y_] e;y; + >i7; dyw;: Then the flats L; that contribute

have V; = a- Y74 dw;, fora = 1,...,p— 1. Therefore, the right hand side of (7.8)
is(p—1)?2=1inT,.

0]

As mentioned previously, we give an explicit basis for RM,,(r, n). For the special case
of p = 3, our basis coincides with the min-weight basis given in [29].2 However, in general,
our basis differs from the min-weight basis provided in [29].

The following Proposition shows that the incidence vectors of flats form a basis for the
Reed-Muller code of orders that are multiples of (p — 1).

Proposition 7.6. RM,,((p—1)(n—1), n) is generated by the incidence vectors of the l-flats.

The equations of the hyperplanes are slightly different in our case; nonetheless, both of them define the
same basis generated by the min-weight codewords.

120

Proof. We first show that the incidence vectors of the {-flats are in RM,,((p — 1)(n — 1), n).
Recall that L is the intersection of (n — [) independent hyperplanes. Therefore using (7.7),
L can be represented by a polynomial of degree at most (n — I)(p — 1) in zq,- -+, z,.
Therefore the incidence vectors of [-flats are in RM,,((p — 1)(n —), n).

We prove that RM,,((p — 1)(n — 1), n) is generated by [-flats by induction on n — [.
When n — [= 0, the code consists of constants, which is clearly generated by n-flats i.e.,
the whole space.

To prove for an arbitrary (n — [) > 0, we show that any monomial of total degree
d < (p— 1)(n — 1) can be written as a linear sum of the incidence vectors of [-flats. Let
the monomial be z7" - - - z¢. Rewrite the monomials as 1 --- 2 - - - Zs - - - ;. Group into

~— ~—

e; times e, times
products of (p — 1) (not necessarily distinct) variables as much as possible. Rewrite each
group using (7.5) with k = (p — 1). For any incomplete group of size d’, use the same
equation by setting the last (p — 1 — d') variables to the constant 1. After expansion, the
monomial can be seen to be a sum of products of at most (n — [) linear terms raised to
the power of p — 1. We can add to it a polynomial of degree at most (p — 1)(n — [— 1)
so as to represent the resulting polynomial as a sum of polynomials, each polynomial as
in (7.7). Each such non-zero polynomial is generated by a ¢ flat, ¢ > [. By induction, the
polynomial we added is generated by (I+1) flats. Thus, by Lemma 7.5 our given monomial
is generated by [-flats. Ul

This leads to the following observation:

Observation 7.4. Consider an l-flat generated by yy,--- ,y; at b. Denote the incidence
vector of this flat by I. Then the right hand side of (7.2) may be identified as I - f, where
I and f denote the vector corresponding to respective codewords and - is the dot (scalar)
product.

To generate a Reed-Muller code of any arbitrary order, we need pseudoflats. Note that
the points in a k-pseudoflat may alternatively be viewed as the space given by the union
of intersections of (n — k — 1) hyperplanes, where the union is parameterized by another
hyperplane that does not take one particular value. Concretely, it is the set of points v which
satisfy the following constraints over IF,,:

Vi € [’I’L — k- 1] ZC,']'.’L’]' = b;; and ch_k,jﬂf]’ 7é bp—k-
=1

=1

Thus the values taken by the points of a k-pseudoflat in its corresponding (k, r)-pseudoflat
vector is given by the polynomial

n—k—1

H (1—(chxj—b ch kjZj — bn—k)" (7.9)

=1

121

Remark 7.1. Note the difference between (7.9) and the basis polynomial in [29] that (along
with the action of the affine general linear group) yields the min-weight codewords:

k—1 T
(- mm) = [(1= (2 —wi?™) [[(@ — uy),
i=1 j=1
where wy, -+ , Wg—1,U1," "+ , Uy € [,

The next lemma shows that the code generated by the incidence vectors of [-flats is a
subcode of the code generated by the (I, r)-pseudoflats vectors.

Claim 7.7. The (l,r)-pseudoflats vectors, where | > 1 and r € [p — 2], generate a code
containing the incidence vectors of l-flats.

Proof. Let W be the incidence vector of an [-flat generated by yy, - - - , y; at b. Since pseud-
oflat vector corresponding to an [-pseudoflat (as well as a flat) assigns the same value to all
points in the same (I — 1)-flat, we can describe W (as well as any (I, -)-pseudoflat vector) by
giving its values on each of its p [—1-flats. In particular, W = (1,...,1). Let L, be a pseud-
oflat generated by y1, - - - ,y; exponentiated along y; at b+ j - y1, for each j € F,,, and let V;
be the corresponding (I, r)- pseudoflat vector. By Definition 7.3, V; assigns a value ¢" to the
(I —1)-flat generated by ys, - - -, y; at b+ (5 +¢)y. Rewriting them in terms of the values on
its | —1-flats yields that V; = ((p—34)", (p—j+1)", -+ , (p—j+9)", -+, (p—j—1)") € FE.
Let A; denote p variables for j = 0,1,--- ,p — 1, each taking values in F,,. Then a solution
to the following system of equations

122)\j(i—j)r forevery 0 < I <p—1

Jj€Fp

implies that W = Z?;(l, A;V;, which suffices to establish the claim. Consider the identity

L= (=1 G+

J€Fp

which may be verified by expanding and applying Lemma 7.1. Setting \; to (—1)(—5)?~'~"
establishes the claim. OJ

The next Proposition complements Proposition 7.6. Together they say that by choosing
pseudoflats appropriately, Reed-Muller codes of any given order can be generated. This
gives an equivalent representation of Reed-Muller codes. An exact characterization then
follows from this alternate representation.

Proposition 7.8. For every r € [p — 2|, the linear code generated by (l,r)-pseudoflat
vectors is equivalent to RM,((p — 1)(n — 1) + r,n).

122

Proof. For the forward direction, consider an [-pseudoflat L. Its corresponding (I,r)-
pseudoflat vector is given by an equation similar to (7.9). Thus the codeword corresponding
to the evaluation vector of this flat can be represented by a polynomial of degree at most
(p — 1)(n — 1) + r. This completes the forward direction.

