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Abstract: Biomedical research is now generating large amounts of data, 
ranging from clinical test results to microarray gene expression profiles. The 
scale and complexity of these datasets give rise to substantial challenges in data 
management and analysis. It is highly desirable that data warehousing and 
online analytical processing technologies can be applied to biomedical data 
integration and mining. The major difficulty probably lies in the task of 
capturing and modelling diverse biological objects and their complex 
relationships. This paper describes multidimensional data modelling for 
biomedical data warehouse design. Since the conventional models such as star 
schema appear to be insufficient for modelling clinical and genomic data, we 
develop a new model called BioStar schema. The new model can capture the 
rich semantics of biomedical data and provide greater extensibility for the fast 
evolution of biological research methodologies. 
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1 Introduction 

Recent developments of high throughput technologies result in large datasets of genomic 
sequences and gene functional profiles. Analysis of these datasets may lead to greater 
understanding of the biological mechanisms behind diseases such as multiple sclerosis. 
For example, microarray data contain valuable information for discovery of  
disease-associated gene expression patterns and classification of patients  
(Golub et al., 1999; Ramaswamy et al., 2001). The scale and complexity of genomic 
datasets give rise to substantial challenges in data management and mining. It is also 
clear that full benefit of functional genomics may only be obtained through seamless 
integration with clinical data and biological background knowledge. However, the 
diverse resources of clinical and genomic information are typically distributed at a range 
of sites. These information resources often allow the data to be browsed or downloaded 
as flat files, but do not support efficient genome-wide data analysis and integration with 
other data sources of interest. 

Data warehousing technology, which was originally developed in a business context, 
is beginning to be used in the fields of biology and medical sciences to meet the 
requirement of data mining for clean and consistent data. A data warehouse is defined as  
“a subject-oriented, integrated, non-volatile and time-variant collection of data in support 
of management’s decisions” (Inmon, 1996). Specifically, business data are extracted 
from several operational databases, transformed, cleansed and loaded into a 
multidimensional database. The data in the warehouse may be further filtered, aggregated 
and stored in smaller data stores, usually called data marts, for specialised purposes. 
Thus, data warehouses are viewed as consolidated repositories of historical data and their 
major role is to facilitate business decision making. 
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Online analytical processing (OLAP) applications are built to provide users a 
multidimensional view of the data in the warehouse and to allow data analysis through ad 
hoc queries of the data (Cabibbo and Torlone, 1998). An important feature of OLAP is 
the presentation of information at different levels of detail through aggregating and 
disaggregating data over one or more dimensions (Marcel, 1999). This feature is realised 
by two OLAP operations, called roll-up and drill-down. Roll-up corresponds to 
summarisation of data for the next higher level of a concept hierarchy associated with a 
dimension. Drill-down, which is the reverse of roll-up, provides navigation from a 
higher-level summary to the lower-level detailed data. Other OLAP operations include 
pivoting, slicing and dicing (Vassiliadis, 1998). Since measurable business facts or the 
so-called measures are mostly numeric values (e.g., the dollar amount of a sale in a retail 
business), roll-up usually uses simple aggregate functions such as sum and average, 
though complex algebraic or statistical operators may also be defined for OLAP 
operations (Datta and Thomas, 1999). 

While data warehousing and OLAP have been successfully applied to the business 
domain, it is clear that direct transfer of these technologies to biology is fraught with 
difficulties (Dubitzky et al., 2001). The main reason is that the information need of 
biological research is fundamentally different from that of customer-centred business. 
While business data analysis such as market-driven trend analysis is to support 
management’s decision, the main goal of biological data warehousing is probably to 
provide a global and integrated view of living systems. Another major difficulty is due to 
the great complexity of biology. Unlike business processes that are logically simple and 
temporally stable, biology has very complex research methodologies and a huge  
fast-growing body of background knowledge. The task of capturing, modelling and 
encoding some of the biological knowledge for a data warehouse appears to be a great 
challenge. 

Although there is a pressing need for robust multidimensional models of biological 
data, only a few papers have been published in this area. Markowitz and  
Topaloglou (2001) developed conceptual models for multidimensional analysis of 
microarray gene expression data. The modelling data spaces included sample, gene 
annotation and gene expression. The authors proposed to use star or snowflake schemas 
for logical design, though the logical data models were not specified in detail. In addition, 
various clinical and genomic data were not modelled. Pedersen et al. (2001) investigated 
the structure of some clinical data and developed a multidimensional data model that 
extended star schema. Although some of the challenging problems of clinical data 
modelling were taken into consideration, the extended data model was not comprehensive 
and did not cover microarray gene expression and other genomic data. 

