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1. Objectives
Can we “reverse engineer” the regulatory net-
works involved in T-cell activation using highly
replicated gene expression profiling time series
data and graphical models?

2. Methods
Graphical Models
(Bayesian Networks, Belief Nets and Probabilistic Independence Nets.)
Directed acyclic graph where each node corresponds to a random variable.
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Key quantity: joint probability distribution over nodes:P (x) =
P (x1,x2, . . . ,xn)

The graph specifies a factorization of this joint pdf:P (x) =
∏
iP (xi|pai)

Semantics: Given its parents, each node isconditionally independentfrom
its non-descendents
Definition: A is conditionally independentfrom B given C if
P (A,B|C) = P (A|C)P (B|C) for all A,B, andC s.t.P (C) 6= 0.

Linear-Gaussian State-space models (SSMs)
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Output equation:
yt = Cxt + Dut + vt

State dynamics equation:
xt = Axt−1 + But + wt

p(x1:T ,y1:T |u1:T ) = p(x1|u1)p(y1|x1,u1)

T∏
t=2

p(xt|xt−1,ut)p(yt|xt,ut)

Herext, ut andyt are real-valued vectors andv andw are uncorrelated
zero-mean Gaussian noise vectors.

• A.K.A. stochastic Linear Dynamical Systems, Kalman filter models:
These are just continuous-state versions of HMMs.

• Forward–backward algorithm≡ Kalman smoothing

State-Space Models with Feedback
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Output equation:
yt = Cxt + Dyt−1 + vt

State dynamics equation:
xt = Axt−1 +Byt−1 +wt

Key Concept:yt represents the measured gene expression level at time
stept andxt models the many unmeasured (hidden) factors such as

• genes that have not be included in the microarray,

• levels of regulatory proteins,

• the effects of mRNA and protein degradation, etc.

Our Approach
• Let θ = {A,B,C,D,R} be the parameters of the model (R models

noise covariance).

• Elements of matrix[CB + D] representall gene-geneinteractions

• Exact Bayesian inference would give usp(θ|D), which tells us confi-
dence in each parameter and can be used to infer model structure.

•Unfortunately, exact inference iscomputationally intractable.

•Classical approach usescross-validationandbootstrapping(Rangel et
al., 2004).

•Can also use variational approximations toapproximateBayesian infer-
ence in state-space models (Beal, 2003; Beal et al., 2004).

Microarray Data
•Model system of T-cell activation

• Jurkat cells treated with PMA and ionomycin

• Timecourse of gene expression for 88 genes at 10 time points

• 34 ‘technical’ replicates of each profile

• Second experiment with 10 ‘technical’ replicates

• 58 genes in common after removing genes that were poorly reproduced

•Data scaled usingQuantile Normalization, assuming common distribu-
tion of intensities across replicates

Model selection: cross validation to determine
number of hidden states

Bootstrap for Parameter Confidence Intervals
Denote a generic element of the matrixCB + D by θ.

•Calculate estimates for the unknown matricesA,B,C,D from the full
dataset with replicates using the EM algorithm. From the estimates
B̂, Ĉ, D̂, computêθ, the estimate of the given element ofCB + D.

•GenerateNB independent Bootstrap samplesY∗1 ,Y
∗
2 , ...,Y

∗
NB

from the
original data by resampling from complete time series replicates

• For each bootstrap sample compute bootstrap replicates of the
parameters using the EM algorithm on each Bootstrap sample
Y∗i , i = 1, 2, ..., NB. This yields Bootstrap estimates of the parameters
{Â∗1, B̂

∗
1 , Ĉ

∗
1 , D̂

∗
1}, ... ,{Â∗NB

, B̂∗NB
, Ĉ∗NB

, D̂∗NB
}.

• From {B̂∗1 , Ĉ
∗
1 , D̂

∗
1}, {B̂

∗
2 , Ĉ

∗
2 , D̂

∗
2}, ... , {B̂∗NB

, Ĉ∗NB
, D̂∗NB

}, compute
the corresponding Bootstrap estimates of the parameter of interest,
θ̂∗1, ..., θ̂

∗
NB
.

• For the given parameterθ, estimate the distribution of̂θ − θ by the em-
pirical distribution of the values{

θ̂∗j − θ̂ : j = 1, 2, ..., NB

}
.

Using quantiles of this latter empirical distribution to approximate cor-
responding quantiles of the distribution ofθ̂ − θ, compute an estimated
confidence interval on the parameterθ.

• Test the null hypothesis that the selected parameter is0 by rejecting the
null hypothesis if the confidence interval computed in step 4 does not
contain the value0.