Since monomials of degree at most (p—1)(n —1{) are generated by the incidence vectors
of [-flats, Claim 7.7 will establish the proposition for such monomials. Thus, to prove the
other direction of the proposition, we restrict our attention to monomials of degree at least
(p—1)(n—1)+1 and show that these monomials are generated by (I, r)-pseudoflats vectors.
Now consider any such monomial. Let the degree of the monomial be (p—1)(n—1)+r' (1 <
r’ < r). Rewrite it as in Proposition 7.6. Since the degree of the monomial is (p — 1)(n —
) + ', we will be left with an incomplete group of degree r’. We make any incomplete
group complete by adding 1’s (as necessary) to the product. We then use Lemma 7.3 to
rewrite each (complete) group as a linear sum of r** powered terms. After expansion, the
monomial can be seen to be a sum of product of at most (n — [) degree (p — 1)** powered
linear terms and a r** powered linear terms. Each such polynomial is generated either by
an (I, r)-pseudoflat vector or an [-flat. Claim 7.7 completes the proof. U

The following is analogous to Observation 7.4.

Observation 7.5. Consider an l-pseudoflat, generated by y,,--- ,y; at b exponentiated
along y,. Let E be its corresponding (l,r)-pseudoflat vector. Then the right hand side of
(7.3) may be interpreted as F - f.

Now we prove the exact characterization.
Proof of Theorem 7.1: The proof directly follows from Lemma 7.4, Proposition 7.6,
Proposition 7.8 and Observation 7.4 and Observation 7.5. Indeed by Observation 7.4, Ob-
servation 7.5 and (7.6) are essentially tests to determine whether the dot product of the
function with every vector in the dual space of RM, (¢, n) evaluates to zero. [J

Remark 7.2. One can obtain an alternate characterization from Remark 7.1 which we state
here without proof.
Lett=(p—1)-k+R(note 0 < R< (p—2)). Letr =p— R— 2. Let W C T, with

def

|W| = r. Define the polynomial g(x) = [[,cw(x —) if W is non-empty; and g(z) = 1
otherwise. Then a function belong to Py if and only if for every y1,--- ,yr+1,b € I}, we
have

k+1
c1€EF,\W (c2, aCk+1)€]F’1§ i=1

Moreover, this characterization can also be extended to certain degrees for more general
fields, i.e., Fys (see the next remark).

Remark 7.3. The exact characterization of low degree polynomials as claimed in [42] may
be proved using duality. Note that their proof works as long as the dual code has a min-
weight basis (see [29]). Suppose that the polynomial has degree d < q — q/p — 1, then

123

the dual of RM,(d,n) is RM,((¢ — 1)n — d — 1,n) and therefore has a min-weight basis.
Note that then the dual code has min-weight (d + 1). Therefore, assuming the minimum
weight codewords constitute a basis (that is, the span of all codewords with the minimum
Hamming weight is the same as the code), any d + 1 evaluations of the original polynomial
on a line are dependent and vice-versa.

7.4 A Tester for Low Degree Polynomials over I

In this section we present and analyze a one-sided tester for P;. The analysis of the algo-
rithm roughly follows the proof structure given in [93, 1]. We emphasize that the general-
ization from [1] to our case is not straightforward. As in [93, 1] we define a self-corrected
version of the (possibly corrupted) function being tested. The straightforward adoption of
the analysis given in [93] gives reasonable bounds. However, a better bound is achieved
by following the techniques developed in [1]. In there, they show that the self-corrector
function can be interpolated with overwhelming probability. However their approach ap-
pears to use special properties of [y and it is not clear how to generalize their technique for
arbitrary prime fields. We give a clean formulation which relies on the flats being repre-
sented through polynomials as described earlier. In particular, Claims 7.14, 7.15 and their
generalizations appear to require our new polynomial based view.

7.4.1 TesterinIF,

In this subsection we describe the algorithm when underlying field is [F,,.
Algorithm Test-7; in I,

0.Lett=(p—1)-k+ R, 0SS R<p—1.Denoter=p—2—R.
1. Uniformly and independently at random select 1, - -+, yr+1,b € Fy.
2.1 TF(y1,** ,Yr+1,b) # 0, then reject, else accept.

Theorem 7.2. The algorithm Test-P; in F, is a one-sided tester for P, with a success
probability at least min(c(p**e), W)for some constant ¢ > 0.

Corollary 7.3. Repeating the algorithm Test-P; in F,, for ©(pk+15 + kp*) times, the prob-
ability of error can be reduced to less than 1/2.

We will provide a general proof framework. However, for the ease of exposition we
prove the main technical lemmas for the case of 5. The proof idea in the general case is
similar and the details are omitted. Therefore we will essentially prove the following.

Theorem 7.4. The algorithm Test-P; in Fs is a one-sided tester for P; with success prob-

ability at least min(c(3F+1¢), W)ﬁ)r some constant ¢ > 0.

124

7.4.2 Analysis of Algorithm Test-P;

In this subsection we analyze the algorithm described in Section 7.4.1. From Claim 7.1 it
is clear that if f € P, then the tester accepts. Thus, the bulk of the proof is to show that if
f is e-far from Py, then the tester rejects with significant probability. Our proof structure
follows that of the analysis of the test in [1]. In particular, let f be the function to be tested
for membership in P;. Assume we perform Test T} for an appropriate ¢ as required by the
algorithm described in Section 7.4.1. For such an 7, we define g; : IE‘Z — [, as follows:

Fory € F}',a € T, denote py o = Pryl, e LF W) = THY — v, 92, Yer1, 41) = .
Define g;(y) =« such that VB # a € Fp, pyo = Py w1th ties broken arbltranly With this
meaning of plurality, for all i € [p — 2] U {0}, g; can be written as:

gily) = plurality, . [f(y) =Ty —v1,92,- - ¥k, 00)] . (7.10)

Further we define

def i
i = Pryl,---,yk+1,b[Tf(y1a Yk, b) 7é 0] (711)

The next lemma follows from a Markov-type argument.

Lemma 7.9. For a fixed f : ¥y — [y, let g;,n; be defined as above. Then, 6(f, g;) < 2m;.

