
1

PROGRAMMING LANGUAGES

AS

MATHEMATICAL THEORIES

Raymond Turner

3BAbstract
That computer science is somehow a mathematical activity was a view held by many of the

pioneers of the subject, especially those who were concerned with its foundations. At face value it

might mean that the actual activity of programming is a mathematical one. Indeed, at least in

some form, this has been held. But here we explore a different gloss on it. We explore the claim

that programming languages are (semantically) mathematical theories. This will force us to

discuss the normative nature of semantics, the nature of mathematical theories, the role of

theoretical computer science and the relationship between semantic theory and language design.

Introduction

The design and semantic definition of programming languages has
occupied computer scientists for almost half a century. Design questions
centre upon the style or paradigm of the language, e.g. functional, logic,
imperative or object oriented. More detailed issues concern the nature
and content of its type system, its model of storage and its underlying
control mechanisms. Semantic questions relate to the form and nature of
programming language semantics (Tennent, 1981; Stoy, 1977; Milne,
1976; Fernandez, 2004). For instance, how is the semantic content of a
language determined and how is it expressed?

Presumably, one cannot entirely divorce the design of a language from
its semantic content; one is not just designing a language in order to
construct meaningless strings of symbols. A programming language is a
vehicle for the expression of ideas and for the articulation of solutions to
problems; and surely issues of meaning are central to this. But should
semantic considerations enter the picture very early on in the process of
design, or should they come as an afterthought; i.e. should we first
design the language and then proceed to supply it with a semantic
definition?

An influential perspective on this issue is to be found in one the most
important early papers on the semantics of programming languages
(Strachey C. , 2000).

I am not only temperamentally a Platonist and prone to talking about abstracts if I think they

throw light on a discussion, but I also regard syntactical problems as essentially irrelevant to

programming languages at their present state of development. In a rough and ready sort of

way, it seems to be fair to think of the semantics as being what we want to say and the syntax

2

as how to say it. In these terms the urgent task in programming languages is to explore the

field of semantic possibilities….When we have discovered the main outlines and the principal

peaks we can go about describing a suitable neat and satisfactory notation for them. But first

we must try to get a better understanding of the processes of computing and their description

in programming languages. In computing we have what I believe to be a new field of

mathematics which is at least as important as that opened up by the discovery (or should it be

invention) of the calculus.

Apparently, the field of semantic possibilities must be laid out prior to the
design of any actual language i.e., its syntax. More explicitly, the things
that we may refer to and manipulate, and the processes we may call
upon to control them, needs to be settled before any actual syntax is
defined. We shall call this the Semantics First (SF) principle. According to
it, one does not design a language and then proceed to its semantic
definition as a post-hoc endeavour; semantics must come first.

This leads to the second part of Strachey's advice. In the last sentence of
the quote he takes computing to be a new branch of mathematics. At
face value this might be taken to mean that the activity of programming
is somehow a mathematical one. This has certainly been suggested
elsewhere (Hoare, 1969) and criticized by several authors e.g. (Colburn
T. R., 2000; Fetzer, 1988; Colburn T. , 2007). But, whatever its merits, this
does not seem to be what Strachey is concerned with. The early part of
the quote suggests that he is referring to programming languages and
their underlying structures. And his remark seems best interpreted to
mean that (semantically) programming languages are, in some way,
mathematical structures. Indeed, this is in line with other publications
(Strachey C. , 1965) where the underlying ontology of a language is
taken to consist of mathematical objects. This particular perspective
found its more exact formulation in denotational semantics (Stoy, 1977;
Milne, 1976), where the theory of complete lattices supplied the
background mathematical framework. This has since been expanded to
other frameworks including category theory (Oles, 1982; Crole, 1993).

However, we shall interpret this more broadly i.e., in a way that is
neutral with respect to the host theory of mathematical structures (e.g.
set theory, category theory, or something else). We shall take it to mean
that programming languages are, via their provided semantics,
mathematical theories in their own right. We shall refer to this principle
as the Mathematical Thesis (MT).

Exactly what MT and SF amount to, whether they are true, how they are
connected, and what follows from them, will form the main focus of this
paper. But before we embark on any consideration of these, we need to

3

clarify what we understand by the terms mathematical theory and
semantics.

Mathematical Theories

The nature of mathematical theories is one of the central concerns of the
philosophy of mathematics (Shapiro, 2004), and it is not one that we can
sensibly address here. But we do need to say something; otherwise our
claim is left hanging in the air. Roughly, we shall be concerned with
theories that are axiomatic in the logical sense. While we shall make a
few general remarks about the nature of these theories, we shall largely
confine ourselves to illustrating matters and drawing out significant
points by reference to some common examples.

Geometry began with the informal ideas of lines, planes and points;
notions that were employed in measuring and surveying. Gradually,
these were massaged into Euclidean geometry: a mathematical theory of
these notions. Euclid’s geometry was axiomatic but not formal in the
sense of being expressed in a formal language, and this distinction will
be important later. Euclidean geometry reached its modern rigorous
formulation in the 20th century with Hilbert's axiomatisation.

