Chapter 3

Variational Bayesian Hidden Markov
Models

3.1 Introduction

Hidden Markov models (HMMs) are widely used in a variety of fields for modelling time se-
ries data, with applications including speech recognition, natural language processing, protein
sequence modelling and genetic alignment, general data compression, information retrieval,
motion video analysis and object/people tracking, and financial time series prediction. The core
theory of HMMs was developed principally by Baum and colleagBesi(n and Petriel 966

Baum et al. 1970, with initial applications to elementary speech processing, integrating with
linguistic models, and making use of insertion and deletion states for variable length sequences
(Bahl and Jelinek1975. The popularity of HMMs soared the following decade, giving rise to

a variety of elaborations, reviewed Juang and Rabin€i.991). More recently, the realisation

that HMMs can be expressed as Bayesian netw@ksyth et al. 1997 has given rise to more
complex and interesting models, for example, factorial HMMbghramani and Jordah997),
tree-structured HMMsJordan et a).1997), and switching state-space modeBh@hramani and
Hinton, 2000. An introduction to HMM modelling in terms of graphical models can be found

in Ghahraman{2001).

This chapter is arranged as follows. In secth@ we briefly review the learning and infer-
ence algorithms for the standard HMM, including ML and MAP estimation. In se&i8we
show how an exact Bayesian treatment of HMMs is intractable, and then in s8ctitollow
MacKay (1997 and derive an approximation to a Bayesian implementation using a variational
lower bound on the marginal likelihood of the observations. In se@ibwe present the results

of synthetic experiments in which VB is shown to avoid overfitting unlike ML. We also com-
pare ML, MAP and VB algorithms’ ability to learn HMMs on a simple benchmark problem of
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VB Hidden Markov Models 3.2. Inference and learning for maximum likelihood HMMs

Figure 3.1: Graphical model representation of a hidden Markov model. The hidden vasjables
transition with probabilities specified in the rowsAfand at each time step emit an observation
symboly; according to the probabilities in the rows ©f

discriminating between forwards and backwards English sentences. We present conclusions in
section3.6.

Whilst this chapter is not intended to be a novel contribution in terms of the variational Bayesian
HMM, which was originally derived in the unpublished technical reporiaicKay (1997, it

has nevertheless been included for completeness to provide an immediate and straightforward
example of the theory presented in cha@ekoreover, the wide applicability of HMMs makes

the derivations and experiments in this chapter of potential general interest.

3.2 Inference and learning for maximum likelihood HMMs

We briefly review the learning and inference procedures for hidden Markov models (HMMs),
adopting a similar notation tRabiner and Juanl986. An HMM models a sequence @t
valued discrete observations (symbals)r = {v1,...,yr} by assuming that the observation

at timet, y;, was produced by &-valued discrete hidden state, and that the sequence of
hidden states;.. = {s1, ..., sp} was generated by a first-order Markov process. That is to say
the complete-data likelihood of a sequence of lerigik given by:

T
p(sir,yir) = p(s)p(yr | s1) [ [ p(se [ se-0)p(us | 50) - 3.1

t=2
wherep(s;) is the prior probability of the first hidden statg/s; | s;—1) denotes the probability
of transitioningfrom states,_; to states, (out of a possiblé states), ang(y; | s;) are theemis-
sionprobabilities for each g symbols at each state. In this simple HMM, all the parameters
are assumed stationary, and we assume a fixed finite number of hidden states and number of
observation symbols. The joint probability.{) is depicted as a graphical model in figld.
For simplicity we first examine just a single sequence of observations, and derive learning and
inference procedures for this case; it is straightforward to extend the results to multiple i.i.d.
sequences.
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VB Hidden Markov Models 3.2. Inference and learning for maximum likelihood HMMs

The probability of the observations,. results from summing over all possible hidden state
sequences,
pyrr) = > plsir, yir) - (3.2)

S1.T

The set of parameters for the initial state prior, transition, and emission probabilities are repre-
sented by the paramet@r

0= (AC, ) (3.3)
A={a;j}:a;5 =p(sy =37 |se-1=J)  state transition matrigk x k) (3.4)
C={¢jm} : ¢jm =0yt = m| s =j) symbol emission matrigk x p) (3.5)
= {m;} 7w =p(s1 =J) initial hidden state priofk x 1) (3.6)
obeying the normalisation constraints:
k
j'=1
p
C={cjm}: > cim=1 Vj (3.8)
m=1
k
ﬂ:{ﬁj}:Zszl. (3.9)

=1

For mathematical convenience we represent the state of the hidden variablés dsmensional
binary column vectors. For examplegsifis in statej, thens; is a vector of zeros with ‘1’ in the
jth entry. We use a similar notation for the observatignsThe Kroneckew function is used
to query the state, such that; = d(s;, j) returns 1 ifs, is in statej, and zero otherwise.

Using the vectorial form of the hidden and observed variables, the initial hidden state, transition,
and emission probabilities can be written as

=
2,

p(s1|m) = (3.10)
j=1
k k
St 1St — J
plsel s, A) =] [ a7 (3.11)
j=1j'=1
kK p
p(ye|s1,C) = H H C;;’iyt’m (3.12)

<
Il
—
I
—
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VB Hidden Markov Models 3.2. Inference and learning for maximum likelihood HMMs

and the log complete-data likelihood fro®.{) becomes:

k T k k
lnp(sl:T, yi.T ’ 0) = E S1,5 In T+ E E E St—1,5 In 'St 5!
=1 t=2 j=1 ji=1
T k P

YD D seilncmyem (3.13)

t=1 j=1 m=1
T T
=s{Inm+Y s/ mAs+Y s/ InCy, (3.14)
t=2 t=1
where the logarithms of the vectarand matricesi andC are taken element-wise. We are now
in a position to derive the EM algorithm for ML parameter estimation for HMMs.