Biological data are also modelled using object-oriented and traditional  
entity-relationship (ER) approaches. Paton et al. (2000) described a collection of  
object-oriented conceptual models for various yeast data, including genetic, genomic 
sequence, gene expression and protein-protein interaction data. The models were later 
implemented in the object database called GIMS (Cornell et al., 2001). Many others used 
traditional ER models for microarray gene expression and/or other genomic data  
(Gollub et al., 2003; Chen et al., 2004). These databases were aimed to provide 
management and integration of genomic data, and thus support for efficient 
multidimensional data analysis was probably not considered in the database design. 
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We present in this paper a new model for clinical and genomic data in the warehouse 
design. In our case, the data warehouse is designed to integrate various biomedical 
datasets for studies of human diseases (e.g., multiple sclerosis and cancers). Clinical data, 
including clinical test results, MRI images and drug responses of patients are provided by 
our collaborators. A relatively large collection of microarray gene expression data from 
multiple sclerosis patients is available for this research. Other genomic datasets, 
including sequences and annotations, microarray gene expression data, protein-protein 
interaction data and protein domain information, are obtained from public databases. 
Thus, our data modelling scope is quite comprehensive and the work may provide a 
general framework for biomedical data warehousing and mining. 

The rest of this paper is organised as follows. Section 2 provides several examples of 
modelling clinical and genomic data at the conceptual level. We discuss new challenges 
for the multidimensional modelling of biomedical data in Section 3. In Section 4, a new 
model called BioStar is described. We then use BioStar to model complex biomedical 
data spaces in Section 5. 

2 Motivating examples 

The data warehousing and mining lifecycle includes data modelling, data warehouse 
construction, and development of visualisation and mining tools. The data models should 
provide a multidimensional view of data and serve as a foundation on which a data 
warehouse can be built. The data modelling process may be divided into three different 
design phases: conceptual data modelling deals with high-level representation of the data 
space; logical data modelling relates high-level concepts to a certain kind of database 
management system (DBMS); and physical design specifies how data are actually stored 
using a specific DBMS. 

In this section, we describe three typical examples of modelling clinical and genomic 
data at the conceptual level. Due to the diversity and complexity of biomedical data, the 
warehouse design may include several modelling data spaces. In our work, we used the 
following six data spaces: clinical data space, sample data space, microarray data space, 
proteomic data space, experiment data space, and gene data space. 

Example 1 (clinical data space): An entity-relationship (ER) diagram for the clinical 
data space is shown in Figure 1. An entity is represented as a rectangle with the entity 
name and a relationship between two entities is drawn using a line with the multiplicity 
label, which indicates the number of objects that may participate in the relationship.  
For example, one Patient can have many (denoted by ‘n’) Clinical Samples taken for 
laboratory assays (Figure 1). The attributes of the entities are not shown in the conceptual 
models. 

The clinical data space has a rich variety of entities, among which Patient is 
obviously the most important entity and thus the fact entity in the multidimensional data 
model. All the other entities can be viewed as dimensions to characterise patients. 
Disease and Drug represent two important dimensions of patient data. Both dimensions 
have a many-to-many relationship with Patient and their associated measures, namely 
disease diagnosis and drug use, which need bi-temporal support to specify their valid 
time intervals. In addition, the relationship between Disease and Patient can be uncertain 
in some cases. 
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Figure 1 A conceptual model of the clinical data space 

 

Clinical Sample is another important entity, which has a many-to-one relationship with 
Patient. Clinical samples such as blood samples are taken from patients and used for 
various laboratory assays. The Clinical Test entity captures information about simple 
clinical tests applied directly to patients through physical examination or by asking 
patients to perform some simple routines. Clinical Test has a many-to-many relationship 
with the Patient entity. Patient data from sophisticated clinical studies are captured by the 
Medical Image and Physiology entities. These studies use advanced medical equipment 
and result in complex data such as MRI images and cardiograms. The Medical Image 
entity has a many-to-one relationship with Patient, whereas the Physiology entity has a 
many-to-many relationship with Patient. Other dimension entities in our design include 
Demographics, which characterises patients based on demographic information and 
Followup, which captures patient status information in followup reports. Both entities 
have a many-to-one relationship with Patient. 

The clinical data space has a very complex structure and may include more entities 
such as patient family history record. These dimensions characterise patients with 
different fact measures. However, for a particular patient, only a few measures are 
usually available. 