A second, and much later example, is Peano arithmetic. Again, this
consists of a group of axioms, informally expressed, but now about
natural numbers. Of course, people counted before Peano arithmetic
was formulated. Indeed, it was intended to be a theory of our intuitive
notion of number, including the basis of counting. In its modern guises
it is formulated in various versions of formal arithmetic. These theories
are distinguished in terms of the power of quantification and the
strength of the included induction principles.

ZF set theory (Jech, 1971) began with the informal notion of set that was
operating in 19th century mathematics. It was developed into a
standalone mathematical theory by Cantor who introduced the idea of
an infinite set given in extension. It had some of the characteristics of the
modern notion, but it was still not presented as an axiomatic theory.
This emerged only in 20th century with the work of Zermelo and
Fraenkel. The modern picture that drives the axioms of ZF is that of the
cumulative hierarchy of sets: sets arranged in layers where each layer is
generated by forming sets made of the elements of previous layers.

These axiomatic theories began with some informal concepts that are
present in everyday applications and mathematical practice. In many

4

cases, the initial pre-axiomatic notions were quite loose, and most often
the process of theory construction added substance and precision to the
informal one. This feature is explicitly commented upon by Gödel in
regard to Turing’s analysis of finite procedure or mechanical computability
(Turing, 1937). In the words of Wang (Wang, 1974.), Gödel saw the
problem of defining computability as: an excellent example of a concept
which did not appear sharp to us but has become so as a result of a careful
reflection. The pre-theoretic analogues of such theories are not always
sharp and decisive, and the informal picture is often far from complete.
In this respect, the process of theory construction resembles the creation
of a novel. And, as with the notion of truth in the novel, some things are
determined (John did kill Mary) but not everything is (it is left open
whether he killed Mary’s dog). The mathematical process itself brings
these theories into existence. They are in this sense, definitional theories.

Although all this is still quite vague, it captures something about what is
demanded of an axiomatic theory for it to be considered mathematical.
Arbitrary sets of rules and axioms will not do: to be mathematically
worthy an axiomatic theory must capture some pre-theoretical intuitive
notions in an elegant, useful and mathematically tractable manner. And
this is roughly the notion of mathematical theory that we have in mind
in the proposition that programming languages are mathematical
theories (MT).

With this much ground cleared, we may now turn to the function and
nature of semantics. This will take a few sections to unravel.

Normative Semantics

Syntax is given via a grammar of some sort e.g., context free, BNF,
inference rules or syntax diagrams. But a grammar only pins down what
the legal strings of the language are. It does not determine what they
mean; this is the job of the semantics. We shall illustrate some issues
with the following toy programming language.

The expressions (E) are constructed from variables (x), 0 and 1 by
addition and multiplication. The Boolean expressions (B) are constructed
from variables; true, false, the ordering relation (<) on numbers,
negation and conjunction. Finally, the programs of the language (P) are
built from a simple assignment statement (x: =E) via sequencing (P;Q),

5

conditional programs (if B then P else Q) and while loops (while B do
P). According to the grammar, with parenthesis added, the following
program is legitimate, where n is an input variable.

But in order to construct or understand this program, one needs to know
more than the syntax of its host language; one must possess some
semantic information about the language (Turner R. , 2007). Most
importantly, in general, a semantic account of a language of any kind
must tell us when we are using an expression correctly, and when we
are not.

The fact that the expression means something implies that there is a whole set of normative

truths about my behavior with that expression; namely, that my use of it is correct in

application to certain objects and not in application to others. The normativity of meaning

turns out to be, in other words, simply a new name for the familiar fact that, regardless of

whether one thinks of meaning in truth-theoretic or assertion-theoretic terms, meaningful

expressions possess conditions of correct use. Kripke's insight was to realize that this

observation may be converted into a condition of adequacy on theories of the determination

of meaning: any proposed candidate for the property in virtue of which an expression has

meaning, must be such as to ground the 'normativity' of meaning-it ought to be possible to

read off from any alleged meaning constituting property of a word, what is the correct use of

that word. (Boghossian, 1989)

A semantic account must provide us with an account of what constitutes
correct use. It seems generally recognized (Gluer, 2008) that this
requirement on a theory of meaning has two components: a criterion of
correctness and an obligation to do what is correct. We shall only be
concerned with the first. Although aimed at theories of meaning for
ordinary language, it is not hard to see that any semantic account of a
programming language must equally distinguish correct from incorrect
uses of program constructs. Indeed, in the case of programming
languages, there are several central applications of semantic definitions
that involve notions of correctness.

A semantic account must guide a compiler writer in implementing the
language. It must enable a distinction to be drawn between the correct
and incorrect implementation of a construct. In other words, it must
facilitate a specification of compiler correctness. The compiler must
correctly translate the source code into the target code, and correctness
demands that the semantic definitions of the two languages must
somehow agree under the translation.

From the user perspective, a semantic account must enable a distinction
to be drawn between correct and incorrect use of programming

6

constructs - not just syntactically, but in the sense of meeting their
intended specifications (formal or otherwise). For instance, assume the
specification is a specification of the factorial function. Then a semantic
account must determine whether or not the following program meets it.
Syntax alone cannot do this.