M step

Learning the maximum likelihood parameters of the model entails finding those settidgs of
C andm which maximise the probability of the observed da&3&). In chapter2 we showed
that the M step, as given by equatich3)), is

M step: ot arg max Zp(sl:T ly1.7, O(t)) Inp(s1.7,y1.716) , (3.15)

s1.T

where the superscript notatiéf denotes iteration number. Note in particular that the log likeli-
hood in equation3.14) is a sum of separate contributions involving A andC, and summing

over the hidden state sequences does not couple the parameters. Therefore we can individually
optimise each parameter of the HMM:

T 7Tj — <S17j> (316)

A oay — Zt=§<5t‘1ﬂstﬂ> (3.17)
> i—a(si—1,5)
T .

C i cjm — M (3.18)
Zt:1<st,j>

where the angled brackets denote expectation with respect to the posterior distribution over
the hidden state sequengés ;.7 | y1.7, 0%)), as calculated from the E step.

E step: forward-backward algorithm

The E step is carried out using a dynamic programming trick which utilises the conditional
independence of future hidden states from past hidden states given the setting of the current
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VB Hidden Markov Models 3.2. Inference and learning for maximum likelihood HMMs

hidden state. We defineg,(s;) to be the posterior over the hidden stateyiven the observed
sequence up to and including tirtte

ai(st) = p(se|yie) » (3.19)
and form the forward recursion from=1,...,T"
oy (s S St | st s 3.20
i(se) = yt\y1t1 ZP t—1|y1:4-1)p(st [ st—1)p(y | st) (3.20)
Zat 1(se—1)p(se[se-1) | p(yelse), (3.21)
St—1

where in the first time step(s; |s;—1) is replaced with the priop(s; | =), and fort = 1 we
require the conventiong(sp) = 1. Here,(;(y:) is a normalisation constant, a functionyf,
given by

G(yt) = p(yelyre—1) - (3.22)

Note that as a by-product of computing these normalisation constants we can compute the prob-
ability of the sequence:

T T
p(yir) =py)p(2 [v1) . p(yr [yr—1) = [ [ pwelyra—) = [[ &) = Z(yrr) -
t=1 t=1

(3.23)
Obtaining these normalisation constants using a forward pass is simply equivalent to integrating
out the hidden states one after the other in the forward ordering, as can be seen by writing the
incomplete-data likelihood in the following way:

p(yir) =Y p(sir, yir) (3.24)
S1:T
T
—Z ZP s)p(y1|s1) [ [ p(seIse—1)p(y: |'se) (3.25)
t=2
= ZP (s)p(y1]s1)--+ > plsr|sr—1)plyr|sr) . (3.26)

ST

Similarly to the forward recursion, the backward recursion is carried out fremT’, . . . | 1.

Bi(st) = p(¥(e41).7 | St) (3.27)
=Y p(yeror [ser)p(ser1 | se)p(yest [sei1) (3.28)
=3 Bera(ser1)p(sern | s)p(yes [se41) (3.29)

St+1

with the end conditiorr(s7) = 1, as there is no future observed data beyordT'.
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VB Hidden Markov Models 3.2. Inference and learning for maximum likelihood HMMs

The forward and backward recursions can be executed in parallel as neither depends on the
results of the other. The quantiti¢s, }_, and{3;}-_, are now combined to obtain the single
and pairwise state marginals:

(st | y1.1) < p(se | y1:4)p(Yig1:7 | St) (3.30)
= at<st)ﬂt(st) ’ t=1,...,T (331)

and
p(se—1,8¢ | y1:1) X p(St—1 | y1:0—1)P(St | St—1)P(¥¢ | 8¢)p(Ye1:7 | St) (3.32)

= ap—1(st—1)p(st | se—1)p(ye | s¢) Be(se) t=2,...,T (3:33)

which give the expectations required for the M step463.18),

o, 5Bt
<St,j> = = (334)
Sy g By

-1, D(Ye | Stj7) Bt

SN S aujagpp(ye sy

(st-1.48¢5) = (3.35)

The E and M steps described above form the iterations for the celebrated Baum-Welch algorithm
(Baum et al.1970. From the analysis in chapt@r we can prove that each iteration of EM is
guaranteed to increase, or leave unchanged, the log likelihood of the parameters, and converge
to a local maximum.

When learning an HMM from multiple i.i.d. sequencgs; 1.7}, which are not necessarily
constrained to have the same leng{is}” ,, the E and M steps remain largely the same.
The E step is performed for each sequence separately using the forward-backward algorithm,
and the M step then uses statistics pooled from all the sequences to estimate the mostly likely
parameters.

HMMs as described above can be generalised in many ways. Often observed data are recorded
as real-valued sequences and can be modelled by replacing the emission pradesswith a
Gaussian or mixture of Gaussians distribution: each sequence of the HMM can now be thought
of as defining a sequence of data drawn from a mixture model whose hidden state labels for the
mixture components are no longer i.i.d., but evolve with Markov dynamics. Note that inference

in such models remains possible using the forward and backward recursions, with only a change
to the emission probabilities(y; | s;); furthermore, the M steps for learning the parameters

and A for the hidden state transitions remain identical.