Pl’OOf: If for some Y € IFZ’ Pry1,~--,yk+1[f(y) = f(y) - T}(y — Y1, Y2, 5 Yk+1, yl)] > 1/2’
then g(y) = f(y). Thus, we only need to worry about the set of elements y such that

Pry, .y lf(y) = fly) =T (3/ Y1,Y2, ** »Ye+1,¥1)] < 1/2. If the fraction of such
elements is more than 27; then that contradicts the condition that

’rh = Pry17"'7yk+17 [T} (y17 : ’yk+1’) % 0]
= Pry17y2a ayk-i—la [(b y27 e 7yk+17 b) # 0]
= Prygie gy lF@) # F) = THy — 1,92, Yrsn, y1))-

Therefore, we obtain 6(f, g;) < 27;. O]

Note that Pry, .. 4., [0:(y) = () = T}(y — y1,42," -+ , Ye+1,91)] = 5. We now show
that this probability is actually much higher. The next lemma gives a weak bound in that

direction following the analysis in [93]. For the sake of completeness, we present the proof.

Lemma 7.10. Vy € Fy, Pry, .y em[9i(y) = f(y) — THY — Y1, 92, 5 Yrr1, 01)] =
1— 2pk+177i.

125

Proof. We willuse I, J,I', J' to denote (k+ 1) dimensional vectors over IF,,. Now note that

k+1

—gi(y) = Plurality,, . cel Z Lf(Li(y —w) thyt‘i‘lh
TeFS T 1£(1,0,+,0)

= Plura‘lityy_yhlﬂa"' Y41 G]Fg [Z (Il + 1)zf(11 (y - yl)
IEFEHT#(0,- ,0)

k+1
+ Z Ly, + y)]
t=2
k+1
= Plurality,, .., em[Y, (Li+1) Z Ly +y) (112

IGFI;J’_I)I3£<07))

LetY = (y1, -+ ,Ye41) and Y’ = (y1,- -+ ,Yp41)- Also we will denote (0, - - ,0) by
0. Now note that

1-— Un < Pryl,...,thb[T}(yl, Yk, b) = 0]

= Pryla"'ayk+lab[Z I{f(b + I : Y) = 0]
IEF’;+1

= Pry el fO+31) + > Lf(b+1-Y)=0]

IEF’P‘;J’_I ;175<1707"' 70>

= Pry, gl f (W) + Z I{f(y —yn+1-Y)=0]

IE€FET;14(1,0,---,0)

= Pry, .yl f(y) + Z (L+1)'fly+1-Y)=0]

I€FET;14(0,- ,0)

Therefore for any given I # 0 we have the following:

Provlfy+1-Y)= Y —(h+D)fy+I-Y+J-Y)>1-n,
JeFEtt.g+40

and for any given J # 0,

Pryy[fly+J-Y)= > —(Lh+Dfly+I1-Y+J-Y)>1-n

TeFE+1; 140

126

Combining the above two and using the union bound we get,

Pryy | Y. (h+1)ifly+1-Y)
TeFE+1: 140

= > Y DAY Y+ YY)

IEFET 10 JEFE T ;T #£0

= Y (h+D)ify+T-Y)

JeFEt g0
>1-20"" —1)n > 1-2p* ", (7.13)

The lemma now follows from the observation that the probability that the same object
is drawn from a set in two independent trials lower bounds the probability of drawing the
most likely object in one trial: Suppose the objects are ordered so that p; is the probability
of drawing object ¢, and p; > ps = ---. Then the probability of drawing the same object

twice is Y, p? < Y. p1pi < p1- D

However, when the degree being tested is larger than the field size, we can improve the
above lemma considerably. The following lemma strengthens Lemma 7.10 whent > p—1
or equivalently k£ > 1. We now focus on the I3 case. The proof appears in Section 7.4.3.

Lemma 7.11. vy € Fg’ Pry1,~~-,yk+1EFg [gl(y) = f(y) - T}(y —Y1,Y2, - 7yk+17y1)] >

Lemma 7.11 will be instrumental in proving the next lemma, which shows that suffi-
ciently small n; implies g; is the self-corrected version of the function f (the proof appears
in Section 7.4.4).

Lemma 7.12. Over Fs, if n; < m, then the function g; belongs to P; (assuming
k>1).

By combining Lemma 7.9 and Lemma 7.12 we obtain that if f is Q(1/(k3F))-far from
P, then n; is at least (1/(k3¥)). We next consider the case in which 7; is small. By Lemma
7.9, in this case, the distance § = 6(f, g) is small. The next lemma shows that in this case
the test rejects f with probability that is close to 35¥1§. This follows from the fact that in
this case, the probability over the selection of ¥y, - - , yx,1, b, that among the 3**! points
> ciyi +b(where ¢y, ..., cpy1 € F3), the functions f and g differ in precisely one point,
is close to 3¥*1 . §. Observe that if they do, then the test rejects.

Lemma 7.13. Suppose 0 < n; < m. Let § denote the relative distance between

f and g and ¢ = 3**1. Then, when y,,- -+ ,yr+1,b are chosen randomly, the probability
that for exactly one point v among the { points) . ¢;y; + b (where (c1,. .., Cry1) € IF’?fH),

f(v) # g(v) is at least (%) 2.

127

Observe that 7; is at least Q(3*"1§). The proof of Lemma 7.13 is deferred to Sec-
tion 7.4.5.
Proof of Theorem 7.4: Clearly if f belongs to P,, then by Claim 7.1 the tester accepts f
with probability 1.

Therefore let §(f,P;) > €. Letd = 6(f,gr), where r is as in algorithm Test-P;. If

m then by Lemma 7.12 g, € P, and, by Lemma 7.13, n; is at least Q(3*+1.d),

which by the definition of ¢ is at least Q(3**1¢). Hence n; > min (c(3’“+1s)
for some fixed constant ¢ > 0.

n <

1
) (Ak+14)3FFT) ’

Remark 7.4. Theorem 7.2 follows from a similar argument.

7.4.3 Proof of Lemma 7.11

Observe that the goal of Lemma 7.11 is to show that at any fixed point y, if g; is interpolated
from a random hyperplane, then w.h.p. the interpolated value is the most popular vote. To
ensure this we show that if g; is interpolated on two independently random hyperplanes,
then the probability that these interpolated values are the same, that is the collision prob-
ability, is large. To estimate this collision probability, we show that the difference of the
interpolation values can be rewritten as a sum of T} on small number of random hyper-
planes. Thus if the test passes often (that is, T evaluates to zero w.h.p.), then this sum (by
a simple union bound) evaluates to zero often, which proves the high collision probability.

The improvement will arise because we will express differences involving T}(--)asa
telescoping series to essentially reduce the number of events in the union bound. To do this
we will need the following claims. We note that a similar claim for p = 2 was proven by
expanding the terms on both sides in [1]. However, the latter does not give much insight
into the general case i.e., for IF,. We provide proofs that have a much cleaner structure
based on the underlying geometric structure, i.e., flats or pseudoflats.