More generally, a semantic account must enable a distinction to be
drawn between software that is intended for different ends i.e., meet
different user requirements. For example, it must enable a distinction to
be drawn between software intended to act as a web browser and
software intended to aid in asset management of power generation.
Presumably, a programmer who supplies one rather than the other will
get told off.

Given these normative demands, how is a semantic definition of a
language to be given? One not obviously implausible suggestion is via
an interpretation into another programming language (or a subset of the
source one). This is little more than a demand that a compiler provides
the semantics. But a little reflection should be sufficient to convince the
reader that such an approach does not satisfy our normative demands.
Unless the semantics of the target language is given, and thus grounded,
the semantics of the source language is not grounded: it just passes the
burden of normativity from one language to another. We also need to
have some semantic account of the language in which the translation is
written. So, by itself, a translation cannot guide the implementer; it is an
implementation, not an independent guide to one1.

The Role of Machines

One way in which this picture might be grounded is in terms of a
machine of some sort. This may be achieved stage by stage, one
language getting its interpretation in the next, until a machine provides
the final and actual mechanism of semantic interpretation. For instance,
for our toy language, we require a machine with an underlying state
whose role is to store numerical values in locations. Pictorially, this
might take the following shape.

1
 But see (Rapaport, 2004).

7

x y z w....

5 7 9 7.....
.

The semantics of assignment is then unpacked by its impact on it. But
what is the nature of this store? Is it physical or abstract? One common
sense view is that, in order to block the potentially infinite regress of
languages, it must be a physical device that grounds the meaning in the
physical world. More explicitly, the intended meaning of the language is
to be given by the actual effect on the state of a physical machine.

In particular, consider the following assignment instruction.

How is its semantics to be given on a physical machine? Apparently, the
machine does what it does when the program is run - and what it does
determines the meaning of assignment. But there are dissenters to such a
view.

Actual machines can malfunction: through melting wires or slipping gears they may give the

wrong answer. How is it determined when a malfunction occurs? By reference to the

program of the machine, as intended by its designer, not simply by reference to the machine

itself. Depending on the intent of the designer, any particular phenomenon may or may not

count as a machine malfunction. A programmer with suitable intentions might even have

intended to make use of the fact that wires melt or gears slip, so that a machine that is

malfunctioning for me is behaving perfectly for him. Whether a machine ever malfunctions

and, if so, when, is not a property of the machine itself as a physical object, but is well

defined only in terms of its program, stipulated by its designer. Given the program, once

again, the physical object is superfluous for the purpose of determining what function is

meant. (Kripke, 1982)

There is no appeal to an independent specification; meaning is
completely determined by what the machine does. It follows that there is
no notion of malfunction, and no notion of correctness. So there is no
sense to be made of the demand that the machine behave correctly. For
this, some machine independent account is needed. This may be
expressed in the following way.

When the state is updated by placing v in location x, and then the contents of x is

retrieved, v will be returned. For any other location, the contents remain unchanged.

Where Update changes the value in a given location and Lookup returns
the value at a given location, we may rewrite this more symbolically as
follows.

8

But these simple equations determine an operation on an abstract
machine. And it is this that supplies the specification of the physical one,
and makes the latter (semantically) superfluous. If the command x:=10
places 28 in location y, this is not correct.

It would seem that any normative semantic account of our toy language
must be given in terms of its impact upon such an abstract machine.
Physical operations may conform to the specification given by the
abstract ones, but they cannot provide a semantic correlate for a
program.

Informal Semantics

But the nature of the machine is only part of the story. We still need to
say how a whole programming language is to be interpreted. The most
common approach employs natural language, where such accounts most
often take the form of a reference manual for the language. And they can
be big: the one for Java Language is almost 600 pages. The following is
taken from The Java Language Specification, Third Edition - TOC

A while statement is executed by first evaluating the expression. If the result is of type

Boolean, it is subject to unboxing conversion (§5.1.8). If execution of the expression or the

subsequent unboxing conversion (if any) completes abruptly for some reason, the while

statement completes abruptly for the same reason. Otherwise, execution continues by making

a choice based on the resulting value: If the value is true, then the contained statement is

executed. Then there is a choice: If execution of the statement completes normally, then the

entire while statement is executed again, beginning by re-evaluating the expression. If

execution of the statement completes abruptly, see §14.12.1 below. If the (possibly unboxed)

value of the expression is false, no further action is taken and the while statement completes

normally. If the (possibly unboxed) value of the expression is false the first time it is

evaluated, then the statement is not executed.

This is the standard semantics of the while statement within the Java
language. However, there are several complications that pertain to the
special character of this language. For the time being, we shall ignore
most of these and concentrate on the central issues. For this purpose we
shall illustrate the semantic process with our toy language. Later we
shall consider some of the complexities that arise with real languages.

As with the semantic conception of truth, our abstract notion of execution
emerges from a recursive semantic description of the whole language.

1. If the execution of E in the state s returns the value v, then the
execution of x:=E in a state s, returns the state that is the same as s
except that the value v replaces the current value in location x i.e.,
Update(s,x,v).