Exactly analogous inference algorithms exist for the Linear Dynamical Systems (LDS) model,
except that both the hidden state transition and emission processes are continuous (referred to
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VB Hidden Markov Models 3.3. Bayesian HMMs

as dynamics and output processes, respectively). In the rest of this chapter we will see how a
variational Bayesian treatment of HMMs results in a straightforwardly modified Baum-Welch
algorithm, and as such it is a useful pedagogical example of the VB theorems given in chapter
2. On the other hand, for the LDS models the modified VB algorithms become substantially
harder to derive and implement — these are the subject of chapter

3.3 Bayesian HMMs

As has already been discussed in chaptensd2, the maximum likelihood approach to learning
models from data does not take into account model complexity, and so is susceptible to over-
fitting the data. More complex models can usually give ever-increasing likelihoods to the data.
For a hidden Markov model, the complexity is related to several aspects: the number of hidden
statesk in the model, the degree of connectivity in the hidden state transition mataxd the
distribution of probabilities to the symbols by each hidden state, as specified in the emission
matrix, C. More generally the complexity is related to the richness of possible data sets that the
model can produce. There aé€: — 1) parameters in the transition matrix, abg — 1) in the
emission matrix, and so if there are many different observed symbols or if we expect to require
more than a few hidden states then, aside from inference becoming very costly, the number of
parameters to be fit may begin to overwhelm the amount of data available. Traditionally, in
order to avoid overfitting, researchers have limited the complexity of their models in line with
the amount of data they have available, and have also used sophisticated modifications to the
basic HMM to reduce the number of free parameters. Such modifications include: parameter-
tying, enforcing sparsity constraints (for example limiting the number of candidates a state can
transition to or symbols it can emit), or constraining the form of the hidden state transitions (for
example employing a strict left-to-right ordering of the hidden states).

A common technique for removing excessive parameters from a model is to regularise them
using a prior, and then to maximise the a posteriori probability of the parameters (MAP). We will
see below that it is possible to apply this type of regularisation to the multinomial parameters of
the transition and emission probabilities using certain Dirichlet priors. However we would still
expect the results of MAP optimisation to be susceptible to overfitting given that it searches for
the maximum of the posterior density as opposed to integrating over the posterior distribution.
Cross-validation is another method often employed to minimise the amount of overfitting, by
repeatedly training subsets of the available data and evaluating the error on the remaining data.
Whilst cross-validation is quite successful in practice, it has the drawback that it requires many
sessions of training and so is computationally expensive, and often needs large amounts of data
to obtain low-variance estimates of the expected test errors. Moreover, it is cumbersome to
cross-validate over the many different ways in which model complexity could vary.
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VB Hidden Markov Models 3.3. Bayesian HMMs

The Bayesian approach to learning treats the model parameters as unknown quantities and,
prior to observing the data, assigns a set of beliefs over these quantities in the form of prior
distributions. In the light of data, Bayes’ rule can be used to infer the posterior distribution over
the parameters. In this way the parameters of the model are treated as hidden variables and are
integrated out to form the marginal likelihood:

p(y1.r) = /dO p(0)p(y1.71]0) wheref = (w, A, C) . (3.36)

This Bayesian integration embodies the principle of Occam’s razor since it automatically pe-
nalises those models with more parameters (see settibfy also seeMacKay, 1992. A
natural choice for parameter priors owerthe rows ofA, and the rows of” are Dirichlet dis-
tributions. Whilst there are many possible choices, Dirichlet distributions have the advantage
that they are conjugate to the complete-data likelihood terms given in equai@né&fd with
foresight we know that these forms will yield tractable variational Bayesian algorithms):

p(8) = p(m)p(A)p(C) (3.37)
p(m) = Dir({m, ..., 7} | u™)) (3.38)
k
p(A) = H Dir({aj1,...,aj} |u) (3.39)
j=1
k
p(C) = [ Dir({ejr, .- ejp} [ul@) . (3.40)
Jj=1

Here, for each matrix the same single hyperparameter vector is used for every row. This hyper-
parameter sharing can be motivated because the hidden states are identical a priori. The form of
the Dirichlet prior, using(7) as an example, is

(m)
F U, " — s .
p(mw) = k(u—O) Hﬂ'jj ) u§ ) > 0,vj, (3.41)

Whereu[()’r) = Z?Zl ug’r) is thestrengthof the prior, and the positivity constraint on the hyperpa-
rameters is required for the prior to be proper. Conjugate priors have the intuitive interpretation
of providing hypothetical observations to augment those provided by the data (see $&8on

If these priors are used inmaximum a posteriofiMAP) estimation algorithm for HMMs, the
priors add imaginary counts to the M steps. Taking the updatel fas an example, equation

(3.17) is modified to

A

R At D VUL
j3’ k A T :

Zj/:1(u§/ /- 1)+ o (si-1)

Researchers tend to limit themselves to hyperparamejers1 such that this MAP estimate is

guaranteed to yield positive probabilities. However there are compelling reasons for having hy-

A

(3.42)
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perparameters; < 1 (as discussed iMacKay and Petal 995 MacKay, 1999, and these arise
naturally as described below. It should be emphasised that the MAP solution is not invariant to
reparameterisations, and sth42 is just one possible result. For example, reparameterisation
into the softmax basis yields a MAP estimate without the ‘-1’ terms, which also coincides with
the predictive distribution obtained from integrating over the posterior. The experiments carried
out in this chapter for MAP learning do so in this basis.

We choose to use symmetric Dirichlet priors, with a fixed strerfgite.
T
(4) (4) i
a_ |1 f (4) _ (A
a — [kk] . st j;uj — A (3.43)

and similarly so foru(®) andu(™. A fixed strength is chosen because we do not want the
amount of imaginary data to increase with the complexity of the model. This relates to a key is-
sue in Bayesian prior specification regarding skalingof model priors. Imagine an un-scaled
prior over each row ofd with hyperparameteff(4), ..., f(A)}T, where the division by: has

been omitted. With a fixed strength prior, the contribution to the posterior distributions over the
parameters from the prior diminishes with increasing data, whereas with the un-scaled prior the
contribution increases linearly with the number of hidden states and can become greater than
the amount of observed data for sufficiently lafgeThis means that for sufficiently complex
models the modification terms i8.42 would obfuscate the data entirely. This is clearly unde-
sirable, and so th% scaling of the hyperparameter entries is used. Note that this scaling will
result in hyperparametess 1 for sufficiently largek.