Example 2 (microarray data space): The DNA microarray technologies allow  
genome-wide analysis of gene expression at the mRNA level. In Figure 2, a conceptual 
model for the microarray data space is shown. The fact entity in this data space is mRNA 
Expression, which has four dimension entities. The Clinical Sample entity provides 
sample information for gene expression measurements and it links the microarray data 
space with the clinical data space described above. 
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Figure 2 A conceptual model for the microarray data space 

 

Array Probe captures the information about sequence or oligonucleotide probes that are 
placed on the microarray. These probes are derived from gene sequences. Since multiple 
probes may be used for a single gene, it is often necessary to summarise gene expression 
to the higher level of non-redundant gene sequences. 

The Measurement Unit entity can be used to keep information about what is 
measured for gene expression. For example, the Affymetrix GeneChip platform provides 
two kinds of gene expression measurements for each probe set, a presence/absence (PA) 
call and a numeric value. In contrast, cDNA microarrays give the relative ratios of gene 
expression in two samples. 

The Experiment entity captures metadata of each experiment. Microarray data are 
obtained through complex experimental processes. The procedures and platforms used 
for such experiments can affect the magnitude and quality of gene expression 
measurements. Since datasets generated in different research laboratories and possibly 
using different platforms will be combined in the data warehouse, it is very important to 
capture the experimental metadata for both data quality control and future reference. 

Example 3 (gene data space): The gene data space contains gene function information 
integrated from a variety of public domain data sources. Since NCBI’s non-redundant 
RefSeq or UniGene sequence dataset is normally used as the reference set for functional 
annotations, we view Gene Sequence as the fact entity of the gene data space (Figure 3). 

Figure 3 A conceptual model for the gene data space 

 



   

 

   

   
 

   

   

 

   

    BioStar models of clinical and genomic data for biomedical data 7    
 

    
 
 

   

   
 

   

   

 

   

       
 

There are many possible dimensions to characterise the gene functions and seven of these 
entities are shown in Figure 3. The entity important for microarray data analysis is Array 
Probe, which has a many-to-one relationship with Gene Sequence. The Array Probe 
entity links the gene data space to microarray data space. Protein Expression represents 
another level of gene expression measurement using proteomic approaches and has a 
many-to-one relationship with Gene Sequence. In the proteomic data space, Protein 
Expression is the fact entity (similar to mRNA expression in the microarray data space). 

The other gene data dimensions include Gene Cluster, Promoter, Protein Domain and 
Protein-Protein Interaction. Co-regulated gene clusters are obtained by clustering analysis 
of gene expression data in the warehouse and can be used to analyse gene regulatory 
networks, together with information about promoters and their composition of sequence 
motifs. Protein interaction and domain information are two important dimensions for 
annotating gene functions. 

3 Problem description 

One of the major requirements in operational database design is to avoid data redundancy 
in database relations through normalisation. Normalised schemas are important for 
supporting efficient online transaction processing (OLTP), which include pre-defined 
statements of queries and updates. However, the data access characteristics of a data 
warehouse are quite different from those of operational databases. In a data warehouse 
environment, users do not initiate update transactions. On the other hand, a data 
warehouse needs to support complex ad hoc queries that compute aggregate values over a 
huge amount of data for the purpose of data analysis such as OLAP. If a data warehouse 
uses a standard Entity-Relationship schema with many tables, a user may not be able to 
fully understand and utilise the integrated information in the warehouse (Kimball, 1996). 
Thus, data warehouse design often adopts multidimensional data modelling, which 
organises database entities into facts and dimensions. 

3.1 Application of existing multidimensional models 

The application of multidimensional models to biomedical data warehousing is a recent 
effort. Most of the multidimensional models documented in the literature are based on 
business data (Abello et al., 2001) and thus may not meet the requirements of biomedical 
data warehousing. Pedersen et al. (2001) evaluated 14 existing multidimensional models 
against the requirements of clinical data warehousing and found that none of these 
models support all the requirements. 