9

2. The execution of skip in a state s, returns s.

3. If the execution of P in s yields the state s' and the execution of Q in
s' returns the state s", then the execution of P;Q in s, returns the
state s"

4. If the execution of B in s returns true and the execution of P in s
returns s', then the execution of if B then P else Q in s, evaluates to
s'. If on the other hand, the execution of B in s returns false and the
execution of Q in s returns s', then the execution of if B then P else
Q in s, evaluates to s'.

5. If the execution of B in s returns true, the execution of P in s
returns s', and the execution of while B do P in s' yields s", then the
execution of while B do P in s, returns s”. If the execution B in s
returns false, then the execution of while B do P in s, return s.

6. The execution of a variable in state s returns the value obtained by
looking it up in s.

7. If the execution of E in state s returns v and the execution of E’
returns v’ then the execution of the addition of E and E’, returns
the addition of v and v’. We proceed similarly for multiplication.

This provides a natural language semantic account for our toy language.
But being based upon an underlying abstract machine, it is an abstract
account i.e., the semantics is given in terms of relations on the abstract
machine.

Such an approach works well with simple languages, but with real ones
matters are less clear. It is difficult to express essentially technical
notions in natural language. For one thing, it does not always facilitate
being clear about what we are talking about. Furthermore, the
consequences of design decisions, articulated in natural language, may
not be as sharp as they could be.

In particular, Java has integrated multithreading to a far greater extent than most

programming languages. It is also one of the only languages that specifies and

requires safety guarantees for improperly synchronized programs. It turns out that

understanding these issues is far more subtle and difficult than was previously

thought. The existing specification makes guarantees that prohibit standard and

proposed compiler optimizations; it also omits guarantees that are necessary for safe

execution of much existing code (Pugh, 2000)

This indicates that there are deeper problems than ambiguity, the
normal source of problems with natural language definitions. Lack of
clarity cuts deeper than scope distinctions. In particular, there is a lack of

10

semantic clarity over the basic notions such as threading and
synchronization. It is not a reformulation in a more formal language that
is required, but a better conceptual understanding of these fundamental
notions. Nor can we glean what they are supposed to do by running
experiments on a machine. What they are supposed to do must be fixed
by an abstract normative account.

Furthermore, even the simple consequences of the semantics are not
easy to articulate. For example, to ensure that it is coherent, we shall
need to establish that expression execution does not change the state.
This much we have assumed in our informal semantic account.
Similarly, a compiler writer will need to argue, with some degree of
precision, that the compiler is correct. This will involve an inductive
argument that must take place during the construction not after it. Such
arguments are not optional; at some level, and with some degree of
precision, one cannot construct a compiler without undertaking such
reasoning.

So despite its prevalence, there are non-trivial problems with natural
language accounts.

Operational Semantics

However, a little notation will help with some of them. More
specifically, we shall write

to indicate that evaluating P in state s terminates in s'. With this notation
we can rewrite the whole semantic account of our simple language. It
will be little more than a rewrite of the informal account with this
notation replacing the words execute/execution.

1. Assignment

2. Skip

3. Sequencing

4. Conditionals

11

5. While

6. Variables

7. Addition and Multiplication

In addition to the use of our simple notation, we have replaced the
conditional form of the informal semantics by rules. In particular, the
antecedents of the informal rules e.g.

If the execution of B in s returns true and the execution of P in s returns s', then…

are represented as the premises of the formal ones e.g.

So, apart from the fact that the inferential structure of the rules is now
made explicit, these are minor changes.

But with this version of the semantics in place, we can more explicitly
state a result that guarantees that the evaluation of expressions has no
side effects.

 For all expressions E and states s

The actual proof proceeds by induction on the expressions using the
rules for the respective cases: we argue, by induction, that the execution
of expressions does not yield side effects. For the base case, we observe
that the execution of variables does not change the state. For the
induction step, on the (inductive) assumption that the execution of E and
E′ do not, i.e.,

it is clear that the execution of E+E′ does not i.e.,

And the same result hold for multiplication.

Such arguments ensure that the informal semantics is safe. Without
them, the semantic account for the execution of programs needs to be
adjusted in order to take account of state change during expression
execution.

12

So our simple notation enables a more transparent formulation of the
results about the theory. It is not that far removed from the informal
account, but it is more wholesome.

A Theory of Programs

But it is not just a semantic account; looked at more abstractly, our
semantics constitutes a theory of programs. More exactly, we can read the
above semantic account as a theory of operations determined by their
evaluation rules. Here the relation ⇓ is taken to be sui-generis in the
proposed theory and axiomatised by the rules.

To emphasize this mathematical nature, we shall mathematically explore
matters a little. For example, we may define

This provides a notion of terminating program. We may also define a
notion of equivalence for programs.

P≃Q ≜ ∀s⋅∀s′⋅<P,s>⇓s′↔<Q,s>⇓s′

i.e., we cannot tell them apart in terms of their extensional behaviour.
Technically, this is an equivalence relation. Moreover, we have the
provability of the following three propositions that govern the partial
equality of our programming constructs.