The marginal probability of a sequence of observations is given by

p(y1r) = /d7r p(m) /dA p(A) /dC p(C) ZP(SLT,YLT |m, A, C), (3.44)
S1:T

where the dependence on the hyperparameters is implicitly assumed as they are fixed before-
hand. Unfortunately, we can no longer use the dynamic programming trick of the forward-
backward algorithm, as the hidden states are now coupled by the integration over the parameters.
Intuitively this means that, because the parameters of the model have become uncertain quan-
tities, the future hidden stateg ;). are no longer independent of past hidden stafgs ;)
given the current state;. The summation and integration operations 3m{) can be inter-
changed, but there are still an intractable number of possible sequences to sum over, a number
exponential in the length of the sequence. This intractability becomes even worse with multiple
sequences, as hidden states of different sequences also become dependent in the posterior.

It is true that for anygiven setting of the parameters, the likelihood calculation is possible,
as is finding the distribution over possible hidden state sequences using the forward-backward
algorithm; but since the parameters are continuous this insight is not useful for calculating
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VB Hidden Markov Models 3.4. Variational Bayesian formulation

(3.449). ltis also true that for angiventrajectory representing a single hidden state sequence,
we can treat the hidden variables as observed and analytically integrate out the parameters to
obtain the marginal likelihood; but since the number of such trajectories is exponential in the
sequence lengttk{), this approach is also ruled out.

These considerations form the basis of a very simple and elegant algorithm Stadke and
Omohundro(1993 for estimating the marginal likelihood of an HMM. In that work, the pos-
terior distribution over hidden state trajectories is approximated with the most likely sequence,
obtained using a Viterbi algorithm for discrete HMMétérbi, 1967). This single sequence (let

us assume it is unique) is then treated as observed data, which causes the parameter posteriors
to be Dirichlet, which are then easily integrated over to form an estimate of the marginal likeli-
hood. The MAP parameter setting (the mode of the Dirichlet posterior) is then used to infer the
most probable hidden state trajectory to iterate the process. Whilst the reported results are im-
pressive, substituting MAP estimates for both parameters and hidden states seems safe only if:
there is plenty of data to determine the parameters (i.e. many long sequences); and the individual
sequences are long enough to reduce any ambiguity amongst the hidden state trajectories.

Markov chain Monte Carlo (MCMC) methods can be used to approximate the posterior distri-
bution over parameterfRpbert et al.1993, but in general it is hard to assess the convergence
and reliability of the estimates required for learning. An analytically-based approach is to ap-
proximate the posterior distribution over the parameters with a Gaussian, which usually allows
the integral to become tractable. Unfortunately the Laplace approximation is not well-suited to
bounded or constrained parameters (e.g. sum-to-one constraints), and computation of the likeli-
hood Hessian can be computationally expensivéldcKay (1998 an argument for transform-

ing the Dirichlet prior into the softmax basis is presented, although to the best of our knowledge
this approach is not widely used for HMMs.

3.4 Variational Bayesian formulation

In this section we derive the variational Bayesian implementation of HMMs, first presented in
MacKay (1997. We show that by making only the approximation that the posterior over hid-
den variables and parameters factorises, an approximate posterior distribution over hidden state
trajectories can be inferred under ansemblef model parameters, and how an approximate
posterior distribution over parameters can be analytically obtained from the sufficient statistics
of the hidden state.
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VB Hidden Markov Models 3.4. Variational Bayesian formulation

3.4.1 Derivation of the VBEM optimisation procedure

Our choice of priorg(0) and the complete-data likelihogds;.7, y1.7 | @) for HMMs satisfy
conditions .80 and @.88 respectively, for membership of the conjugate-exponential (CE)
family. Therefore it is possible to apply the results of theozghdirectly to obtain the VBM
and VBE steps. The derivation is given here step by step, and the ideas of ¢hbpiaght in
gradually. We begin with the log marginal likelihood for an HMIg.36), and lower bound it

by introducing any distribution over the parameters and hidden variabiesA, C, s;.7):

Inp(yrr) = ln/dﬂ-/dA/dC’Z 7, A, C)p(yr7,s1.1 |7, A, C) (3.45)
S1:T7
(TF,A C) (le,SlT|7T A C)
/dﬂ-/dA/dcg; q(m, A, C,s1.7) In Jm A Con)
(3.46)

This inequality is tight wher(m, A, C,s1.7) is set to the exact posterior over hidden variables
and parameters(m, A, C,s1.7 | y1.7), but it is intractable to compute this distribution. We
make progress by assuming that the posterior is factorised:

p(ﬂ-7 A7 Cv S1.T ’ y1:T) ~ Q(Tl', A7 C)q(slzT) (347)

which gives a lower bound of the form

In p(y1.7) /dﬂ-/dA/dCZ 7, A, C,s1.r) In p(m 4, Op(yur, sur|m, 4,C)

ST q(m, A, C,s1.7)
(3.48)
p(m, A,C)
/dTr/dA/quﬂ'AC {1 w0
ylZTa S1.T | 7T,A, C)
+; g(s1r) In o ] (3.49)
= ‘F(Q(ﬂ'vA? C)vQ(SlsT)) , (350)

where the dependence gn.r is taken to be implicit. On taking functional derivatives Bf
with respect toy(w, A, C') we obtain

