
Flexible Coloring

Xiaozhou Lia, Atri Rudrab, Ram Swaminathana

afirstname.lastname@hp.com, HP Labs, 1501 Page Mill Road, Palo Alto, CA 94304
batri@buffalo.edu, Computer Sc. & Engg. dept., SUNY Buffalo, Buffalo, NY 14260

Abstract

Motivated by reliability considerations in data deduplication for storage systems,

we introduce the problem of flexible coloring. Given a hypergraph H and the

number of allowable colors k, a flexible coloring of H is an assignment of one or

more colors to each vertex such that, for each hyperedge, it is possible to choose

a color from each vertex’s color list so that this hyperedge is strongly colored

(i.e., each vertex has a different color). Different colors for the same vertex can

be chosen for different incident hyperedges (hence the term flexible). The goal

is to minimize color consumption, namely, the total number of colors assigned,

counting multiplicities. Flexible coloring is NP-hard and trivially s − (s−1)k
n

approximable, where s is the size of the largest hyperedge, and n is the number

of vertices. Using a recent result by Bansal and Khot, we show that if k is

constant, then it is UGC-hard to approximate to within a factor of s − ε, for

arbitrarily small constant ε > 0. Lastly, we present an algorithm with an

s − (s−1)k
k′ approximation ratio, where k′ is number of colors used by a strong

coloring algorithm for H.

Keywords: graph coloring, hardness of approximation

1. Introduction

Data deduplication is a storage systems technique that aims to reduce the

storing of multiple copies of the same data, thereby saving storage space. The

following optimization problem arises in data deduplication. A large number of

data objects (binary strings for our purposes) are to be stored on some number of

Preprint submitted to Elsevier October 23, 2010

disks. Each object consists of a number of blocks. For reliability considerations,

blocks belonging to the same object should be stored on distinct disks so that

the failure of a disk only affects one block. In storage systems, it is common

that objects have identical blocks. To save space, identical blocks need not

be stored multiple times. The goal is to store the fewest number of blocks

without violating the “distinct-disks” rule, omitting considerations such as disk

capacities.

To understand the problem better, consider the following simple example.

Suppose we need to store three objects on two disks. Each object consists of two

blocks: {A,B}, {B,C}, and {A,C}, respectively. Then the most economical

way to store these objects is to store four blocks, say, A,C on the first disk,

and B,C on the second. This placement is legitimate because the first object

consists of A|1 (meaning block A on disk 1) and B|2, the second consists of

B|2 and C|1, and the third consists of A|1 and C|2. It is easy to verify that

storing only three blocks A, B, and C, will violate the “distinct-disks” rule

stated above.

In this paper, we formulate the above problem into an optimization problem

called flexible coloring. Section 2 presents the problem formulation and some

simple observations. Section 3 presents a hardness of approximation result. We

conclude with some discussion in Section 4.

2. Problem formulation

We formulate this optimization problem as the following graph-theoretic

problem which we call flexible coloring. Given a hypergraph H and the number

of allowable colors k, a flexible coloring of H is an assignment of one or more

colors to each vertex such that, for each hyperedge, it is possible to choose a

color from each vertex’s color list so that this hyperedge is strongly colored (i.e.,

each vertex has a different color). Different colors for the same vertex can be

chosen for different incident hyperedges (hence the term flexible). The goal is

to minimize color consumption, namely, the total number of colors assigned,

2

counting multiplicities. Clearly, for flexible coloring to be feasible, we need

k ≥ s, where s is the size of the largest hyperedge. It is easy to see that there

is no need to assign a vertex more than s colors, because assigning s colors to a

vertex gives the vertex enough “flexibility” to choose a color for any hyperedge

to which the vertex belongs.

Clearly, in the above formulation, a vertex in H corresponds to a block,

a hyperedge in H corresponds to an object, k corresponds to the number of

disks, and color consumption corresponds to storage space consumption. In the

example described earlier, the hypergraph consists of three vertices {A,B, C},

three hyperedges {A,B}, {B,C}, {C,A}, and s = k = 2. A legitimate flexible

coloring is coloring A with color 1, B with color 2, and C with colors 1 and 2.

The total color consumption is four.

For s = 2, computing the optimal flexible coloring is equivalent to the prob-

lem of finding the maximum k-colorable induced subgraph, but for general s,

we are not aware of a similar problem.

Finally, we point out that given a valid assignment of colors to every vertex,

a valid assignment of colors to the endpoints of an hyperedge can easily be

obtained by solving a bipartite maximum matching problem (where the end-

points form the left vertices, the colors {1, . . . , k} form the right side, and (v, c)

is an edge if the color c is assigned to the end-point v).