1. if true then P else Q ≃ P
2. if false then P else Q ≃ Q
3. while B do P ≃ if B then (P; while B do P) else skip

So we have the beginnings of a theory of programs. It certainly captures
ones intuitions about the evaluation mechanism that is implicit in the
standard informal understanding of these constructs. While not a deep
and exciting one, it is still a mathematical theory. Consequently, it
would appear that a programming language (i.e., the bundle that is its
syntax and semantics) is a mathematical theory i.e., we appear to have
arrived at MT.

Unfortunately, this claim may be challenged at every step.

Empirical Semantics

We can attempt to block matters at the outset i.e., we may attack the
practical necessity for any kind of semantics, even of the informal
variety, i.e., one might claim that semantics is irrelevant in practice.
Whatever, the intention of the original designer, it is how the language

13

functions in the working environment that determines the activity of
programming. And for this, any pre-determined normative semantic
description is largely irrelevant. This would block SF; indeed it seems to
deny any role for semantics. So is it plausible? Here is one set of
considerations in its favour.

A programmer attempting to learn a programming language does not
study the manual, the semantic definition. Instead, she explores the
implementation on a particular machine. She carries out some
experimentation, runs test programs, compiles fragments etc. until she
figures out what the constructs of the language do. Learning a language
in this way is a practical affair. Moreover, this what programmers
require in practice. Indeed, in order to program a user needs to know
what will actually happen on a given physical machine. And this is
exactly what such a practical investigation yields.

In other words, a programming language is treated as an artefact that is
subject to experimental investigation. The programmer still needs to
construct her own theories about the semantic content of the language.
But presumably, through testing and experimentation, together with her
previous knowledge of programming languages and their constructs,
she could systematically uncover the evaluation mechanism of the
language. Indeed, she might be able to piece together something like our
operational semantics2. But such theories are constructed as scientific
theories about the language and its implementation, and as such they
are subject to falsification. On this scenario, it is this experimental
method that enables us to discover the actual meaning of the language.
This is a very different methodological picture to that supplied by the
normative one.

 Of course, we might doubt whether such theory construction is
practically feasible: can one from scratch unpack matters to the point
where one has enough information to use the language? But even
assuming that we find such methodology persuasive, and that we can
write down the evaluation mechanism, there is a more significant

2
This might be seen as similar in spirit to Quine’s field linguist engaged in what he refers to as radical

translation (Quine, 1960). In so far as a user could by some form of experimentation fix the interpretation of the

language, it is. However, this form of empirical uncovering of semantics is not an argument against its

normative function. It is merely a route to finding out what it means. Once the translation manual has been

constructed, it provides a means of fixing correct use. Indeed, this provision is built into Davidson’s’ perspective

(Davidson, 1984) where the role of the field linguist is radical interpretation not translation. Here the goal is the

construction of a theory of meaning that is compositional. But these issues require more careful analysis than is

possible here.

14

problem with this empirical approach. Empirical theories are subject to
falsification and so, by their very nature, cannot be normative. So it
would seem to follow that the advocate of this empirical picture must
believe that no normative account is necessary, and that matters are
always up for revision. But, this cannot be right. As we originally
argued, without some normative account, there can be no criterion of
correctness and malfunction, and no standard by which to measure
progress. Programming involves reasoning, and this requires a
distinction between the correct and incorrect use of expressions of the
language. And this can only take place against a semantic account of the
language that fixes the correct use of its constructs. Although the activity
of programming will almost always involve some form of
experimentation and testing, this must take place against the backdrop
of some normative account.

To square this demand with the present empirical picture we might
amend matters slightly in order to make room for a normative role for
the extracted theory. We might begin with the empirical approach. But
what may have been first formulated as a scientific theory of the
language, in the activity of programming, must assume normative status
i.e., once formulated, this initial scientific theory of the language must
act as (a reverse engineered) semantic specification of the language.

However, there are serious objections to even this picture. In particular,
there must still be an initial normative account that underpinned the
original compiler. Even the compiler writer, who just happens also to be
the language designer, has semantic intentions. So this experimental
picture cannot gain any purchase without some initial normative
foundation. Moreover, assuming a normative status for any empirically
derived theory faces the very same problem that made the construction
of the scientific theory seem necessary in the first place: in the future, the
whole system may malfunction in new ways not predicted by the
theory. In this empirical setting, the user requirement that initiated the
scientific perspective (i.e., the user needs to know what actually
happens) will lead to the development of a new theory. And so on.
Indeed, it would seem that this user requirement is unobtainable:
continual revision is required to feed this desire to know what actually
happens. This is not to say that some experimentation of the sort
described, may not occur in practice. All sorts of things may occur in

15

practice. But it is to say that one cannot dispense with a normative role
for theories of the language, however they are come by.

Indeed, this whole approach to the semantics of a language seems
confused. There is a clear difference between what the language is taken
to mean and how we discover its meaning. Any attempt to discover the
meaning of the language by testing and experimentation, presupposes
that there is some pre-determined notion of meaning to discover.

So there seems little possibility of undermining MT by this route i.e.,
arguing away the need for a normative semantics. However, we might
challenge the second step i.e., the move from the informal to the formal
semantics.