Ing(mw, A,C) = Inp(w, A, C)(Inp(y1.7,s1.7 | ™, A, C)) o
=Inp(mw) +lnp(A4) + Inp(C)
+ (Inp(s1 | 7)) g(s,) + (0 p(s2r |81, A))g(sy.7)
+ (Inp(yr.r [81:7,C))g(s1.0) + € 5 (3.52)

+e (3.51)

Sl:T)
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wherec is a normalisation constant. Given that the prior over the paramé&&d {actorises,
and the log complete-data likelihoo8.14) is a sum of terms involving each af, A, andC, the
variational posterior over the parameters can be factoviséaut further approximatiomto:

q(m,A,C) = q(mw)q(A)q(C) . (3.53)

Note that sometimes this independence is assumed beforehand and believed to concede accu-
racy, whereas we have seen that it falls out from a free-form extremisation of the posterior with
respect to the entire variational posterior over the parameters4, C), and is therefore exact

once the assumption of factorisation between hidden variables and parameters has been made.

The VBM step

The VBM step is obtained by taking functional derivatives7oiwith respect to each of these
distributions and equating them to zero, to yield Dirichlet distributions:

g(m) = Dir({my,..., m} | {wi™, ..., w"}) (3.54)
with '™ = u” + (8(s1,5))g(sr0) (3.55)
k
= [Ipiras, ..., am} {0} (3.56)
with w , = u A 4 Z 5¢-1,7)0(5¢, ] )>q(s1:T) (3.57)
k
=[] Dires.. . eiph [ {wls o wlSY) (3.58)

Mq

with w = —|- St, yt, >(I(51T)‘ (359)

t:l

These are straightforward applications of the result in thea2e2fb), which states that the
variational posterior distributions have the same form as the priors with their hyperparameters
augmented by sufficient statistics of the hidden state and observations.

The VBE step

Taking derivatives ofF (3.49 with respect to the variational posterior over the hidden state
q(slzT) yields:

In Q(SI:T) = (11110(51:% yur ‘ ™, A, C)>q(7r)q(A)q(C) - 1HZ~(Y1:T) ) (3.60)
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whereZ’(yl;T) is an important normalisation constant that we will return to shortly. Substituting
in the complete-data likelihood fron3(14) yields

T T
_ T T T
Ing(sir) = <s1 Inm+ tz:; ] InAs;+ t; s] InC Yt>q(7r)q<,4)q((;) —InZ(y17) (3.61)

T T
=s] (In7)gm + > _sL 1 (InA) oy se+ Y s/ (InChycy yr — n Z(y1r) -
=2 t=1

(3.62)

Note that 8.62 appears identical to the complete-data likelihood3o1 4 except that expecta-
tions are now taken of the logarithm of the parameters. Relating this to the result in corollary
2.2, the natural parameter vecte(0) is given by

6= (r,A,0) (3.63)
¢(0)=(lnw ,InA InC), (3.64)

and the expected natural parameter ve¢tds given by

&= (9(0))g0) = (In7)g(m), (INA)geay, (INC)y(cr)) - (3.65)

Corollary 2.2 suggests that we can use a modified paramétein the same inference algo-
rithm (forward-backward) in the VBE step. The modified param@teatisfiesp = ¢(6) =
(9(0))4(0), and is obtained simply by using the inverse of ¢heperator:

0= ' ((0(0))y(0)) = (exp(InT) 4y ,exp(In A) g4y , exp(In C) () (3.66)

= (7,A,C). (3.67)

Note that the natural parameter mappih@perates separately on each of the parameters in the
vector@, which makes the inversion of the mappigg® straightforward. This is a consequence

of these parameters being uncoupled in the complete-data likelihood. For other CE models,
the inversion of the natural parameter mapping may not be as simple, since having uncoupled
parameters is not necessarily a condition for CE family membership. In fact, in clapter
encounter such a scenario for Linear Dynamical Systems.

It remains for us to calculate the expectations of the logarithm of the parameters under the
Dirichlet distributions. We use the result that

k
/dﬂ- Dir(m | u) Inm; = (u;) — (> _uy), (3.68)
j=1
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wherey is thedigammafunction (see appendicésandC.1for details). This yields

k k

7= {7} = exp {w J(”)) w<2w§”>>] K (3.69)

j=1 j=1

) [ k ] k

A={azpy =exp [l =YWl - Y a <1 v (3.70)
j'=1 j'=1

- [ o P . : P

C = {¢jm} =exp w(wj(-m)) —p() wj(-m)) DY Em <1V (3.71)

L m=1 | m=1

Note that taking geometric averages has resulted in sub-normalised probabilities. We may still
use the forward-backward algorithm with these sub-normalised parameters, but should bear in
mind that the normalisation constants (scaling factors) change. The forwar@@¥&€€écomes

(s {Z ap1(se—1)p(se [ se— 1)] pyelse), (3.72)

St—1

wherep(s; | s;—1) andp(y: |s;) are new subnormalised probability distributions according to
the parameterd, C, respectively. Sincey(s;) is the posterior probability of; given datay .,

it must sum to one. This implies that, for apgrticular time step, the normalisatiofm(yt) must

be smaller than if we had used normalised parameters. Similarly the backward pass becomes

Zﬁtﬂ (St+1)DP(St41 | 86)P(Yi41 | Se41) - (3.73)

St+1

Computation of the lower bound 7

Recall from @.22 that the product of the normalisation constants corresponds to the probability
of the sequence. Here the product of normalisation constants corresponds to a different quantity:

T
HE ye) = Z(y1r) (3.74)

which is the normalisation constant given :1§0. Thus the modified forward-backward algo-
rithm recursively computes the normalisation constant by integrating outseatly(s;.7), as
opposed ty(s1.7 | y1.7). We now show hovxé(ylzT) is useful for computing the lower bound,
just asZ(y1.7) was useful for computing the likelihood in the ML system.
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Using 3.49 the lower bound can be written as

Fa(m, 4.0 als12) = [[am a(myn 270+ [aaqeym 2+ [ac g0y
+ H(Q(SI:T))
+ (Inp(sir, yur |, A, O)gempa(a)a(©)atsrr) » (3.75)

where H(q(s1.7)) is the entropy of the variational posterior distribution over hidden state se-
quences. Straight after a VBE step, the form of the hidden state posiésior) is given by
(3.60), and the entropy can be written:

H(q(s1r)) = — Y q(s1r) Ing(sir) (3.76)

S1.T7

= - Z Q(SI:T) [<lnp(slzTa yur ’ , A7 C)>q(7r)q(A)q(C) - anN(YLT) (377)

S1.T7

= - Z Q(SI:T) <1np(slzTa yur ‘ , A, C)>q(7r)q(A)q(C) +In ZN(YLT) . (378)

S1.T7

Substituting this into3.75 cancels the expected log complete-data likelihood terms, giving

Fla(m, A Chatorr) = [[am atmm %+ [aa w4+ [acaeym®E)
+InZ(y1.7) (3.79)

Therefore computing® for variational Bayesian HMMs consists of evaluating KL divergences
between variational posterior and prior Dirichlet distributions for each rowt,0fA, C' (see
appendixA), and collecting the modified normalisation consta{{tgyt)}le. In essence we
have by-passed the difficulty of trying to compute the entropy of the hidden state by recursively
computing it with the VBE step’s forward pass. Note that this calculation is then only valid
straight after the VBE step.

VB learning with multiple i.i.d. sequences is conceptually straightforward and very similar to
that described above for ML learning. For the sake of brevity the reader is referred to the chapter
on Linear Dynamical Systems, specifically sectioB.8and equationg.152, from which the
implementational details for variational Bayesian HMMs can readily be inferred.

Optimising the hyperparameters of the model is straightforward. Since the hyperparameters
appear inF only in the KL divergence terms, maximising the marginal likelihood amounts to
minimising the KL divergence between each parameter’s variational posterior distribution and
its prior distribution. We did not optimise the hyperparameters in the experiments, but instead
examined several different settings.
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3.4.2 Predictive probability of the VB model

In the Bayesian scheme, the predictive probability of a test sequgneey’ .., given a set
of training cases denoted lyy= {y; 1.1}/, iS obtained by averaging the predictions of the
HMM with respect to the posterior distributions over its parameflers{m, A, C'}:

p(y' | y) = / a0 p(0 | y)p(y'|6) - (3.80)

Unfortunately, for the very same reasons that the marginal likelihood of equ&ti®4 (s in-
tractable, so is the predictive probability. There are several possible methods for approximating
the predictive probability. One such method is to sample parameters from the posterior distri-
bution and construct a Monte Carlo estimate. Should it not be possible to sample directly from
the posterior, then importance sampling or its variants can be used. This process can be made
more efficient by employing Markov chain Monte Carlo and related methods. Alternatively, the
posterior distribution can be approximated with some form which when combined with the like-
lihood term becomes amenable to integration analytically; it is unclear which analytical forms
might yield good approximations.

An alternative is to approximate the posterior distribution with the variational posterior distri-
bution resulting from the VB optimisation:

p(y'ly) = /d9 q(@)p(y’'|0) . (3.81)

The variational posterior is a product of Dirichlet distributions, which is in the same form as
the prior, and so we have not gained a great deal because we know this integral is intractable.
However we can perform two lower bounds on this quantity to obtain:

p(y'ly) ~ / dé q(0)p(y'|0) (3.82)
> exp / 49 4(8)n' S p(sir,yir | 0) (3.83)

./ . | e
> exp [ 46 4(6) Y afsir) o p(quly;T)) . (3.84)

SI:T’

Equation3.84is just the last term in the expression for the lower bound of the marginal likeli-
hood of a training sequence given 18/49, but with the test sequence in place of the training
sequence. This insight provides us with the following method to evaluate the approximation.
One simply carries out a VBE step on the test sequence, starting from the result of the last VBM
step on the training set, and gathers the normalisation cons{tép}g;{l and takes the product

of these. Whilst this is a very straightforward method, it should be remembered that it is only a
bound on an approximation.
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A different way to obtain the predictive probability is to assume that the model at the mean (or
mode) of the variational posterior, with paramefgss , is representative of the distribution as
awhole. The likelihood of the test sequence is then computed under the single model with those
parameters, which is tractable:

p(Y' [y)mve =D p(shr, iz | Omva) - (3.85)

’
ST

This approach is suggested as further worliacKay (1997, and is discussed in the experi-
ments described below.

3.5 Experiments

In this section we perform two experiments, the first on synthetic data to demonstrate the ability
of the variational Bayesian algorithm to avoid overfitting, and the second on a toy data set to
compare ML, MAP and VB algorithm performance at discriminating between forwards and
backwards English character sequences.

3.5.1 Synthetic: discovering model structure

For this experiment we trained ML and VB hidden Markov models on examples of three types
of sequences with a three-symbol alphafaeb, c}. Using standard regular expression notation,
the first type of sequence was a substring of the regular grarfub@r*, the second a substring

of (acb)*, and the third from(a*b*)* wherea andb symbols are emitted stochastically with
probability% each. For example, the training sequences included the following:

yi,1:1y = (abcabcabeabeabeabcabeabeabeabeabeabe)

y2.1.1, = (beabeabeabcabcabeabeabeabeabeabeabe)

Yi2,1:11, = (acbacbacbacbacbacbacbach)

Y13,1:115 = (acbacbacbacbacbacbacbacbacbacbacbacbac)

Yn-1,1.7,_, = (baabaabbabaaaabbabaaabbaabbbaa)

Yn,1:1, = (abaaabbababaababbbbbaaabaaabba) .