Claim 7.14. Foreveryl € {2a e ,k+1},f07’€\/'€7'yy(: y1)7 Z7w7b7 Yo, 5 Yi—1,Yi4+1,
Yk+1 € FZ, let let

Sﬁ‘(ya Z) “ T;')(yay% O Y-1,2, Y41, 0t 5 Ykt b)
The the following holds:

Sh(y,w) — Si(y,2) = Z [St(y + ew, 2) — Sty + ez, w)] .

eEIF;;

Proof. Assume vy, z, w are independent. If not then both sides are equal to 0 and hence the
equality is trivially satisfied. To see why this claim is true for the left hand side, recall the
definition of TJQ (+) and note that the sets of points in the flat generated by y, y2, - -+ , y1_1, W,
Yite1,** ,Yks1 at b and the flat generated by y,vy2, - ,¥i—1,2, Y1+1," ** ,Yr+1 at b are the
same. A similar argument works for the expression on the right hand side of the equality.

128

We claim that it is enough to prove the result for £ = 1 and b = 0. A linear transform
(or renaming the co-ordinate system appropriately) reduces the case of k = 1 and b # 0
to the case of kK = 1 and b = 0. We now show how to reduce the case of £ > 1 to
the £ = 1 case. Fix some values co, -+ ,¢—1,¢141," - ,Cxy1 and note that one can write
Y+ cys+ - y1 + qw + calier + Crr1Yri1 + b as iy + qw + b, where b’ =
ZjE{Q,-n,lfl,l—|—1,~--,k+1} ¢jy; + b. Thus,

k—1

Sh(y, w) = Z Z flay + qw +V).

(027"' sCl—15Cl415"" 7Ck+1)e]Fp (Cl,Cl)E]F%

One can rewrite the other S%(-) terms similarly. Note that for a fixed vector (ca,- -+, ¢i_1,
Cit1,°** ,Cre1), the value of V' is the same. Finally note that the equality in the general case
is satisfied if p*~! similar equalities hold in the k = 1 case.

Now consider the space H generated by y,z and w at (. Note that S}(y,w) (with
b= 0)isjust f-1;, where 1, is the incidence vector of the flat given by the equation z = 0.
Therefore 1, is equivalent to the polynomial (1—27~") over IF,.. Similarly S%(y, z) = f-11
where L' is given by the polynomial (1 — w?™!) over F,,. We use the following polynomial
identity (in I,,)

wPl — Pl = Z [[1—(ew+y)P '] —[1—(ez+y)P '] (7.14)

ecFy

Now observe that the polynomial (1 — (ew + y)P~!) is the incidence vector of the flat
generated by y — e lw and 2. Similarly, the polynomial (1 — (ez + y)?!) is the incidence
vector of the flat generated by y — e~'2z and w. Therefore, interpreting the above equation
in terms of incidence vectors of flats, Observation 7.4 completes the proof assuming (7.14)
is true.

We complete the proof by proving (7.14). Consider the sum: ZGGF; (ew + y)P~'. Ex-

) , I L
panding the terms and rearranging the sums we get > 7~ (? i Jwp 1yl ZeeF; eP 177,
By Lemma 7.1 the sum evaluates to (—w?™! — y?~1). Similarly, >, (ez + y)P~' =
p
(—zP~1 — yP~1) which proves (7.14). O
We will also need the following claim.
Claim 7.15. Foreveryi € {1,--- ,p— 2}, foreveryl € {2,--- ,k + 1} and for every
"J(: yl): Z, W, ba Y2, Y- Y10 5 Ykl € FZ’, denote
Sj‘,l(yv ’lU) = T;‘(ya Y2, 5 Y-, W Yi+ 15" - 5 Yk+15 b)
Then there exists c; such that

570 = 50,2 = e L[5 ew,2) = S+ ez

eckFy

129

Proof. As in the proof of Claim 7.14, we only need to prove the claim for £ = 1 and
b = 0. Observe that Sj;l(y, z) = f - Er,, where Er, denotes the (2,17)-pseudoflat vector
of the pseudoflat L generated by y, z at b exponentiated along y. Note that the polynomial
defining Ep, is justy*(wP~'—1). Similarly we can identify the other terms with polynomials
over IF,. To complete the proof, we need to prove the following identity (which is similar
to the one in (7.14)):

Yy =) =g Z [(y+ew)'1—(y—ew)’] — (y+ez)'[1— (y—ez)P1]].

ecly
(7.15)
where ¢; = 2. Before we prove the identity, note that (—1)7 (p ;1) = 1lin [F,. This is
because for 1 < m < j, m = (—1)(p — m). Therefore j! = (— 1)1((” 1)1), holds in F,,.
Substitution ylelds the desired result. Also note that ZeeF* (y + ew)" = —y* (expand and

apply Lemma 7.1). Now consider the sum

d yrewily—ew)y™ = > > | () (p ;l 1) P Limi—my i m i tm

ecFy e€F; 0<j<y;
o<m<p—1
_ b=) p—1+i—j—m, j+m Z j+m
= w e
= @),
o1
= ey () (7 e e
j=0 17 J 4
=1
= (=D’ +y'w 2] (7.16)
Similarly one has Y, p (y + €2)'(y — e2)P~' = (=1)[y* + y*2P~'2"]. Substituting and
P
simplifying one gets (7.15). [

Finally, we will also need the following claim.

Claim 7.16. Foreveryi € {1,--- ,p — 2}, foreveryl € {2,--- |1+ 1} and for every

y(: yl)? zZ, W, b7 Y2, 5 Y-, Y41, Yk+1 €]F;’ there exists ¢ €]F; such that
S7wy) = 57 (5 y) = D[Sy + ew,y = ew) = SF (w + ey,w = ey)
ecky

S}’l(z +ey,z —ey) — S}’l(y +ez,y —ez)
+c; [S}’l (y+ew, z) — S}’l(y + ez, w)]]

Proof. As in the proof of Claim 7.15, the proof boils down to proving a polynomial identity
over [F,. In particular, we need to prove the following identity over If,,:

w(1=2"") =2 (1—wP) = (w' =y) (1—-2"71) = (&' =y) (1 —w" ™)) +y' (W™ —2F7).