3. Hardness of approximation

Flexible coloring is NP-hard, because it contains graph coloring as a special

case. To see this, take an instance of the graph coloring problem (G, k), where

we wish to determine if graph G is k-colorable. If flexible coloring can correctly

answer the question “Can G be flexibly colored with k allowable colors and

consume only |V (G)| colors?”, then it can solve the graph coloring problem,

because the requirement of consuming only |V (G)| colors forces flexible coloring

to assign exactly one color to each vertex.

Following the terminology for graph coloring, we say a hypergraph H is (k, `)-

3

flex-colorable if there is a flexible coloring for H that uses k allowable colors and

consumes at most ` colors, counting multiplicities. Given H and k, we call the

smallest number ` such that H is (k, `)-flex-colorable the consumption number

of H and k, denoted by ϕ(H, k). Observe that ϕ(H, k) ≥ n, where n = |V (H)|,

because every vertex is assigned at least one color. On the other hand, H is

trivially (k, sn−(s−1)k)-flex-colorable, because we can assign one distinct color

to (any) k vertices and s colors to the remaining n−k vertices. These two simple

observations indicate that flexible coloring is trivially (s− (s−1)k
n)-approximable.

In what follows, we show that, if k is constant, then s is essentially the best

ratio that can be achieved. To prove this, we use the following recent result by

Bansal and Khot.

Theorem 1. ([1]) Assuming the Unique Games Conjecture (UGC), for any

integer s ≥ 2 and arbitrary constants α, β > 0, given an s-uniform hypergraph

H = (V,E), distinguishing between the following cases is NP-hard:

(YES): there exists disjoint subsets V1, . . . , Vs ⊆ V , satisfying |Vi| ≥ 1−α
s ·|V |

and such that no hyperedge contains at least two vertices from some Vi.

(NO): every vertex cover has size at least (1− β) · |V |.

We now state and prove the main theorem of this section.

Theorem 2. If k is a constant, then it is UGC-hard to approximate the con-

sumption number to within a factor of s−ε, for arbitrarily small constant ε > 0.

Proof. Recall that in order for flexible coloring to be feasible, we need s ≤ k.

Therefore, if k is given to be constant, then so is s. Consider an s-uniform

hypergraph H = (V,E). Let n = |V |. Suppose H is in the YES case in

Theorem 1. Let V ′ = V \ (V1 ∪ V2 ∪ · · · ∪ Vs). Since |Vi| ≥ 1−α
s · n for all i,

we have |V ′| ≤ αn. Because the Vi’s are disjoint and no Vi contains more than

one vertex from any hyperedge, we can color the vertices in the Vi’s with one

color, say color i, and color those in V ′ with (any) s colors. Since no Vi contains

more than one vertex from any hyperedge, this coloring is a legitimate flexible

coloring. The total color consumption is
∑s

i=1 |Vi|+ s · |V ′| ≤ n + (s− 1) · αn.

4

Therefore, ϕ(H, k) ≤ (1 + (s− 1)α)n. For any given constant ε1, we can choose

an α small enough so that ϕ(H, k) ≤ (1 + ε1)n, because s is constant.

On the other hand, suppose H is in the NO case in Theorem 1. Recall that

a vertex cover of a hypergraph is a subset of the vertices such that it contains at

least one vertex in every hyperedge. Consider a flexible coloring on H. For each

color set T ⊆ {1, 2, . . . , k} such that 1 ≤ |T | < s, let VT be the set of vertices

that are colored with T . We observe that VT does not contain any hyperedge

entirely, because a hyperedge is of size s but |T | < s. This implies that V \ VT

is a vertex cover. By Theorem 1, |VT | ≤ βn. Summing up over all the possible

color sets T such that 1 ≤ |T | < s, we obtain an upper bound on the number

of vertices that are assigned less than s colors:
∑s−1

i=1

(
k
i

)
· βn. For any constant

ε2, we can choose a β small enough so that the above summation is at most

ε2n, because s and k are constants. Therefore, the number of vertices that are

assigned s colors is at least (1− ε2)n (recall that no vertex needs to be assigned

more than s colors), and the color consumption on these vertices (and hence on

all vertices) is at least (1 − ε2) · sn. In other words, if H is in the NO case in

Theorem 1, then ϕ(H, k) ≥ (1− ε2) · sn.

Therefore, if there is an approximation algorithm that achieves a ratio better

than 1−ε2
1+ε1

· s, then we will be able to tell whether H is in the YES case or the

NO case, a contradiction to Theorem 1. Since ε1 and ε2 can be arbitrarily small,

we conclude that it is UGC-hard to approximate flexible coloring to within a

factor of s− ε, for arbitrarily small constant ε > 0. 2

We remark that the the result above can be strengthened to obtain a hard-

ness of approximation factor of s
α − γ, where the optimal number of colors used

is α·n for any 1+ε′ ≤ α ≤ s−ε′ (where ε′ = Θ(γ)). The proof follows by adding

roughly (α−1)n “dummy” nodes to the graph produced in the reduction above

and adding hyperedges so that each dummy node has the maximum possible

number of incident hyperedges. (Note that in such a case the dummy nodes

have to be assigned s colors.)