In all, the training data consisted of 21 sequences of maximum length 39 symbols. Looking at
these sequences, we would expect an HMM to require 3 hidden states to (mbgé) a dif-
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ferent 3 hidden states to modelkb)*, and a single self-transitioning hidden state stochastically
emitting a andb symbols to mode(a*b*)*. This gives a total of 7 hidden states required to
model the data perfectly. With this foresight we therefore chose HMMs &ith 12 hidden
states to allow for some redundancy and room for overfitting.

The parameters were initialised by drawing the components of the probability vectors from a
uniform distribution and normalising. First the ML algorithm was run to convergence, and
then the VB algorithm rufirom that pointin parameter space to convergence. This was made
possible by initialising each parameter’s variational posterior distribution to be Dirichlet with
the ML parameter as mean and a strength arbitrarily set to 10. For the MAP and VB algorithms,
the prior over each parameter was a symmetric Dirichlet distribution of strength 4.

Figure3.2shows the profile of the likelihood of the data under the ML algorithm and the subse-
qguent profile of the lower bound on the marginal likelihood under the VB algorithm. Note that
it takes ML about 200 iterations to converge to a local optimum, and from this point it takes
only roughly 25 iterations for the VB optimisation to converge — we might expect this as VB
is initialised with the ML parameters, and so has less work to do.

Figure 3.3 shows the recovered ML parameters and VB distributions over parameters for this
problem. As explained above, we require 7 hidden states to model the data perfectly. It is
clear from figure3.3(a)that the ML model has used more hidden states than needed, that is
to say it has overfit the structure of the model. Figu8e¥(b) and 3.3(c) show that the VB
optimisation has removed excess transition and emission processes and, on close inspection, has
recovered exactly the model that was postulated above. For example: state (4) self-transitions,
and emits the symbols andb in approximately equal proportions to generate the sequences
(a*b*)*; states (9,10,8) form a strong repeating path in the hidden state space which (almost)
deterministically produce the sequenc¢esb)*; and lastly the states (3,12,2) similarly interact

to produce the sequencggc)*. A consequence of the Bayesian scheme isdliahe entries

of the transition and emission matrices are necessarily non-zero, and those states (1,5,6,7,11)
that are not involved in the dynamics have uniform probability of transitioning to all others, and
indeed of generating any symbol, in agreement with the symmetric prior. However these states
have small probability of being used at all, as both the distribugien) over the initial state
parameterr is strongly peaked around high probabilities for the remaining states, and they have
very low probability of being transitioned into by the active states.

3.5.2 Forwards-backwards English discrimination

In this experiment, models learnt by ML, MAP and VB are compared on their ability to dis-
criminate between forwards and backwards English text (this toy experiment is suggested in
MacKay, 1997). A sentence is classified according to the predictive log probability under each
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Figure 3.2: Training ML and VB hidden Markov models on synthetic sequences drawn from
(abc)*, (ach)* and(a*b*)* grammars (see text). Subpldt) & (c) show the evolution of the
likelihood of the data in the maximum likelihood EM learning algorithm for the HMM with

k = 12 hidden states. As can be seen in subplot (c) the algorithm converges to a local maximum
after by about 296 iterations of EM. Subpldtd & (d) plot the marginal likelihood lower bound
F(q(s1.1),q(0)) and its derivative, as eontinuationof learning from the point in parameter
space where ML converged (see text) using the variational Bayes algorithm. The VB algorithm

converges after about 29 iterations of VBEM.
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(a) ML state priorsr, tran- (b) VB variational posterior (c) \Variational posterior
sition A and emissionC' parameters fog(x), q(A) mean probabilities(q (7)),
probabilities. andq(C). (q(A)) and(g(C)).

Figure 3.3:(a) Hinton diagrams showing the probabilities learnt by the ML model, for the initial
state priorr, transition matrixA4, and emission matrix’. (b) Hinton diagrams for the analo-

gous quantities1 ™, u(4 andu(®), which are the variational parameters (counts) describing
the posterior distributions over the parametgrs), ¢(A), andq(C') respectively.(c) Hinton
diagrams showing the mean/modal probabilities of the posteriors represented in (b), which are
simply row-normalised versions of™, u* andu(©).

of the learnt models of forwards and backwards character sequences. As discussed above in
section3.4.2 computing the predictive probability for VB is intractable, and so we approxi-
mate the VB solution with the model at the mean of the variational posterior given by equations
(3.54-3.59.

We used sentences taken from Lewis CarrdliEe’s Adventures in Wonderland\ll punctu-
ation was removed to leave 26 letters and the blank space (that is po-s&y). The training
data consisted of a maximum of 32 sentences (of length between 10 and 100 characters), and
the test data a fixed set of 200 sentences of unconstrained length. As an example, the first 10

training sequences are given below:
(1) ‘i shall be late’

(2) ‘thought alice to herself after such a fall as this i shall think nothing of tumbling down stairs’
(3) ‘how brave theyll all think me at home’

(4) ‘why i wouldnt say anything about it even if i fell off the top of the house’

(5) ‘which was very likely true’

(6) ‘down down down'’

(7) ‘would the fall never come to an end’

(8) ‘i wonder how many miles ive fallen by this time’

(9) ‘she said aloud’

(10) ‘i must be getting somewhere near the centre of the earth’
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ML, MAP and VB hidden Markov models were trained on varying numbers of sentences (se-
qguences)y, varying numbers of hidden statés,and for MAP and VB, varying prior strengths,
uo, common to all the hyperparametdns™, u(4, u(©)}. The choices were:

ne{1,2,3,4,5,6,8,16,32}, ke {1,2,4,10,20,40,60}, wug € {1,2,4,8}. (3.86)

The MAP and VB algorithms were initialised at the ML estimates (as per the previous experi-
ment), both for convenience and fairness. The experiments were repeated a total of 10 times to
explore potential multiple maxima in the optimisation.