In a relational online analytical processing (ROLAP) architecture, a star or snowflake 
schema is commonly used for the data warehouse design (Vassiliadis and Sellis, 1999). A 
star schema consists of one central fact table, which stores measures for OLAP 
aggregation and several denormalised dimension tables. The major advantages of star 
schemas are their support for efficient OLAP operations and high understandability to 
warehouse users. The normalised version of a star schema is called a snowflake schema, 
in which dimension hierarchies can be explicitly defined using separate tables.  
If there are multiple fact tables to share dimension tables, such a collection of star 
schemas is called a fact constellation. 
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We are building our biomedical data warehouse using a relational database 
management system (RDBMS). Our data modelling work suggest that star or snowflake 
schemas may be used to model semantically simple data spaces including the microarray 
and proteomic data spaces. These data spaces represent well-defined experimental 
processes and contain many-to-one relationships between facts and dimensions.  
For example, Figure 4 shows the snowflake representation of the microarray data space. 
The schema has mRNAExpression as the central fact table, which has many-to-one 
relationships with its four dimension tables. The mRNAExpression fact table stores the 
measure of gene expression using the field ‘Expression’. The measure can be absolute 
gene expression values or PA calls from the Affymetrix GeneChip platform. The type of 
the measure is specified using MeasureUnitID, which is the primary key of the 
MeasurementUnit dimension table and a foreign key in the fact table (Figure 4). The 
other three tables (ClinicalSample, ArrayProbe and Experiment) store information about 
the respective dimensions as described in the previous section. Note that Experiment is 
also the fact table of the experiment data space and ArrayProbe relates mRNAExpression 
with GeneSequence, the fact table of the gene data space (see below). 

Figure 4 A snowflake schema for the microarray data space 

 

However, star schemas do not appear to be sufficient for modelling the semantics of 
complex data spaces such as the clinical data space (Figure 1) and gene data space 
(Figure 3). These data spaces have several features that introduce new challenges to 
multidimensional data modelling. 

3.2 New challenges 

We now discuss the major characteristics of clinical and genomic data and compare them 
with business data to show the different requirements between biomedical and business 
data warehousing (Table 1). First, the structure of clinical and genomic data is very 
complex and fast evolving, which reflects the great complexity of biological research and 
constant advances of experimental approaches. Specifically, many current entity types 
can be defined as dimensions in both clinical and gene data spaces and even more 
dimensions may be added over time. Furthermore, each dimension often has its own fact 
measures, which are coupled loosely with and can change independent of other 
dimensions’ measures. For example, a patient may have clinical tests with associated test 
results (clinical test measures) and may also be given one or more drugs, giving rise to 
the drug usage measures. However, the clinical tests may or may not be directly related to 
the drug usage. 
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Table 1 Characteristics of clinical and genomic data when compared to business data 

Clinical and genomic data Business data 

Complex data structure with many potential 
dimensions 

Easy-to-understand data structure with 
few dimensions 

Often many-to-many relationships between facts and 
dimensions 

Many-to-one relationships between facts 
and dimensions 

Uncertain relationships between fact and dimension 
objects 

Certain relationships between fact and 
dimension objects 

Some clinical measures require advanced temporal 
support for time validity 

Historical data, no advanced temporal 
support needed 

Incomplete and/or imprecise data very common Few incomplete and/or imprecise data 

Second, many-to-many relationships between fact and dimension objects are common in 
the clinical and gene data spaces. For example, a patient can be treated with one or more 
drugs and a drug can be used by many patients. A gene can have several protein domains, 
and a domain can be present in many genes. These natural many-to-many relationships 
are not easily modelled using star schemas, which are originally designed to handle the 
many-to-one relationships between a business fact and a dimension. 

Third, the relationships between fact and dimension objects may be uncertain in some 
cases. For example, a gene can be annotated to have some functions using gene ontology 
terms based on currently available evidence. However, the functional annotation may be 
completely changed when new evidence becomes available. Similarly, the diagnosis of a 
patient, i.e., the relationship between the patient and diseases, may be uncertain at a given 
time point, depending on the available clinical test results. 

Fourth, one important property of clinical data is that some measures are only valid in 
specific time intervals. For example, a patient may have a disease at a specific time 
interval and the effect of a drug on patients often lasts a certain time period. Thus, some 
clinical data need bi-temporal support (starting and ending time points) to specify their 
valid time intervals. This advanced temporal concept, although very important for 
multidimensional analysis of clinical data, is not supported by conventional models. 

Finally, clinical and genomic datasets are often incomplete and the values can be 
imprecise. For example, the data of a particular patient can be a few clinical test results, 
with no other measures available. The imprecision of data often results from imperfect 
understanding of biological objects. For example, a gene may only be assigned to a  
high-level functional category, but its exact function is still unknown. 

The above characteristics of biomedical data should be considered as the critical 
requirements of the multidimensional data model for the biomedical data warehouse.  
The existing multidimensional models do not fully support these requirements. For 
example, the clinical data space features complex relationships between the fact entity 
(Patient) and dimension entities and need bi-temporal support for some clinical measures. 
A conventional star or snowflake schema has problems to model the clinical data space. 
If a single fact table is used to store all the different clinical measures, most entries 
(including foreign keys of the fact table) would contain null values due to the 
incompleteness of data. 