5

4. Discussion

We first remark that for s = 2, the optimal solution to the flexible coloring

problem is the same as the maximum k-colorable induced subgraph problem. In

particular, all the vertices that are assigned a single color by a flexible coloring

induce a k-colorable subgraph. Using this connection one can also show that

n + (χ(G)− k) ≤ ϕ(G, k) ≤ n + (χ(G)− k) · n

χ(G)
,

where as usual, χ(G) is the chromatic number of G. Further, it can be shown

that both the upper and lower bounds are tight for specific graphs.

The connection above to coloring, immediately suggests the following ap-

proximation algorithm for flex coloring a hypergraph H. Do a strong coloring

on H, using any strong coloring algorithm, with no restrictions on the number

of colors used. Therefore, the algorithm can use k′ colors, which may be greater

than k. If k′ ≤ k, we can assign one color to every vertex and finish flexible

coloring with an optimal color consumption of n. If k′ > k, then we organize

the vertices into k′ groups based on their colors and we sort the groups in in-

creasing order of size. We then re-assign the vertices the first k′ − k groups s

colors. These s colors can be any s used by group k′ − k + 1 to group k′. It

is not hard to see that this procedure produces a legitimate flexible coloring,

and it consumes
(
s− (s−1)k

k′

)
n colors, which yields an approximation ratio of

s− (s−1)k
k′ .

The above algorithm, which makes use of existing strong coloring algorithms,

establishes a connection between the strong chromatic number and the consump-

tion number. How well we can approximate flexible coloring now depends on

how well we can approximate strong coloring. For graphs, strong coloring is just

regular coloring, a well-studied problem. For example, we can use the strong

coloring algorithm by Agnarsson and Halldórsson [2] or the regular coloring al-

gorithm on graphs by Halldórsson [3]. However, since coloring is in general a

hard problem to approximate, this bound is not necessarily attractive. We can

also interpret the s − (s−1)k
k′ bound in terms of other graph parameters. For

6

example, a graph G can be greedily colored by ∆(G) + 1 colors, where ∆(G) is

the maximum degree of G. Therefore, the above algorithm also achieves a ratio

of 2− k
∆(G)+1 for G.

As mentioned earlier, for the special case of s = 2, flexible coloring is equiv-

alent to the problem of maximum k-colorable induced subgraph, for which

Halldórsson [4] obtained an approximation ratio of 1
2

(
∆
k + 1

)
when ∆ > k.

A simple calculation shows that if xk′ ≤ 1
2 (∆ + k)n, where x is the size of the

maximum k-colorable induced subgraph, then our bound is better, assuming

that Halldórsson’s algorithm does not provide a better bound for certain cases.

For example, if k′ ≤ ∆ + 1, then our bound is better if x ≤ n
2 ; if k′ ≤ 1

2 (∆ + k),

then our bound is always better because x ≤ n.

When the hypergraph is sparse, the above algorithm can be improved. As

an illustration, consider the special case where s = 2 (i.e., graphs). We can

assume that all vertices are of degree at least 1 because isolated vertices can

be arbitrarily single-colored. Suppose 2m < nk, then by a simple averaging

argument, there are at least kn−2m
k−1 vertices that are of degree at most k − 1.

Observe that these low degree vertices can always be singly colored. Therefore,

we can (1) exclude the low-degree vertices, (2) color the remaining induced

subgraph using the above flexible coloring algorithm, and (3) add back the

low-degree vertices and single color them. This algorithm results in at most(
1− k

k′

)
· 2m−n

k−1 vertices (as opposed to the earlier
(
1− k

k′

)
n) being doubly

colored. We note that step (1) above can be repeated multiple times.

We conclude by remarking that there is room for improvement for our al-

gorithm. For example, re-assigning s colors to a vertex is brute force. A more

refined method would be to first analyze whether a smaller color set is possible

(e.g., a vertex with at most k − 1 neighbors can be singly colored).

References

[1] N. Bansal, S. Khot, Inapproximability of hypergraph vertex cover and ap-

plications to scheduling problems, in: Proceedings of the 37th International

7

Colloquium on Automata, Languages and Programming (ICALP), 2010, pp.

250–261.

[2] G. Agnarsson, M. M. Halldórsson, Strong colorings of hypergraphs, in: Pro-

ceedings of the Third Workshop on Online and Approximation Algorithms

(WAOA), 2005, pp. 253–266.

[3] M. M. Halldórsson, A still better performance guarantee for approximate

graph coloring, Information Processing Letters 45 (1993) 19–23.

[4] M. M. Halldórsson, Approximating discrete collections via local improve-

ments, in: Proceedings of the Sixth ACM-SIAM Symposium on Discrete

Algorithms (SODA), 1995, pp. 160–169.

8