In each scenario two models were learnt, one based on forwards sentences and the other on
backwards sentences, and the discrimination performance was measured by the average fraction
of times the forwards and backwards models correctly classified forwards and backwards test
sentences. This classification was based on the log probability of the test sequence under the
forwards and backwards models learnt by each method.

Figure3.4 presents some of the results from these experiments. Each subplot is an examination
of the effect of one of the following: the size of the training sethe number of hidden statés

or the hyperparameter setting, whilst holding the other two quantities fixed. For the purposes

of demonstrating the main trends, the results have been chosen around the canonical values of
n =2, k = 40, andug = 2.

Subplots(a,c,e)of figure 3.4 show the average test log probabilfpgr symbolin the test se-
guence, for MAP and VB algorithms, as reported on 10 runs of each algorithm. Note that for
VB the log probability is measured under the model at the mode of the VB posterior. The plotted
curve is the median of these 10 runs. The test log probability for the ML method is omitted from
these plots as it is well below the MAP and VB likelihoods (qualitatively speaking, it increases
with n in (a), it decreases witlk in (c), and is constant withiy in (€) as the ML algorithm
ignores the prior over parameters). Most importantly(apwe see that VB outperforms MAP
when the model is trained on only a few sentences, which suggests that entertaining a distribu-
tion over parameters is indeed improving performance. These log likelihoods are those of the
forward sequences evaluated under the forward models; we expect these trends to be repeated
for reverse sentences as well.

Subplots(b,d,f) of figure 3.4 show the fraction of correct classifications of forwards sentences
as forwards, and backwards sentences as backwards, as a funetighaidug, respectively.

We see that for the most part VB gives higher likelihood to the test sequences than MAP, and
also outperforms MAP and ML in terms of discrimination. For large amounts of training:gata

VB and MAP converge to approximately the same performance in terms of test likelihood and
discrimination. As the number of hidden statgacreases, VB outperforms MAP considerably,
although we should note that the performance of VB also seems to degrade slighitly>for
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Figure 3.4: Variations in performance in terms of test data log predictive probability and dis-
crimination rates of ML, MAP, and VB algorithms for training hidden Markov models. Note
that the reported predictive probabilities are per test sequence symbol. Refer to text for details.
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20. This decrease in performance with highcorresponds to a solution with the transition
matrix containing approximately equal probabilities in all entries, which shows that MAP is
over-regularising the parameters, and that VB does so also but not so severely. As the strength
of the hyperparameter, increases, we see that both the MAP and VB test log likelihoods
decrease, suggesting thaf < 2 is suitable. Indeed at, = 2, the MAP algorithm suffers
considerably in terms of discrimination performance, despite the VB algorithm maintaining
high success rates.

There were some other general trends which were not reported in these plots. For example, in
(b) the onset of the rise in discrimination performance of MAP away fromoccurs further to

the right as the strengthy, is increased. That is to say the over-regularising problem is worse
with a stronger prior, which makes sense. Similarly, on increasjnghe point at which MAP
begins to decrease (o,d) moves to the left. We should note also that on increasinghe test

log probability for VB (c) begins to decrease earlier in termskof

The test sentences on which the algorithms tend to make mistakes are the shorter, and more
reversible sentences, as to be expected. Some examples are: ‘alas’, ‘pat’, ‘oh’, and ‘oh dear "

3.6 Discussion

In this chapter we have presented the ML, MAP and VB methods for learning HMMs from
data. The ML method suffers because it does not take into account model complexity and so
can overfit the data. The MAP method performs poorly both from over-regularisation and also
because it entertains a single point-parameter model instead of integrating over an ensemble. We
have seen that the VB algorithm outperforms both ML and MAP with respect to the likelihood

of test sequences and in discrimination tasks between forwards and reverse English sentences.
Note however, that a fairer comparison of MAP with VB would include allowing each method

to use cross-validation to find the best setting of their hyperparameters. This is fairer because
the effective value ofiy used in the MAP algorithm changes depending on the basis used for
the optimisation.

In the experiments the automatic pruning of hidden states by the VB method has been welcomed
as a means of inferring useful structure in the data. However, in an ideal Bayesian application
one would prefer all states of the model to be active, but with potentially larger uncertainties in
the posterior distributions of their transition and emission parameters; in this way all parameters
of the model are used for predictions. This point is raisedlatKay (2001) where it is shown

that the VB method can inappropriately overprune degrees of freedom in a mixture of Gaussians.

Unless we really believe that our data was generated from an HMM with a finite number of
states, then there are powerful arguments for the Bayesian modeller to employ as complex a

104



VB Hidden Markov Models 3.6. Discussion

model as is computationally feasible, even for small data $¢¢sl(1996 p. 9). In fact,

for Dirichlet-distributed parameters, it is possible to mathematically represent the limit of an
infinite number of parameter dimensions, with finite resources. This result has been exploited for
mixture modelsieal 19981, Gaussian mixture modelRasmusser2000, and more recently

has been applied to HMM®&gal et al, 2002. In all these models, sampling is used for inferring
distributions over the parameters of a countably infinite number of mixture components (or
hidden states). An area of future work is to compare VB HMMs to these infinite HMMs.
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