For the gene data space (Figure 3), extensibility of the model is one of the major 
requirements. Due to the fast evolution of genomics, new dimensions may need to be 
added to the model. The conventional models do not support this requirement. For 
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example, introduction of a new dimension into a star schema would require re-computing 
all the data entries in the fact table. 

4 BioStar: a new model for biomedical data 

In Section 4, we describe a new multidimensional model, called BioStar, which supports 
all the requirements of our biomedical data warehousing. We first describe the basic 
elements of the model and then discuss its properties important for modelling complex 
biomedical data spaces. 

4.1 The basic model 

A BioStar fact schema is a quadruple F = (C, D, M, S), where C is the central entity 
schema, D is a set of dimension schemas, M is a set of measure schemas and S is a set of 
summarisability constraints. The central entity is viewed as a special dimension, which is 
associated with every fact measure. For example, in the clinical data space, Patient is the 
central entity; and in the gene data space, Gene Sequence is the central entity. 

C or Di ∈D is a pair (L, ≺ ), where L is a set of dimension levels and ≺  is a partial 
order of the elements in L. A level l ∈L is a dimension attribute, which is associated with 
a domain of values, dom(l). For example, the Demographics dimension of Patient  
(Figure 1) may have the following levels: Street Address, City, County, State and 
Country. The dimension levels specify the granularities that can be used to represent the 
fact objects. For example, patients may be classified by their living places in an 
increasing order of granularities: Street Address ≺  {City; County} ≺  State ≺  Country. 
Note that it is a partial order since there are two possibilities of ordering City and County 
(Street Address ≺  City ≺  County; or Street Address ≺  County). Therefore, (L, ≺ ) is a 
lattice specifying the classification hierarchy of C or Di∈D. The classification hierarchy 
determines how fact objects may be summarised over the dimension. In the biomedical 
data warehouse, however, some dimension hierarchies are still undefined or very 
complex. Definition of standard hierarchies for these dimensions requires significant 
background knowledge of biology (e.g., gene ontology and disease ontology). In this 
study, we are focused on modelling the structures and semantics of biomedical data and 
assume that some kind of classification hierarchy exists for these dimensions. 

A measure schema, Mj∈M, is a triple (Am, As, Dm), where Am is a set of attributes 
called measures, As is a set of supporting attributes for the measures (e.g., single- or  
bi-temporal support) and Dm is a set of dimensions that are associated with the measures. 
In a relational database, a measure schema may be implemented as a separate table, 
which we call it an m-table. An m-table is associated with the central entity and one or 
more dimensions. Note that Am can be an empty set. In such cases, the m-table just keeps 
the relationships among the central entity and the associated dimensions, and the records 
in the m-table may be used for counting occurrences instead of numeric aggregation. 

Each summarisability constraint, Sk ∈S, is a triple (Di, Mj, Ω), where Di ∈D, 
Mj ∈M, and Ω is an aggregation operator. In our biomedical data warehouse, the 
commonly used aggregation operators are {SUM, AVG, MAX, MIN, COUNT, 
CORRELATION, T-TEST, ANOVA}. The last three are statistical operators that are 
widely used in biomedical research. The CORRELATION operator is used to compute 
the Pearson or Spearman correlation coefficient between two random variables, T-TEST 
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is used to determine if there is a significant difference between two random variables by 
computing the t-statistic and ANOVA (analysis of variance) is used to test whether there 
are differences between any pairs of random variables. 

Summarisability constraints are critical for meaningful OLAP analyses of clinical and 
gene expression data. For example, it may not make sense to simply take the sum or 
average of microarray data for a group of genes (summarisation over the gene 
dimension). However, it is of interest to mine microarray data for gene relationships 
using the CORRELATION operator (pair-wise analysis of gene expression correlation). 
We are currently applying the traditional and statistical operators to biomedical data, and 
defining summarisability constraints for the OLAP operations. 