•Repeat previous two steps for each element ofCB + D. Elements for
which zero is between the upper and lower bounds will take the value
zero. We obtain a network connectivity matrix in which zeros indicate
the absence of a connection, and non-zero elements indicate the pres-
ence of a connection.

Variational Bayesian Learning Approach
Let the latent variables bex, datay and the parametersθ.
We canlower boundthemarginal likelihood(using Jensen’s inequality):

ln p(y|m) = ln

∫
p(y,x, θ|m) dx dθ

= ln

∫
q(x, θ)

p(y,x, θ|m)

q(x, θ)
dx dθ

≥
∫
q(x, θ) ln

p(y,x, θ|m)

q(x, θ)
dx dθ.

Use a simpler, factorised approximation toq(x, θ) ≈ qx(x)qθ(θ):

ln p(y|m) ≥
∫
qx(x)qθ(θ) ln

p(y,x, θ|m)

qx(x)qθ(θ)
dx dθ

= Fm(qx(x), qθ(θ),y).

Maximizing this lower bound, Fm, leads toEM-like iterative updates.
−Fm is analogous to avariational free energy

3. Results
Classical Approach: Inferred Regulatory Net-
works
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• Directed graph representing
gene-gene interactions with a
confidence level on individual
connections equal to99.66%.

• Some key genes:FYB (1),
IL3Rα (2), CD 69 (3), TRAF5
(4), IL4Rα (5), GATA bind-
ing protein 3 (6), IL-2Rγ (7),
chemokine receptor CX3CR1
(9), interleukin-16 (11), Jun
B (13), Caspase 8 (14), Clus-
terin (15), Caspase 7 (18), sur-
vival of motor neuron 1 (19),
Cyclin A2 (20), CDC2 (21),
PCNA (22), Integrin alpha-M
(26), MCL-1 (31).

VB Approach: Inferring the Number of Hidden
States
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Variation ofF , the lower bound
on the marginal likelihood, with
hidden state dimensionk for 10
random initialisations of VBEM.

We can use this lower bound to
infer/select the number of hidden
states.

VB Approach: Inferring Regulatory Networks
•We examined the gene-gene influences represented by elements of the

matrix [CB + D].

• The VB algorithm provides us with approximate posterior distributions
for the parametersB, C andD.

•Using the posterior distributions for these parameters we compute the
distribution of each of the elements in the combined matrix[CB + D].

• Significant interactions correspond to the zero point being> n standard
deviations from the posterior mean for that entry (use Z statistic).

VB Approach: Inferring the Number of Signifi-
cant Interactions
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The number of significant inter-
actions that are repeated in all 10
runs of VBEM at each value ofk.

The 3 plots correspond to differ-
ent significance levels.

VB Approach:Inferred Regulatory Networks

CASP8

IRAK1BP1GATA3

API1

CASP4 HTF4 MAPK4
LAT

TP53I3

C
X

3C
R

1

C
Y

T
P

450

CIR
MAPK9

CSF2

ITGAM

JUNDSLA

ZNFN1A1

IL16

CTNNA1 CCNG1




CDC2

PDE4B ID3 TCF8

PCNA

RPS6KB1

SNW1

TRAF5 CASP7

MYD88 API2

IL3RA

CDK4

IL2RGCD69

RBL2

RB1

CCNA2

SIVAMCL1IFNAR1
SMN1EGR1

JUNB

AKT1

•Gene-gene interactions
present in≥ 80% of the VB
state-space models out of 10
random seeds andk = 14 at a
confidence level of99.8%.

• The number inside each node
is the gene identity

•Numbers on the edges rep-
resent the number of mod-
els from 10 different random
seeds in which the interaction
is supported at this confidence
level.

•Dotted lines are negative
interactions, and continu-
ous lines represent positive
interactions.

• Transcriptional networks in T
cell activation→ testable hy-
potheses.

4. Conclusions
•Graphical modelsandBayesian methodscan be used for a variety of

modelling problems in bioinformatics.
• These allow large-scale statistical models to be learned and sources of

noiseanduncertaintyto be included in a principled manner
•We have looked at one problem domain: inferring genetic regulatory

networks — a simple graphical model (state-space models) can be used.
• State-space models allowhidden variablesto be included.
• Bayesian “Occam’s Razor” prunes networks to be sparse.
•Models produceplausible biological hypotheseswhich can be experi-

mentally validated

Future Work
A framework to build on with future work:

• incorporating biologically plausiblenonlinearities

• addingprior knowledge(especially in the form of constraints on posi-
tive and negative interactions)

• combininggeneandproteinexpression data withmetabolomicdata

•making and testingknockout and overexpresson predictions

•well definedmodel systems

• basic difficulty: usuallynot enough data...
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