Informal Mathematics

Have we not assumed the conclusion of MT in moving from the
informal to the formal account i.e., by providing a rule based account
using the more formal notation, have we not pre-judged the issue?
Indeed, the objector might agree that the formal account is
mathematical, but argue that we do not need it for practice, thereby
undermining MT.

The arguments given for the formal account were essentially pragmatic
in nature; they insist that precise accounts enable us to more carefully
articulate the ontology and express and prove the properties of the
language. But such arguments are not arguments that show the
necessity of such a formal semantics. The informal ones, carefully
formulated, might still be sufficient to define and explore the language.

However, even if we doubt the need for the more formal account, it is
not clear that we need to give up MT: if we stick to informal semantics
and informal argumentation, does it follow that we lose mathematical
status for our theories? Not obviously. Actually, it seems that not much
hangs on the formalization step.

In our brief account of the nature of mathematical theories we alluded to
the distinction between being formal and being mathematical. Although
formal logic and set theory have influenced the style and presentation of
proofs, ordinary mathematical proofs are not articulated in any formal
language. Most mathematicians do not work inside formal theories
expressed in some variant of predicate logic; most mathematics is
articulated in ordinary language with a sprinkling of notation to pick
out the underlying concepts. Moreover, the use of the formal notation

16

does not transform a non-mathematical account into a mathematical
one. The mathematical status of the theory does not depend upon such
formal presentation: its mathematical nature is not brought into
existence by it. In fact, the move from the informal to the formal is
common place in mathematics. Informal theories often get rigorously
axiomatised later e.g., Hilbert's Geometry. But the informal accounts are
still mathematical. Euclid's geometry, despite its informality, is still
taken to be a mathematical theory. It did not suddenly get mathematical
status in the 20th century with Hilbert’s axiomatisation.

In the case of our toy language, apart from the fact that one is expressed
in English and the other with some abbreviational notation, and in the
formal version the rule based structure has been made explicit, there is a
no difference between the two versions of the semantics. Surely such
cosmetic changes cannot have such a significant conceptual
consequence.

Consequently, the argument that semantic accounts are mathematical
does not depend upon the semantics and underlying theory being
formally articulated. And this is consistent with the standard
development of axiomatic mathematical theories. In our case, there
seems to be an underlying theory of operations that forms part of the
thing that is a programming language. Consequently, at this point, at
least for our toy language, we have no compelling reason to give up MT
in its present form. In particular, the thing that is our programming
language is a theory of programs, formally presented or not.

Conservative Extensions

However, although we might allow that simple theories such as our
theory of programs are worthy of mathematical status, we might still
insist that this is not so for actual programming languages; what might
hold for simple toy languages does not scale up. In particular, theories
acceptable to the mathematical community must have some aesthetic
qualities: they must have qualities such as elegance and ease of
application in their intended domain of application. Moreover, part of
being elegant involves the ability to be mathematically explored. If they
cannot, for whatever reason (e.g. their complexity), they will not be
given the mathematical communities stamp of approval. And while it is
possible to provide semantic definitions of the kind given for our toy
language for large fragments, and even whole languages (for example,
(Wikibooks, 2009) provides a semantic definition of Haskell), in general,

17

such definitions are not tractable theories. They are hard, if not
impossible, to mathematically explore. They are often a complex mixture
of notions and ideas that do not form any kind of tractable mathematical
entity. Consequently, when provided, such semantic definitions are
often complicated and unwieldy, and therefore of limited mathematical
value. Often, the best one can do with some of these is to marvel at the
persistence and ingenuity of the person who has written the semantic
description. Given this, it is harder to argue that actual programming
languages are genuine mathematical theories.

However, there is an observation that, on the face of it, might be taken to
soften this objection. And this involves the logical idea of a conservative
extension. Suppose that we have constructed a theory of a language .
Suppose also that, in the sense of mathematical logic, we have shown
that is a conservative extension of a smaller theory , a theory of a
language , a subset of . Further suppose that meets our criteria for
being a mathematical theory. Can we then claim that is also a
mathematically acceptable theory? In other words, is a theory that is a
conservative extension of a mathematical theory, also a mathematical
theory? A positive answer fits mathematical practice where
mathematical exploration results in the construction of conservative
extensions. Indeed, the construction of these extensions is itself part of
the exploration process of the core theory.

Programming languages admit of a similar distinction. While the whole
language/theory may not have sufficient simplicity and elegance to be
mathematically explored, it may nevertheless possess a conceptual core
that may be. Such a core should support the whole language in the sense
that the theory of the latter is a conservative extension of the theory of its
core. This offers a slightly different interpretation of MT. But it is one in
line with mathematical practice.

Unfortunately, there are further problems to overcome. No doubt there
are some simple economies of syntax and theory that may be made for
almost all languages. But it will generally be a non-trivial task to locate
such mathematically acceptable cores for existing languages. Many
languages have been designed with a meagre amount of mathematical
input, and it would be somewhat miraculous if such languages/theories
could post-hoc be transformed into elegant cores.

18

MT and SF

But there is another route. And one that brings SF back to the fore. The
nature of existing languages does not dictate how new languages might
be designed. It does not logically prevent elegant computational theories
from being used as an aid to the design of new languages; languages
that come closer to achieving mathematical status.