Figure 5 shows the typical structure of a BioStar schema, which has one table for the 
central entity (CentralEntity), six dimension tables (Dimension1–6) and five m-tables 
(MTable1–5). Note that MTable5 is associated with two dimensions (Dimension5 and 
Dimension6). This is allowed by the BioStar model, in which an m-table may be 
associated with multiple dimensions. The m-tables often represent many-to-many 
relationships between the central entity and dimensions. Each m-table includes the 
primary key of the central entity table and the primary key(s) of the associated dimension 
table(s) as the foreign keys of the m-table. An m-table may contain zero, one, or more 
measures. In Figure 5, MTable3 does not have a measure attribute, but it is necessary for 
keeping the many-to-many relationship between CentralEntity and Dimension3; MTable4 
has two measures (Measure 3 and Measure 4) associated with Dimension4; and the other 
m-tables have one measure attribute. Each m-table may also include non-measure 
attributes that are used to characterise the relationship between the central entity and 
dimension(s), or specify the temporal validity of the measure. The dimension tables in a 
BioStar schema may be denormalised as in a star schema, or normalised so that explicit 
dimension hierarchies can be defined. 

Figure 5 Typical structure of a BioStar schema 

 

4.2 Addressing the requirements 

The BioStar model supports all the requirements described in Section 3.2. First, the 
BioStar model has the property of great extensibility, which is important for some  
fast-evolving data spaces such as the clinical and gene data spaces. In these data spaces, 
existing dimensions may need to be modified, and new dimensions may be added over 
time. BioStar’s extensibility is realised by storing different measures in separate m-tables. 
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In such a configuration, an existing dimension and its associated m-table can be modified 
independently from the other dimensions and m-tables. If a new dimension needs to be 
added, we can create a new dimension table and a new m-table without affecting the 
existing tables. The new m-table simply uses the primary key of the central entity as one 
of the foreign keys to establish the relationship between the new dimension and the 
central entity. The representation of different measures using separate m-tables also 
reflects the natural situation of some complex biomedical data spaces, in which different 
dimensions are loosely coupled and each dimension often has its own measures. 

Second, the many-to-many relationships between the central fact entity and 
dimensions are handled using the m-tables. For each of the many-to-many relationships, 
an m-table is created. This is similar to the treatment of many-to-many relationships in a 
standard Entity-Relationship schema. 

Third, uncertain relationships between the central entity and dimensions may be kept 
in the m-tables. An additional field may be included in the m-table to specify if a 
relationship instance is uncertain. Furthermore, an m-table is normally small in size, 
when compared with the large central fact table of a star schema. It may be more efficient 
to update individual m-tables for uncertain relationships or imprecise data entries than the 
large fact table of a star schema. 

Fourth, the BioStar model allows an m-table to have non-measure attributes that 
include single- or bi-temporal support for a measure. This feature is important for clinical 
data analysis, and is discussed further in the Section 4.3. 

Finally, the BioStar model can be used to handle the commonly incomplete data from 
biomedical studies. If incomplete data are stored in the central fact table of a star schema, 
null values may need to be used for some missing measures and their associated 
dimension keys (foreign keys of the fact table). In a BioStar schema, since each m-table 
and its associated dimension table(s) can be populated independently from the other 
tables, incomplete data can be stored in the data warehouse by using only the relevant  
m-tables, and thus no null values are needed for the missing measures of some 
dimensions. 

4.3 Support for OLAP 

We now discuss BioStar’s properties for supporting OLAP operations. We assume that 
classification hierarchies are defined for the dimensions and the central entity.  
For example, gene ontology (GO) may be used to classify gene functions, and disease 
ontology may be used as the Disease dimension hierarchy in the clinical data space. 
These ontologies encode significant background knowledge of biology and thus are 
important for meaningful OLAP analyses of clinical and genomic data. The classification 
hierarchies of the other dimensions may also be defined in a similar way based on 
domain-specific knowledge. 

For each measure in a BioStar schema, a data cube is pre-computed and applied to 
OLAP operations using the classification hierarchies of the dimension(s) and the central 
entity. While the dimension hierarchy is defined according to the characteristics of the 
dimension entity, the hierarchies associated with the central entity may be based on the 
other dimensions and measures in the data space. For example, the hierarchies shown in 
Figure 6 may be used for data cube construction and OLAP of the patient drug use 
measure. While the hierarchy of the Drug dimension is constructed based on the various 
drug classes, classification hierarchies of the central entity (Patient) may be defined 
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according to the disease (the Disease hierarchy), demographics (the Residence and  
Age hierarchies), clinical test result (the Clinical Test hierarchy), and other dimensions.  
Note that, except for the Residence hierarchy, we do not show in Figure 6 the detailed 
structure of the hierarchies because some are very complex (e.g., disease ontology and 
drug classification) and the others may depend on application context (e.g., classes of age 
and clinical test result). The top element in the hierarchies (All) corresponds to the 
highest concept level. Numeric values of the clinical test result may be discretised and 
used to construct a classification hierarchy for Patient. 

