
A Parallelized Solution for the

Traveling Salesman Problem using

Genetic Algorithms

Sagar Keer

CSE 633 Fall 2010

Advisor: Dr. Russ Miller

Introduction

• Traveling Salesman Problem

Given a set of ‘n’ cities, we are to find the shortest closed
non-looping path that covers all the cities. Thus, no city
may be visited more than once

Introduction

• Genetic Algorithms

• Belong to class of Evolutionary Algorithms

• Apply concepts inspired by natural evolution such as
selection, mutation and crossover for problem solving

• After successive generations, we converge to an optimal
solution.

• Highly suited for problems involving optimization and
search-based solutions

Solution Basics

• Applying Genetic Algorithm to TSP

• Individuals  Closed non-looping paths across all cities

• Initial Population  Set of randomly selected
individuals, ie. Set of randomly generated paths

• Fitness Function  Derived from the total distance of a
given path

• Selection  Select the fittest individuals

• Breeding  Perform cross-over between the fittest
individuals to create new individuals to replace the
weakest ones. Also perform mutation.

Parallelization

MASTER

Global Population

SLAVE 1 SLAVE 2 SLAVE 3 SLAVE m

Sub Pop
1

Sub Pop
2

Sub Pop
3

Sub Pop
m

Calculate Fitness

Repopulate
Perform Mutation

Return fitness
values of

individuals and
crossover

Details

• Individuals

• Each individual is a closed, non-looping path with the cities
represented by numeric identifiers

• Each city is a point on the first-quadrant co-ordinate system

4 7 8 6 3 9215

(15,255)

Details

• Fitness Function f

• Calculate the total Euclidean distance for each path

• For an individual i, fitness function is given as

f(i) = 1/Di (Changed from Dmax – Di)

• Selection

• Using Tournament Selection: Run a ‘tournament’ among
‘k’ randomly selected individuals to find the fittest
individuals

• Use successive tournaments to pair the fittest individuals

Details

• Breeding

• Through a single-point crossover, the two selected
individuals will breed and create two children

6 4 3 2 1587

4 7 8 6 5123

4 7 8 6 3 215

6 4 3 2 1 875

Random crossover point

Details

• Breeding

• Through swap-based Mutation, by randomly swapping
two cities with each other

4 7 8 6 3 9215

4 7 5 6 3 9218

Algorithm

Initialize the global population with random individuals

While iteration_count != max_iterations

Distribute sub-populations

Calculate fitness for each sub-population

Perform selection

Perform crossover

Repopulate global population

Perform random mutation

End of Loop

Find fittest individual & report as solution

Implementation Specifics

• Implemented in C with MPI

• Used the Edge Cluster

• Working with a set of 10-30 cities and initial population
ranging from 700 to 46000

• Used 105 iterations

• Crossover breeding occurrence – 80-90%

• Mutation Occurrence – 12-13%

• Worked using 8,16 and 32 processors

Implementation Specifics

• Used MPI Send/Recv calls to pass sub-populations
between the master and all slave processors

• Used MPI_Create_struct to create MPI Struct datatype
for passing sub-populations

• Completely randomized initial population

• Probability of crossover based on tournament selection
of individuals

• Probability of mutation fixed deterministically

Solution for a 20 City Problem

0

50

100

150

200

250

300

0 50 100 150 200 250 300

16 PE Solution for a 30 City Problem

0

50

100

150

200

250

300

0 50 100 150 200 250 300

32 PE Solution for a 30 City Problem

0

50

100

150

200

250

300

0 50 100 150 200 250 300

Performance for 20 Cities

0

200

400

600

800

1000

1200

1400

1600

1800

2000

700 1500 15000 31000 46000

R
u

n
n

in
g

 T
im

e
 (

in
 s

e
c

o
n

d
s

)

Population

Sequential

8 PE

16 PE

32 PE

Performance for 30 Cities

0

500

1000

1500

2000

2500

3000

3500

4000

700 1500 15000 31000 46000

R
u

n
n

in
g

 T
im

e
 (

in
 s

e
c

o
n

d
s

)

Population

Sequential

8 PE

16 PE

32 PE

Results

• The number of iterations were sufficient for proper
convergence

• However, increasing number of processors did not result
in more speedup

• The sequential algorithm tends to converge early

• In parallel, distributed sub-populations allowed selection
of less fitter individuals, thus allowing better range
before converging to a solution

Future Work

• Refine the parallel algorithm further to improve speedup

• Increase the data set and population size

• More manipulations of existing parameters and also add
few more deterministic parameters to improve solutions

• Try out a different approach like using CUDA on the
MAGIC Cluster

References

• Borovska, Plamenka. ‘Solving the Travelling Salesman
Problem in Parallel by Genetic Algorithm on
Multicomputer Cluster’. CompSysTech’06

• Al-Dulaimi, Buthainah Fahran and Ali, Hamza.
'Enhanced Traveling Salesman Problem Solving by
Genetic Algorithm Technique(TSPGA)'. World Academy
of Science, Engineering and Technology 38 2008

• Heavner, Matt. ‘Massively Parallel Travelling Salesman
Genetic Algorithm’.
http://www.cse.buffalo.edu/faculty/miller/Courses/CSE
710/710mheavnerTSP.pdf (Diagrams)

http://www.cse.buffalo.edu/faculty/miller/Courses/CSE710/710mheavnerTSP.pdf
http://www.cse.buffalo.edu/faculty/miller/Courses/CSE710/710mheavnerTSP.pdf

Thank You

Questions?