And this brings in the role of theoretical computer science. One of its
goals has been to isolate pure computational theories of various kinds.
Some of these notions were already embedded in actual programming
languages, and, in many cases, formed the source of the underlying
intuitions that were sharpened and moulded into an axiomatic theory.
Mostly they have not been devised to be used, but to provide careful
axiomatic articulations of informal, yet significant, computational
concepts. Such theories include axiomatic theories of the following
notions.

 Operations

 Types and Polymorphism

 Concurrency and Interaction

 Objects and Classes

Theories of operations mostly emanate from the Lambda Calculus
(Church, 1941). This was invented as a formalism to provide a formal
account of computability. But from a computer science perspective
(Landin P. , 1965; Landin P. , 1964), it provides a mathematical account
that underlies the notions of function/procedure definition and
function/procedure call as they occur in actual programming languages.
Landin (Landin P. , 1966) actually advocated that the calculus be used
as the design core for future languages. Other variations on the calculus
take seriously the fact that expressions in the language of the lambda
calculus may fail to terminate under the standard rules of reduction.
This leads to the Partial Lambda Calculus (Moggi.A., 1988).

However, most programming languages admit some notion of type, and
so these pure untyped theories of operations do not reflect the
operational content of existing languages. Consequently, logicians and
theoretical computer scientists have developed variations on the
calculus that incorporate types (Barandregt, 1992). While the elementary
theories have monomorphic type systems, most languages now admit
some notion of polymorphism. Theories of the impredicative notion (e.g.

19

System F) were invented independently by the logician Girard (Girard,
1989) and the theoretical computer scientist Reynolds (Reynolds, 1974).
This is an impredicative theory in that the polymorphic types are
included in the range of the type variables. Less powerful theories, in
particular predicative ones restrict the range to exclude these types from
the range. Others carve out various subsets of the type system and
restrict the range to these. These theories and their mathematically
established properties provide us with hard information for the activity
of design.

The π-calculus (Milner R. , 2006) belongs to the family of process calculi:
mathematical formalisms for describing and analyzing properties of
concurrent computation and interaction. It was originally developed as a
continuation of the Calculus of Communicating Systems. Whereas the λ-
calculus is a pure theory of operations, the π-calculus is a pure theory of
processes. It is itself Turing complete, but is has also inspired a rich
source of extensions that get closer to being useable programming
languages e.g. (Barnes, 2006).

Our final example concerns objects, classes and inheritance. (Abadi, 1996)
contains an extensive source for such calculi (e.g. , including
some with type structure. The authors also consider the interaction of
such theories with other notions such as polymorphism.

One would be hard pushed to argue that such theories are not
mathematical ones. They not only reflect clear computational intuitions,
often derived from existing languages, but they are capable of being
mathematically explored. Indeed, the pure lambda calculus is now a
branch of mathematical logic/theoretical computer science with its own
literature and mathematical goals (Barendregt, 1984).

The design and exploration of such theories might well be used, as one
tool among many, to aid the process of language design. Actual
programming languages might then be designed around such cores with
actual implemented programming languages and their theories as
conservative extensions. Some languages have been designed using this
broad strategy. For example, the logic of computable functions of (Scott,
1993) is an extension of the simple typed lambda calculus that includes a
fixpoint/recursion operator. A predicative polymorphic version of this
(with type variables ranging over types with decidable equality) forms
the logical spine of ML (Milner R. T., 1999). But one would need to do a
fair amount of work to even articulate the theory of the whole language,

20

let alone investigate whether or not it is a conservative extension of this
core. Still, it is within the spirit of the present proposal.

Moreover, programming languages are rarely based upon a single core
notion. In reality we require languages that support quite complex
mixtures of such. For example, we might form a theory made up from
the , the and some predicative version of
system F. This should enable us to explore combinations of
polymorphism, concurrency and objects i.e., we may subject such a
theory to mathematical analysis. We might for example show that type
membership is decidable. This informs the language design process.
Indeed, we would be able to investigate and prove safety guarantees for
improperly synchronized programs (Pugh, 2000). While putting such
theories together in coherent ways is no easy task, there are theoretical
frameworks that support such merging activity (Goguen, 1992; Turner
R. , 2009).

Strachey's plan was that such fundamental notions should be first
clarified and languages designed with this knowledge to hand. This idea
has actually furnished a whole industry of language design. More
specifically, the last forty years have seen the employment of
denotational and operational semantics as tools in programming
language design (Tennent, 1977; Schmidt, 1986).

Our approach is slightly different but still in line with the SF principle.
In our case it is our core theories that supply the material from which
actual languages may be constructed. Of course, Strachey never put it in
these terms; such theories were largely not around at the time of his
pronouncement. His original idea alluded to some underlying structures
that were left unspecified. The interpretation that resulted in
denotational semantics came later. Nevertheless, the spirit of what we
are suggesting is much the same. It is a version of Strachey’s idea with
his informal ideas being fleshed out with foundational axiomatic
theories.

