A Parallelized Solution for the
Traveling Salesman Problem using
Genetic Algorithms

Sagar Keer
CSE 633 Fall 2010
Advisor: Dr. Russ Miller




Introduction

- Traveling Salesman Problem

Given a set of ‘n’ cities, we are to find the shortest closed
non-looping path that covers all the cities. Thus, no city
may be visited more than once



Introduction

- Genetic Algorithms
- Belong to class of Evolutionary Algorithms

- Apply concepts inspired by natural evolution such as
selection, mutation and crossover for problem solving

- After successive generations, we converge to an optimal
solution.

 Highly suited for problems involving optimization and
search-based solutions



Solution Basics

- Applying Genetic Algorithm to TSP
- Individuals - Closed non-looping paths across all cities

- Initial Population - Set of randomly selected
individuals, ie. Set of randomly generated paths

- Fitness Function - Derived from the total distance of a
given path

» Selection > Select the fittest individuals

- Breeding - Perform cross-over between the fittest

individuals to create new individuals to replace the
weakest ones. Also perform mutation.



Parallelization

MASTER

Repopulate
Perform Mutation

Global Population Return fitness
values of
individuals and
crossover




Details

o Individuals

(15,255)

- Each individual is a closed, non-looping path with the cities
represented by numeric identifiers

- Each city is a point on the first-quadrant co-ordinate system




Details

- Fitness Function f
- Calculate the total Euclidean distance for each path
 For an individual i, fitness function is given as
fdi) =1/Di1 (Changed from Dmax — Di)
- Selection

- Using Tournament Selection: Run a ‘tournament’ among
‘k’ randomly selected individuals to find the fittest
individuals

- Use successive tournaments to pair the fittest individuals



Details

- Breeding

- Through a single-point crossover, the two selected
individuals will breed and create two children

Random crossover point

4 7 8 6 3 5 1 2
6 4 3 2 1 5 7 8

6 4 3 2 7 8 5 1
4 7 8 6 3 2 1 5



Details

- Breeding

- Through swap-based Mutation, by randomly swapping
two cities with each other




W,
Algorithm

Initialize the global population with random individuals
While iteration_count != max_iterations

Distribute sub-populations

Calculate fitness for each sub-population

Perform selection

Perform crossover

Repopulate global population

Perform random mutation
End of Loop

Find fittest individual & report as solution



Implementation Specifics

« Implemented in C with MPI

Used the Edge Cluster

Working with a set of 10-30 cities and initial population
ranging from 700 to 46000

Used 105 iterations

Crossover breeding occurrence — 80-90%
Mutation Occurrence — 12-13%

Worked using 8,16 and 32 processors



Implementation Specifics

- Used MPI Send/Recv calls to pass sub-populations
between the master and all slave processors

- Used MPI_Create_struct to create MPI Struct datatype
for passing sub-populations
- Completely randomized initial population

- Probability of crossover based on tournament selection
of individuals

- Probability of mutation fixed deterministically



Solution for a 20 City Problem

250 -
200 -
&
150 -
100 -
50 7
O T T T T T 1
0 50 100 150 200 250 300



16 PE Solution for a 30 City Problem

100 -
50 1
o . .
0 50 100



32 PE Solution for a 30 City Problem




Performance for 20 Cities

1200

ds)
N\
\\

= Sequential

/

1000 / P
800 / // —f6P1fE
oo / / =32 PE

unning Time (in seconds

\




Performance for 30 Cities

4000

3500 /
3000 /
2500 /

2000

/ = Sequential
/ / T8IE
=16 PE
1500
/ / ——32PE
1000

500

Running Time (in seconds)

700 1500 15000 31000 46000

Population



Results

- The number of iterations were sufficient for proper
convergence

- However, increasing number of processors did not result
in more speedup

- The sequential algorithm tends to converge early

- In parallel, distributed sub-populations allowed selection
of less fitter individuals, thus allowing better range
before converging to a solution



EEEEEEEEEE———
Future Work

- Refine the parallel algorithm further to improve speedup

- Increase the data set and population size

- More manipulations of existing parameters and also add
few more deterministic parameters to improve solutions

 Try out a different approach like using CUDA on the
MAGIC Cluster



References

- Borovska, Plamenka. ‘Solving the Travelling Salesman
Problem in Parallel by Genetic Algorithm on
Multicomputer Cluster’. CompSysTech’06

« Al-Dulaimi, Buthainah Fahran and Ali, Hamza.

'Enhanced Traveling Salesman Problem Solving by
Genetic Algorithm Technique(TSPGA)'. World Academy
of Science, Engineering and Technology 38 2008

- Heavner, Matt. ‘Massively Parallel Travelling Salesman
Genetic Algorithm’.

(Diagrams)


http://www.cse.buffalo.edu/faculty/miller/Courses/CSE710/710mheavnerTSP.pdf
http://www.cse.buffalo.edu/faculty/miller/Courses/CSE710/710mheavnerTSP.pdf

EEEEEEEEEE———
Thank You

Questions?