Figure 6  Classification hierarchies of Patient and Drug 

 

Thus, one novel feature of BioStar is that the central entity can have many classification 
hierarchies, some or all of which may be used for constructing any particular data cube 
and subsequently for OLAP operations. Conventional models may define alternative 
hierarchies for a given dimension, but they do not support the above feature.  
For example, if star schema is used to model the drug use example shown in Figure 6,  
the central fact table may need to be directly linked to all the dimensions that provide the 
classification hierarchies. This reduces model flexibility and results in redundancy in  
the fact tables, considering there are many measures in a single data space. 

5 Case studies 

We now use BioStar to design logical models for the clinical and gene data spaces. 
Figure 7 shows part of the BioStar schema for the clinical data space. The idea is to split 
the different clinical measures along the dimensions, which often results in separate  
m-tables. For example, ClinicalTest is a dimension table, and the clinical test results are 
kept in the m-table, TestResult. We include the primary keys of the central entity and 
dimension(s) in the corresponding m-table. Note that the one-to-many relationship 
between Patient and ClinicalSample allows the clinical sample measure to be included in 
the ClinicalSample table. 
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Figure 7  Part of the BioStar schema for the clinical data space 

 

Two types of temporal support are provided for the different m-tables in Figure 7. One is 
the typical one-point support to indicate when the result is obtained or sample taken.  
The other is bi-temporal support, which specifies the time interval during which the 
measure is valid. For example, the Diagnosis measure table has ValidFrom and ValidTo 
to specify the valid time interval of a patient’s disease. 

Figure 8 shows part of the BioStar schema for the gene data space. GeneSequence is 
the central entity table, which has UID (unified gene identifier) as the primary key. Each 
of the m-tables (GOAnnotation, GeneCluster and GeneDomain) or dimension tables 
(ArrayProbe and Promoter) uses UID as a foreign key. There are probably no meaningful 
numeric measures for aggregation in this data space. The advantages of the BioStar 
schema, when compared with a standard Entity-Relationship schema, include high 
understandability to users and support for efficient navigation and selection of specific 
gene subsets and related information. 

Figure 8  Part of the BioStar schema for the gene data space 

 

An important consideration for the gene data model is extensibility. Due to the fast 
evolution of genomics, new dimensions may need to be added in the gene data space.  
For example, assume that we have implemented the BioStar schema shown in Figure 8, 
and populated the data warehouse. Now, we want to add a protein structure information 
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dimension to the gene data space. We only need to add two additional tables, 
ProteinStructure and StructureSequence. ProteinStructure is the dimension table, which 
may use Protein Data Bank (PDB) identifiers as the primary key (PDBID) and store 
protein structure information such as compound name, structure resolution, etc. Since 
ProteinStructure has a many-to-many relationship with GeneSequence (i.e., one structure 
may consist of many chains, and one sequence may be related to many structure records), 
we add the StructureSequence m-table that uses UID and PDBID as foreign keys. These 
two tables for the new dimension can be populated without affecting the other tables in 
the data warehouse. In contrast, introduction of a new dimension into a conventional star 
schema would require re-computing of all the data entries in the fact table. 

The snowflake schema shown in Figure 4 for the microarray data space may be 
viewed as a special case of BioStar schemas. If we select ClinicalSample or ArrayProbe 
as the central entity (depending on use cases), mRNAExpression is the m-table, which 
has the other three dimensions associated with it. Recall from the definition of BioStar 
schemas that an m-table can be associated with multiple dimensions. 

The above examples demonstrate that the BioStar model can be applied to a variety of 
biomedical data spaces. The high flexibility of BioStar schemas facilitates the integration 
of data from heterogeneous sources. To study complex biomedical problems, it is 
essential to combine data from many different sources. In the remainder of this section, 
we give a case study for using the multidimensional data model to integrate disease 
information with microarray gene expression data. OLAP operations are then used to 
identify informative genes of tumours. 

Ramaswamy et al. (2001) used Affymetrix GeneChips oligonucleotide microarrays 
(representing 16,063 genes) to survey gene expression in 218 tumour samples of 14 
common tumour types and 90 normal tissue samples. The dataset contains about 5 
million gene expression values, and is available at http://www-genome.wi.mit.edu/MPR/ 
GCM.html. The authors used the dataset for classification of tumours and identification 
of tumour marker genes. 