130

We also use that Y, _p. (w + ey)* = —w* and Claim 7.15 to expand the last term. Note that
p

c; = 2¢ as before. O

We need one more simple fact before we can prove Lemma 7.11. For a probabil-
o = Maxicpfu} > Maxiem{o} - (20 v) = i, v

2
Maxieq{vi} > S v? = o]
2

de

Proof of Lemma 7.11: We first prove the lemma for go(y). We fix y € F% and let v =)
Prysyenrers [90(9) = £(1) = T2y — 11,02, Y1, 91)]. Recall that we want to lower
bound y by 1 — (4k + 14)n. In that direction, we bound a slightly different but related
probability. Define

ity vector v € [0,1]",

M= Pryl,“' Wk+1,215 ,2k+1EFg [Tj(")(y —Y1,Y2, 5 Yk+1, yl) = T](‘)(y T R1,%2," " 5 Rk+1, Zl)]

Denote Y = (y1,- -+ ,Yr+1) and similarly Z. Then by the definitions of x and y we have,
v = p. Note that we have

M= Pryl,"'ayk+1,217"',zk+1€]P§ [T]?(y—yl, Y2, 5 Yk+1, yl)_T]?(y—Zl, 22yt 5 Rk+1, zl) = 0]

We will now use a hybrid argument. Now, for any choice of y1, -+ ,ygs1 and 21, -+,
Zk+1 We have:

Tjg(y—yl,ym“' , Yk+1,Y1) —T})(y—zl,z%n- s 2k+1, 21)
= TJ?(?J — Y1, Y2, " > Ykt1, Y1) —T,?(?J — Y1, Y2, " > Yk 2kt 1, Y1)
+ TP (Y — Y1, Y2, Uk 21, ¥1) — TR — Y1, Y2y 5 Yk, 2k, 21, Y1)
+T]9(y—y1,--- s Yk—15 Zks Zht1, Y1) —T]?(y—yl,"' s Yk—25 Zk—1, Zks Zht15 Y1)

+ Tjg(y —Y1,22,23, " 5 Zki1, Y1) — T](’](y — 21,22, ", 2k+1, Y1)

+ T})(y — 21,22,23," "+ 2k, Y1) — T}](@/ —Y1,22, " 5 kil 21)
+ T})(y —Y1,%2,%3, " 7zk+1721) - T]("](y T R1,%2, """ 5 Rkt 21)
Consider any pair T](’)(y Y, Y2, Y R4, ;Zk—l—l;yl) - T]?(y Y, Y2, Yi-1, 2,

-, Zk+1, Y1) that appears in the first £ “rows” in the sum above. Note that T})(y -
Y, 92, Y, Ri41, 0 ,Zk+1,y1) and T_]?(y — Y, Y2, Yi-1,%0 00 azk-l-layl) differ OIlly
in a single parameter. We apply Claim 7.14 and obtain:

T][‘)(y —Y, Y2, YL R, 7Zk+17y1) _T](‘)(y_ylay27 Y1, 20 7Zk+17y1) =
T]?(y_yl_‘_yh Y2, 5 Y1—1,21, 7Zk+17y1)+Tj[’)(y_yl_yla Yo, 5 Y1-1,21 00 5 241, yl)
—T}’(y—yl—i—zl,yQ,--- s Yy Zl41, 00 ,Zk+1,y1)—T,9(y—yl—Zz,y2,"' UL 241yt 2kt Y1)

Recall that y is fixed and v, -+, Ykt1,22, ** ,2k+1 € Iy are chosen uniformly at
random, so all the parameters on the right hand side of the equation are independent and

131

uniformly distributed. Similarly one can expand the pairs TJ? (y—y1, 22,23, * 5 2ks1,Y1) —
T})(y—ZhZz,'“ ,Zk+1,y1)andT,?(y—thmZ&'" ,Zk+1,21)—T,9(y—21,22,"‘) Zht1, 21)
into four T}’ with all parameters being independent and uniformly distributed®. Finally no-
tice that the parameters in both T7 (y—z1, 22, 23, * , Zk41,¥1) and T3 (y—21, 22, -+ + , 2641, Y1)
are independent and uniformly distributed. Further recall that by the definition of 7,
Pryy e [TF(r1, -+ s 7e1) # 0] < o for independent and uniformly distributed r;s.
Thus, by the union bound, we have:

Pry, o ysner el [Tf W1 Y1) = TP(21, -+ 5 2r1) 7 0] < (4 +10)m0. (7.17)

Therefore vy > p > 1 — (4k + 10)no. A similar argument proves the lemma for g4 (y). The
only catch is that T, (.) is not symmetric— in particular in its first argument. Thus, we use
another identity as given in Claim 7.16 to resolve the issue and get four extra terms than in
the case of go, which results in the claimed bound of (4k + 14)n;. O

Remark 7.5. Analogously, in the case IF, we have: for everyy € By, Pry, 4, . o cmn[9i(y)

=f) =Ty =y, 9 Y, v1) + @] 2 1-2((p— Dk +6(p— 1) + D).
The proof is similar to that of Lemma 7.11 where it can be shown p; > 1 —2((p — 1)k +

6(p — 1) + 1)m;, for each u; defined for g;(y).

7.4.4 Proof of Lemma 7.12

From Theorem 7.1, it suffices to prove that if n; < m then T_«; (Y1, s Ykt1,

b) = 0 for every y1,--+ ,Yk+1,b € Fy. Fix the choice of yy, - ,yg+1,b. Define Y =
(Y1, Yry1). We will express T7, (Y,) as the sum of T}(-) with random arguments. We
uniformly select (k-+ 1)2 random variables z; ; over g for1 <7 < k+1,and1 < j < k+1.
Define Z; = (2,1, - , Zik+1). We also select uniformly (k + 1) random variables r; over
I3 for 1 <@ < k+ 1. We use z; ; and 7;’s to set up the random arguments. Now by Lemma
7.11, for every I € F&*! (i.e. think of I as an ordered (k + 1)-tuple over {0, 1,2}), with

probability at least 1 — (4k + 14)n; over the choice of z; j and r;,

gz(IY-i-b) = f(IY-f-b)—T}(IY-i—b—IZl—Tl, I'Z2+7’2, R ,I'Zk+1+'f'k+1, I'Zl+7’1),

(7.18)
where for vectors X, Y €¢ AT V. X = Zf:ll Y; X;, holds.
Let E; be the event that (7.18) holds for all I € IF’;“. By the union bound:
Pr[E;] > 1 — 3. (4k + 14)n;. (7.19)
Assume that E; holds. We now need the following claims. Let J = (Jy, -+, Jiy1) be a

(k + 1) dimensional vector over F3, and denote J' = (Ja, -+ , Jg11).

