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Can we “reverse engineer” the regulatory net- T i Variation of , the lower bound

works involved in T-cell activation using highly
replicated gene expression profiling time series
data and graphical models?
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on the marginal likelihood, with
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We can use this lower bound to
Infer/select the number of hidden

Graphical Models | states.
(Bayesian Networks, Belief Nets and Probabilistic Independence Nets. - e
Directed acyclic graph where each node corresponds to a random varia sl | L VB ApproaCh: Inferring Regulatory Networks
gl 0 b ¢ @ x o Deidonlmelkelboodi Lo oy o« B ¢ T o
R T T B B e We examined the gene-gene influences represented by elements of
P<X) — P(XI)P(XQ‘XOP(XS’XLXQ) 9 *: zl 3| th 5| é :lf al Eli 1:] 1|1 1|2 1|3 1|4 1|5 113 1|? 1|a 1|9 20 matrix [CB + D]
P(x4]x9) P(x5]x3,x4) Bootstrap for Parameter Confidence Intervals o ;I;)r;eth\ngzlr%%igt]g: g|%orocvia(lzlneds ;s with approximate posterior distribution:
_ o N S Denote a generic element of the mattht + D by 6. ! '
Key quantity joint probability distribution over nodes: P(x) = e Using the posterior distributions for these parameters we compute t

e Calculate estimates for the unknown matricess, C', D from the full
dataset with replicates using the EM algorithm. From the estimates

3 C, f)) computed, the estimate of the given element@® + D. ¢ Significant interactions correspond to the zero point beingstandard
deviations from the posterior mean for that entry (use Z statistic).

P(x1,x9,...,Xp)
The graph specifies a factorization of this joint pffix) = | [, P(x;|pa)
SemanticsGiven its parents, each nodecenditionally independeritom

distribution of each of the elements in the combined matri® + D).

its non-descendents e GenerateVy independent Bootstrap samplés, Y7, ... Y}kVB from the
Definition: A is conditionally independentfrom B given C if original data by resampling from complete time series replicates  \/g Approach: Inferring the Number of Signifi-
P(4, B|C) = P(A[C)P(B|C) forall A, B, andC s.t. P(C') # 0. e For each bootstrap sample compute bootstrap replicates of hgnt Interactions
Linear-Gaussian State-space models (SSMS) parameters using the EM algorithm on each Bootstrap samplg& " i
Y* i=1,2 .. Npg. This yields Bootstrap estimates of the parameters” ) o .
;1* Br O b At BE o D ol The number of significant inter-
@ Output equation: WAL BT, O, D e Np’~Np»~ Np’ NB}' actions that are repeated in all 10
v = Cx; + Duy + vy o From { B}, (T, Dik} 1B5,05, D5, RO {By ,C}’;IB, D}kVB}, compgte runs of VBEM at each value d.
e the corresponding Bootstrap estimates of the parameter of interest
State dynamics equation: 01 Oy : Thte 3 p!?_ts corrlesp(?nd to differ-
Xt = Axy—1 + Bug + wy e For the given parametér estimate the distribution & — ¢ by the em- St Signifitance IeVess.
@ pirical distribution of the values I
, (0565 -1.2..3p). VB Approach:inferred Regulatory Networks
_ W’ IFNAR1 MCL1 SIVA CD69 IL2RG ) ] ]
Py yrrluer) = piafu)plyifx, w) Hp(xt\xt_1, ur)p(ye[xt, ut) Using quantiles of this latter empirical distribution to approximate cor- > * Gene ge_ne interactions
t=2 . . RS . ] present in> 80% of the VB
responding quantiles of the distribution®# 0, compute an estimated | / state-space models out of 10
Herex;, u; andy; are real-valued vectors andandw are uncorrelated  confidence interval on the paramefier ‘ randorr?seeds arid— 14 at a
zero-mean Gaussian noise vectors. e Test the null hypothesis that the selected parametebysrejecting the \ N confidence level 099 8%
e A.K.A. stochastic Linear Dynamical Systems, Kalman filter models: null hypothesis if the confidence interval computed in step 4 does not o The number inside each node
These are just continuous-state versions of HMMs. contain the valué. (s8) | | s the gene identity
e Forward—backward algorithex Kalman smoothing e Repeat previous two steps for each element'&f+ D. Elements for ‘ F@ @ i Numbers on the edges rep-
_ which zero is between the upper and lower bounds will take the value resent the number of mod-
State-Space Models with Feedback zero. We obtain a network connectivity matrix in which zeros indicate % 9 @ els from 10 different random

the absence of a _connectlon, and non-zero elements indicate the pres- ., s seeds in which the interaction
ence of a connection.