The gene expression dataset can be viewed as a data cube with three dimensions: 
ClinicalSample, ArrayProbe and MeasurementUnit (Figure 9). The Experiment 
dimension is not considered in this case study because all the gene expression values are 
processed in the same way. The ClinicalSample dimension captures information about 
the 308 tumor and normal tissue samples. The dimension hierarchy may be defined as a 
lattice consisting of four concept levels: individual ‘patient’ level; specific ‘tumour_type’ 
or ‘normal_tissue_type’ level; ‘all_tumor’ or ‘all_normal_tissue’ level; and ‘all_sample’ 
level. The ArrayProbe dimension relates oligonucleotide probes to gene sequences.  
A gene is often represented by a set of probes in a microarray. For the MeasurementUnit 
dimension, the Affymetrix GeneChip platform provides two kinds of gene expression 
measurements for each probe set: a presence/absence (PA) call and a numeric value 
(average gene expression level). The PA call is based on statistical analysis of 
hybridisation signals over the probe set and can take one of the following three labels: ‘P’ 
for ‘present’, ‘M’ for ‘marginal’ and ‘A’ for ‘absent’ of gene expression. 

Now, we are set to identify genes whose expression is significantly changed  
(up-regulated or down-regulated) in tumours. First, we summarise the gene expression 
data over the MeasurementUnit dimension. There are several ways (aggregation 
functions) to do the summarisation. For this study, we set a gene expression value to zero 
if the PA call is ‘A’, and leave the other values unchanged (if the PA call is ‘P’ or ‘M’). 
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Figure 9  OLAP for microarray data exploration 

 

Second, we roll-up the gene expression data over the ClinicalSample dimension from 
‘patient’ level to the next higher level, which is either ‘tumor_type’ for tumour samples 
or ‘normal_tissue_type’ for normal tissue samples. The aggregation functions used in this 
operation compute the mean and variance of expression values for each gene. After this 
summarisation, each cell in the data cube contains three values: mean, variance and the 
number of values aggregated. 

Third, the slice of a particular tumour type and that of the corresponding normal 
tissue type are selected. Student’s t test is then applied to each pair of selected cells for 
each gene. The statistical test calculates a p-value for each gene. Because of the multiple 
comparisons in the statistical test, the p-values are adjusted using the Bonferroni 
correction method. 

Finally, over the ArrayProbe dimension, we select genes that have p-values less than 
a threshold (p < 0.05 was used in this study). At the 5% significance level, we discovered 
many genes whose expression is changed in tumours when compared with corresponding 
normal tissues. For example, comparison of eleven renal carcinoma tumour samples with 
thirteen normal kidney samples revealed that an insulin-like growth factor 2 gene 
(GenBank accession: M17863) is significantly over-expressed in renal carcinoma 
(p = 0.033). In another comparison of eleven pancreas adenocarcinoma tumour samples 
with ten normal pancreas samples, a guanine nucleotide-binding protein alpha-subunit 
gene (M21142, p = 0.002) and an EST cloned from parathyroid tumours (W55861, 
p = 0.047) were found to be among the informative genes for pancreas adenocarcinoma. 

The above procedure can be designed to allow users to guide the exploration in the 
gene expression data space. For example, a user may roll-up the gene expression data 
over the ClinicalSample dimension up to ‘all_tumor’ and ‘all_normal_tissue’ level to 
discover genes whose expression is significantly changed in all the tumours. The user 
may also choose different aggregation operators and parameters during the exploration.  
With the rapid accumulation of clinical and genomic data, we believe that such a 
multidimensional data warehouse with interactive OLAP tools will be important 
components of an integrated platform for biomedical data analysis. 
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6 Conclusions 

We described a new multidimensional data model called BioStar for clinical and genomic 
data. BioStar schemas are able to capture the complex data structures and semantics.  
The model has the properties of great extensibility and flexibility to be widely applicable 
to biomedical data. BioStar’s extensibility and flexibility are realised by storing different 
measures in separate m-tables. These m-tables are used to handle the many-to-many 
relationships between the central entity and dimensions and can be designed to support 
specific features of a measure (e.g., bi-temporal support for some clinical data).  
Since each m-table and its associated dimension table(s) can be populated independently 
from other m-tables, incomplete data can be stored in the data warehouse by using only 
the relevant m-tables. In addition, it is more efficient to update an m-table for uncertain 
relationships or imprecise data entries than the large central fact table of a star schema.  
In the future, we will investigate other issues for application of data warehousing and 
OLAP technologies to biomedical research, including query optimisation, definition of 
classification hierarchies and modelling the data warehouse construction process. 
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