3Since T§(-) is symmetric in all but its last argument.

132

Claim 7.17. If (7.18) holds for all I € F’g“, then

i k+1 k+1 k+1
Tg% (Y,0) = Z —T})(y1 + Z Jeze1, Yk + Z Jizt (k+1), 0 + Z JtT't)]
O#J’E]Fé’ | t=2 t=2 t=2
i k+1 k+1
+ Z —T})(2y1 — 211+ Z Jize 1y 2Ukg1 — 21,(k41) T Z Ji2t (k+1)5
J’EF’; | t=2 t=2
k+1
2b—7‘1 + ZJt’/‘t)
t=2
k+1 k+1 k+1
+ TJP (211 + Z Jezi1s o 2 + Z Jize (k41), 11+ Z Jt”'t)]
t=2 t=2 t=2
(7.20)
Proof.
TO(Y,b) = Y go(I-Y +b)
IcFEt!
= > [T -Y+b—I-Zy—ri,1-Zo+ra, I+ Zppr + s,
IeFst!
I-Zy+m)+f(I-Y+0b)
k+1 k+1
= -) N fI-Y b+ I Zi+ > Jir)
IEF’;J’_I Q#J’EF{: t=2 t=2
k+1 k+1
+ > (f(2I-Y+2b—I-21 —ri+ Y A Ze+ > dir)
J'EF¥ =2 t=2
k+1 k+1
+f(IZy 41+ ZJtI-Zt+ZJtrt)>”
=2 =2
k+1 k+1
= = > | D fTY+b+ > T+ Y I Z)
O#J’E]F’g IE]F’;J'_l t=2 t=2
k+1 k+1
U Y. ey 42T Zv—ri+> AL Zi+ Y Jir)
J’E]F§ IE]F’;J'_I t=2 t=2
k+1 k+1

+ Z f(['Zl+rl+ZJtI'Zt+ZJtrt)
t=2

IEIF§+1 t=2

133

k+1 k+1 k+1
= Z _Tjg(yl + Z Jtzt,la Ty Ukl T Z Jtzt,(k+1)7 b+ Z Jtrt)]
0#J'€Fk =2 t=2 =2
k+1 k+1
+ Z —T}](le — 211+ Z Jize1, 5 2Yke1 — 21,k41) T Z Ji2t (k+1)5
J' €F§ =2 t=2
k+1
20—+ Y Jiry)
t=2
k+1 k+1 k+1
+ Tj[”)(zl,l + Z Jeze a1,y 2p41 T Z Jize, k1), T1 + Z Jﬂ’t)]
t=2 t=2 t=2
[
Claim 7.18. If(7.18) holds for all I € FE™, then
- k+1 k+1 k+1
T;l (Y, b) = Z —T} (yl “+ Z Jtzt,h ce L UYk41 + Z Jtzt,(k+1)7 b + Z Jt’f't)]
0+4J'eFk L 1=2 =2 =2
[k+1 k+1
+ Z T}(le — 211+ Z Jize1, 002Uk — 21, (kt1) T Z Ji24, (k1)
J'eFk L =2 =2
k+1
2b—ri+ > Jiry)|. (7.21)
t=2
Proof.
T,(V,b) = Y Lg(I-Y +b)
IeFst!
= Z L[-T;(I-Y+b—1T1-Zy—ri,I-Zy+ry-- I Zpyy + Thpa,
IeFst!
I-Zi+7)+ fI-Y +b)]
k+1 k+1
IeFst? 0#J' €F% t=2 t=2
k+1 k+1
+ | Y F@QIY +20—T-Zy—ri+ > ST Zi+ Y Jire)
J'eF¥ t=2 t=2
k+1 k+1

= = > | Y. nfad-Y+bv+> i+ > JI-7Z)

0£J'c€Fs [TeFEtt t=2

134

k+1 k+1
> D LRI Y +2—T-Zi—ri+ > S Ze+ Y Jm)
J’E]Flg _IE]F];+1 t=2 t=2
i k+1 k+1 k+1
= Z —T}(y1 + Z Jeze1, Ykt + Z Jizt k1), b + Z Jirt)
0£J'eFk L =2 t=2 —2
k+1 k+1
+ Z T} (2y1 — 211 + Z Jezt1, 52Ukl — 21, (k41) T Z Ji2t (k+1)5
J’E]F’gf t=2 t=2

k+1
2b — 1+ Z Jt’f’t)]

t=2

Let E, be the event that forevery J' € F5, T (y1+_, Jize1, -+, Yrr1+2, Jeze,(ki1), 0+
Sk +1Jim) =0, T}(2y1—21,1+2i221 Jizts s 2k 1= 211 Dons Jiz, (k1) 20—

r+3 M) = 0, and T]?(Zl,1+Zf:21 Ji2e1y s 21+ Yonts Tzt T orty Jire) =
0. By the definition of 7; and the union bound, we have:

Pr[Ey] > 1 — 3y, (7.22)

Suppose that 7; < W holds. Then by (7.19) and (7.22), the probability that £y
and F5 hold is strictly positive. In other words, there exists a choice of the z; ;’s and 7;’s
for which all summands in either Claim 7.17 or in Claim 7.18, whichever is appropriate, is
0. This implies that T (y1,- -+ ,Yk+1,0) = 0. In other words, if 7; < m, then g;

belongs to P,. [

Remark 7.6. Over I, we have: if n; <
k>1)

In case of F,,, we can generalize (7.18) in a straightforward manner. Let EY denote the
event that all such events holds. We can similarly obtain

2((p—1)k+6(1)—1)+1)pk+1’ then g; belongs to Py (if

PrE] > 1—p* - 2((p— 1)k +6(p — 1) +). (7.23)

135

Claim 7.19. Assume equivalent of (7.18) holds for all I € IF’;H, then

k+1 k+1 k+1
T;l (Y, b) = Z —T]Zc(yl + Z Jtzt,l, <y Ykt + Z Jtzt,(k—l-l)a b + Z Jt’f't)]
0#J' €Fk t=2 t=2 t=2
k+1
+ Z Z | =Ty — (Jh = Dz + Z iz, Jile—
J'€Fk J1€Fp;J1#1 t=2

k1 k1
(J1 — 1)z, 1) + Z iz (1), J1b— (J1 — 1)ry + Z Jtrt)]]

t=2 t=2
(7.24)
Proof.
Ti(Y,b) = Y Iig(I-Y+b)
IeFEt!
= > L[-TiI-Y+b—T-Zi—ri,1-Zo+ra,+ T+ Zppr + s,
I€Fpt!