IS supported at this confidence
level.

Output equation:

' yt=Cxe+Dyi—1+ve  Variational Bayesian Learning Approach

. @ Let the latent variables be, datay and the parameters e Dotted lines are negative
Interactions, and continu-

ous lines represent positive
Interactions.
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Key Concept:y; represents the measured gene expression level at time
stept andx; models the many unmeasured (hidden) factors such as

State dynamics equation: We canlower boundthe marginal likelihood(using Jensen’s inequality):
Xt = Axy 1+ By 1+wy

Inp(y|m) = ln/p(y,x,ﬁ\m) dx do

p(y,x,0|lm)
= ln/q X, 0 dx df
(x,6) q(x,0)

ply.x,0|m)
> [ q(x,60)In dx db.
/ . 9) q(x,9)

e Transcriptional networks in T
cell activation— testable hy-
potheses

¢ genes that have not be included in the microarray,

e levels of regulatory proteins, Use a simpler, factorised approximationge, 6) ~ gx(x)gg(6): 4 5 CO n CI U S I O n S

e the effects of MRNA and protein degradation, etc. ply, x, 0lm) e Graphical modeland Bayesian methodean be used for a variety of
our Anproach Inp(y[m) > /QX(X)QQ(Q) In X200 dx db modelling problems in bioinformatics.
PP — Fonlgx(x), go(6) y}; e These allow large-scale statistical models to be learned and sources
eletd = {A B,C, D, R} be the parameters of the modét (nodels ’ ’ noiseanduncertaintyto be included in a principled manner
noise covariance). Maximizing this lower bound F,,, leads toEM-like iterative updates. ® We have Iooke_d at one prc_)blem domain: inferring genetic regulatol
e Elements of matriXC' B + D] representll gene-gendnteractions —F,, is analogous to gariational free energy networks — a simple graphical model (state-space models) can be us
L . . . State-space models alldwdden variableso be included.
e Exact Bayesian inference would give p@|D), which tells us confi- 3 R It :Ba esign “Occam’s Razor” rur\lleslnetworks tlo bg sparse
dence in each parameter and can be used to infer model structure. . ES U S y . brun ©Sp ' .
| | | | _ e Models producenlausible biological hypothesagnich can be experi-
e Unfortunately, exact inference ismputationally intractable Classical Approach: Inferred Reqgulatory Net-  mentally validated
e Classical approach usesoss-validatiorand bootstrappingRangel et WOrks Future Work
al., 2004). Red arrows +), Blue arrows(—) e Directed graph representing A framework to build on with future work:

e Can also use variational approximationgfgproximateBayesian infer- gene-gene interactions with a . . . . . .
ence in state-space models (Beal, 2003; Beal et al., 2004). confidence level on individual - ® INcorporating biologically plausibleoniinearities

_© connections equal @.66%. e addingprior knowledge(especially in the form of constraints on posi-

e Some key genes:FYB (1), tive and negative interactions)
IL3Ra (2), CD 69 (3), TRAF5 - _ _ _ .
(4), IL4Ra (5), GATA bind- @ combininggeneandproteinexpression data wittnetabolomidata

Microarray Data
e Model system of T-cell activation

e Jurkat cells treated with PMA and ionomycin ¥ ! 60 9. ing protein 3 (6), IL-2R (7), ¢ making and testingnockout and overexpresson predictions
(o) chemokine receptor CX3CR1

/ \@ (9), interleukin-16 (11) Jun @ Well definedmodel systems

B (13), Caspase 8 (14), Clus- ¢ phasic difficulty: usuallynot enough data...
terin (15), Caspase 7 (18), sur-

e Timecourse of gene expression for 88 genes at 10 time points
¢ 34 ‘technical’ replicates of each profile

Second experiment with 10 ‘technical’ replicates i
o _p | P o s vival of motor neuron 1 (19) ACknOWIGdgementS
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