I-Zy+m)+ fI-Y +b)

k+1 k+1
= = > L Y. fT-Y+b+> AI-Zi+ > Jir)
IeFpt! 0£J' Fk t=2 t=2

+ | Y A SAIY 4 Rb— (A= DI-Zi = (i - D
J1€Fp,J1#1 J’EF’;
k+1 k+1

+ Z JtI . Zt + Z Jt’f't)
t=2 t=2
k+1 k+1

= = Y GBI Y b+ dre+ > S Z)

k k = =
0£J'eFk | JeFk+! t=2 t=2

— >0 S J D BFRIY + Rb— (=D Zy— (Jy - D)y

J'eFk | J1€Fp;J1#1]e]}i‘];""l
k+1 k+1
=+ Z JtI . Zt + Z Jt’f’t)]
t=2 t=2
k+1 k+1 k+1
= Z —T% (y1 + Z Jeze 1, Ykl + Z izt (k41), b + Z Jyry)
t=2 t=2 t=2

0#£J' €Fk

136

ki1
+ Z Z Ji | =T (Jiyr — (J1 — Dzn + Z Jizea, oy J1Yke
JERs | JieFp il =2

t=2 t=2

k+1 k+1
_(Jl — 1)21,(k+1) + Z Jtzt,(k—l—l); Jlb — (Jl — 1)7’1 -+ Z Jt’f't)]]

0

Let EY, be the event analogous to the event Ey in Claim 7.18. Then by the definition of
n; and the union bound, we have

Pr[Ey] > 1 — 2p" . (7.25)

2((p71)k:+6(1771)+1)pk+1’ then the probability that E] and E),

hold is strictly positive. Therefore, this implies Ty (y1,+ -+ , Yx+1,b) = 0.

Then if we are given that n; <

7.4.5 Proof of Lemma 7.13

For each C € F’;H, let X be the indicator random variable whose value is 1 if and only if
f(C-Y+0b)#g(C-Y+b),whereY = (y1,...,Yrs1). Clearly, Pr[X = 1] = ¢ for every
C. It follows that the random variable X =), X which counts the number of points v
of the required form in which f(v) # g(v) has expectation E[X] = 3*¥*1§ = £ . §. It is not
difficult to check that the random variables X are pairwise independent, since for any two
distinct Cl = (Cl 1y--- C’z k:+1) and Cy = (Cg 1y - - Cg k+1) the sums Zf+11 Cq Y b
and Z ' O, 4Yi + b attain each pair of distinct values in [F; with equal probability when
the Vectors are chosen randomly and independently. Since X¢’s are pairwise independent,
Var[X] =), Var[X¢]. Since X¢’s are boolean random variables, we note

Var[Xc] = E[X¢] — (E[Xc])* = E[Xc] — (E[Xc])* < E[Xc].

Thus we obtain Var[X] < E[X], so E[X?] < E[X]? + E[X]. Next we use the following
well known inequality which holds for a random variable X taking nonnegative, integer
values,

Indeed if X attains value ¢ with probability p;, then we have

(E[X]) (Zm) = (Zi«ﬁ@)Q < (Zz'pi) <Z p,) E[X] - Pr[X > 0],

>0 >0 >0 >0
where the inequality follows by the Cauchy-Schwartz inequality. In our case, this implies
(E[X])? (Blx])? _ E[X]

PrX > 01> “gxe] 2 B + (X)) 1+ X

137

Therefore,
EX] >Pr[X =1]+2Pr[X >2] = Pr[X =1]+2 _EX] Pr[X = 1]
- - - B 1+ E[X] B
2E[X]
= ——— — Pr[X =1].
TRy =
After simplification we obtain,
1 —E[X]
Pr[X =1] > ——— - E[X].
=12 g B

The proof is complete by recalling that E[X]| = ¢- 6. O

7.5 A Lower Bound and Improved Self-correction

7.5.1 A Lower Bound

The next theorem is a simple modification of a theorem in [1] and essentially implies that
our result is almost optimal.

Proposition 7.20. Let F be any family of functions f : ¥y — F, that corresponds to
a linear code C. Let d denote the minimum distance of the code C and let d denote the
minimum distance of the dual code of C.

Every one-sided testing algorithm for the family F must perform Q(d) queries, and if the
distance parameter ¢ is at most d/p™ Y, then Q(1/¢) is also a lower bound for the necessary
number of queries.

Lemma 7.4 and Proposition 7.20 gives us the following corollary.

Corollary 7.5. Every one-sided tester for testing P, with distance parameter € must per-
t+1
form Q(max(%, (1 + ((t + 1) mod (p — 1)))pr-1)) queries.

7.5.2 Improved Self-correction
From Lemmas 7.9, 7.11 and 7.12 the following corollary is immediate:

Corollary 7.6. Consider a function f : I3 — I3 that is e-close to a degree-t polynomial
g : F3 — 3, where ¢ < m. (Assume k > 1.) Then the function f can be
self-corrected. That is, for any given x € Fy, it is possible to obtain the value g(x) with
probability at least 1 — 3¥1e by querying f on 3**! points on Fy.

An analogous result may be obtained for the general case. We, however, improve the
above corollary slightly. The above corrector does not allow any error in the 3! points it
queries. We obtain a stronger result by querying on a slightly larger flat H, but allowing
some errors. Errors are handled by decoding the induced Reed-Muller code on H.

138

Proposition 7.21. Consider a function [:) — T, that is e-close to a degree-t polynomial
g : By — F,. Then the function f can be self-corrected. That is, assume K > (k + 1),
then for any given x € Wy, the value of g(x) can be obtained with probability at least
1 — ey - p~(K=2k=3) yith pK queries to f.

Proof. Our goal is to correct the RM,,(¢,n) at the point . Assume ¢t = (p — 1) - k + R,
where 0 < R < (p — 2). Then the relative distance of the code 6 is (1 — R/p)p~*. Note
that 2p~*=! < § < p~*. Recall that the local testability test requires a (k + 1)-flat, i.e., it
tests D, . crs1€F, E 2By + Zf;l ciyi) = 0, where y; € Fy.

We choose a slightly larger flat, i.e., a K-flat with K > (k 4 1) to be chosen later.
We consider the code restricted to this K-flat with point z being the origin. We query f
on this K-flat. It is known that a majority logic decoding algorithm exists that can decode
Reed-Muller codes up to half the minimum distance for any choice of parameters (see [99]).
Thus if the number of errors is small we can recover g(z).

Let the relative distance of f from the code be € and let .S be the set of points where it
disagrees with the closest codeword. Let the random K-flat be H = {z + Zfil tiu|t; €
F,u; €r I }. Let the random variable Yii,, 1x) take the value 1if z+ Zfil u;t; € Sand 0
otherwise. Let D = F¥ \ {0} and U = (w1, -+ ,uk). Define Y =37, v Yo, ie)
and £ = (p¥ — 1). We would like to bound the probability

Pry[|Y — el > (6/2 — ¢)4].

Since Pry[Y;, ... 1 = 1] =€, by linearity we get By [Y] = el. Let T = (ty,-- - ,txk). Now

VarlY] = Z Var[Yr] + Z Cov[Yr, Yp]
TcFK —{0} T#T'
= (e —&*) + Z Cov[Yp, Y] + Z Cov[Yr, Yqi]
T#NT T=AT";1£\eF

< lle—e)+L-(p—2)(e—£?)
=le—¢€")(p—1)

The above follows from the fact that when 7" # AT" then the corresponding events Y7 and
Y7+ are independent and therefore Cov[Yr, Y| = 0. Also, when Y7 and Y7 are dependent
then COU[YT, YTI] = EU [YTYTI] - EU [YT]EU [YTI] < g — 82.

Therefore, by Chebyshev’s inequality we have (assuming & < p~(*+1)

te(1—e)(p—1)

Pry(|Y —et] > (6/2 — €)€] < (5/2 — ¢)202

139

Now note (6/2 —¢) = (p7* ! —¢) = (1 —e - p*™)p~*~1. We thus have

Pry]|Y —el] > (6/2 —€)f] < i j(i . p’iz%;p;)“%
< °p
S (1 —e-pht)2p2=2(0 + 1)
_ € —(K—2k—3)

(1= pei P

7.6 Bibliographics Notes

The results presented in this chapter appear in [72].

As was mentioned earlier, the study of low degree testing (along with self-correction)
dates back to the work of Blum, Luby and Rubinfeld ([21]), where an algorithm was re-
quired to test whether a given function is linear. The approach in [21] later naturally ex-
tended to yield testers for low degree polynomials over fields larger than the total degree.
Roughly, the idea is to project the given function on to a random line and then test if the
projected univariate polynomial has low degree. Specifically, for a purported degree ¢ func-
tion f : Fy — Fy, the test works as follows. Pick vectors y and b from Fy (uniformly at
random), and distinct sq, - - - , 5,41 from I, arbitrarily. Query the oracle representing f at
the ¢ + 1 points b+ s;y and extrapolate to a degree ¢ polynomial P, in one variable s. Now
test for a random s € [, if

Pb,y(s) = f(b + Sy)
(for details see [93],[42]). Similar ideas are also employed to test whether a given function
is a low degree polynomial in each of its variable (see [36, 8, 6]).

Alon et al. give a tester over field [y for any degree up to the number of inputs to the
function (i.e., for any non-trivial degree) [1]. In other words, their work shows that Reed-
Muller codes are locally testable. Under the coding theory interpretation, their tester picks
a random minimum-weight codeword from the dual code and checks if it is orthogonal to
the input vector. It is important to note that these minimum-weight code words generate
the Reed-Muller code.

Specifically their test works as follows: given a function f : {0,1}" — {0, 1}, to test if
the given function f has degree at most ¢, pick (¢ + 1)-vectors yy,--- ,y:11 € {0,1}"™ and

test if
>, O w=o.
0#SC[t+1] €S
Independent of [72], Kaufman and Ron, generalizing a characterization result of [42],
gave a tester for low degree polynomials over general finite fields (see [74]). They show
that a given polynomial is of degree at most ¢ if and only if the restriction of the polyno-
mial to every affine subspace of suitable dimension is of degree at most ¢. Following this

140

idea, their tester chooses a random affine subspace of a suitable dimension, computes the
polynomial restricted to this subspace, and verifies that the coefficients of the higher degree
terms are zero*. To obtain constant soundness, the test is repeated many times. An advan-
tage of the approach presented in this chapter is that in one round of the test (over the prime
field) we test only one linear constraint, whereas their approach needs to test multiple linear
constraints.

A basis of RM consisting of minimum-weight codewords was considered in [28, 29].
We extend their result to obtain a different exact characterization for low-degree polyno-
mials. Furthermore, it seems likely that their exact characterization can be turned into a
robust characterization following analysis similar to our robust characterization. However,
our basis is cleaner and yields a simpler analysis. We point out that for degree smaller than
the field size, the exact characterization obtained from [28, 29] coincides with [21, 93, 42].
This provides an alternate proof to the exact characterization of [42] (for more details, see
Remark 7.3 and [42]).

In an attempt to generalize our result to more general fields, we obtain an exact char-
acterization of low degree polynomials over general finite fields [71] (see [86] for more
details). This provides an alternate proof to the result of Kaufman and Ron [74] described
earlier. Specifically the result says that a given polynomial is of degree at most ¢ if and
only if the restriction of the polynomial to every affine subspace of dimension |'qt_+q}p1 (and
higher) is of degree at most ¢.

Recently Kaufman and Litsyn ([73]) show that the dual of BCH codes are locally
testable. They also give a sufficient condition for a code to be locally testable. The con-
dition roughly says that if the number of fixed length codewords in the dual of the union
of the code and its e-far coset is suitably smaller than the same in the dual of the code,
then the code is locally testable. Their argument is more combinatorial in nature and needs
the knowledge of weight-distribution of the code and thus differs from the self-correction
approach used in this work.

4Since the coefficients can be written as linear sums of the evaluations of the polynomial, this is equivalent
to check several linear constraints