This is a very clean picture, but it must represent the ideal situation. In
practice, there is more to design than devising and exploring such core
theories and their combinations. One also needs also to take pragmatic
issues, into account. Central here are issues of programming practice
and implementation (Wirth, 1974). Indeed, the whole enterprise of
language design is a two-way street with theory and practice informing

21

each other. In order to build pure computational theories, one must have
some practice to reflect upon. Practice plus some theory leads to actual
languages, which in turn generates new theories that feed back into
language design. The various activities bootstrap each other. This finds
the appropriate place for theory: it advocates a theory first principle, for
each new generation of programming languages. This endorses both a
more realistic interpretation of the semantics first principle, and
increases the chances that the resulting theory will be mathematically
kosher.

Conclusion

This is just one topic in the conceptual analysis of the nature of
programming languages. Such work should form a significant part of a
philosophy of computer science. In particular, the status of
programming languages, as mathematical theories, raises issues that
impinge upon some of the central and contemporary questions in the
philosophies of language, mathematics, science and engineering. In
particular, in examining Strachey's claims, we are as much engaged in
clarifying the nature of mathematical theories as we are in examining the
nature of programming languages.

Bibliography

Abadi, M. a. (1996). A Theory of Objects. New York: Springer-Verlag, Monographs in

Computer Science.

Barandregt, H. (1992). Lambda Calculi with Types. In D. M. S. Abramsky, Handbook of

Logic for Computer Science Vol 2 (pp. 117-309). Oxford University Press.

Barendregt, H. P. (1984). The Lambda Calculus: Its Syntax and Semantics (Vols. Studies in

Logic and the Foundations of Mathematics, 103 (Revised edition ed.). Amsterdam: North

Holland.

Barnes, F. a. (2006). Retrieved from Occam-pi: blending the best of CSP and the Pi-calculus:

http://www.cs.kent.ac.uk/projects/ofa/kroc/

Boghossian, P. (1989). The Rule-following Considerations. Mind , 507-549.

Church, A. (1941). The Calculi of Lambda Conversion. Prineton: Princeton University Press.

Colburn, T. (2007). Methodology of Computer Science. In L. Floridi, The Blackwell Guide to

the Philosophy of Computing and Information (pp. 318--326). Blakwell, Oxford.

Colburn, T. R. (2000). Philosophy and Computer Science. New York: Explorations in

Philosophy. Series. M.E. Sharpe.

Crole, R. (1993). Categories for Types. Cambridge: Cambridge University Press.

Davidson, D. (1984). Radiical Interpretation. In D. Davidson, Inquiries into Truth and

Interpretation (pp. 125-140). Oxford: Oxford University Press.

Fernandez, M. (2004). Programming Languages and Operational Semantics: An

Introduction. London: King's College Publications.

Fetzer, J. (1988). Program Verification: The Very Idea. Communications of the ACM 31(9) ,

1048--1063.

22

Girard, L. a. (1989). Proofs and Types. Cambridge: Cambridge University Press.

Gluer, K. W. (2008). The Normativity of Meaning and Content. Retrieved from Stanford

Encyclopedia of Philosophy: http://plato.stanford.edu/entries/meaning-normativity/

Goguen, J. a. (1992). Institutions: Abstract Model Theory for Specification and

Programming. J. ACM 39(1) , 95-146.

Hoare, A. (1969). An Axiomatic Basis For Computer Programming. Communications of the

ACM, Volume 12 / Number 10 , 576-583.

Jech, T. (1971). Lecture Notes in Set Theory. New York: Springer.

Kripke, S. (1982). Wittgenstein on Rules and Private Language. Boston: Harvard University

Press.

Landin, P. (1965). A Correspondence Between ALGOL 60 and Church's Lambda-Notation.

Communications of the ACM, vol. 8, no. 2. , 89-101.

Landin, P. (1964). The Mechanical Evaluation of Expressions. The Computer Journal 6(4). ,

308-320.

Landin, P. (1966). The next 700 Programming Languages. Communications of the ACM ,

157-166.

Milne, R. a. (1976). A Theory of Programming Language Semantics. Chapman and Hall.

Milner, R. T. (1999). The Definition of Standard ML. MIT Press.

Milner, R. (2006). The Polyadic π-Calculus. Berlin: Springer.

Moggi.A. (1988). http://www.lfcs.inf.ed.ac.uk/reports/88/ECS-LFCS-88-63/.

Oles, F. J. (1982). A category-theoretic approach to the semantics of programming

languages. Syracuse, NY, US: Syracuse University.

Plotkin, G. (2004). A structural approach to operational semantics. J. Log. Algebr. Program,

vol. 60-61 , 17-139.

Pugh, W. (2000). The Java Memory Model is Fatally Flawed. Concurrency: Practice and

Experience 12(6). , 445-455.

Quine. (1960). Word and Object. . Cambridge, Mass: MIT Press.

Rapaport, W. (2004). Implementation is Semantic Interpretation. Monist, volume 82. , 109--

130.

Reynolds, J. (1974). Towards a theory of type structure. In Lecture Notes in Computer

Science. (pp. 408-425). Berlin: Springer.

S. Abramsky, D. M. (1992). Handbook of Logic in Computer Science. Vol 2. Oxford: Oxford

University Press.

Schmidt, D. (1986). Denotational Semantics: A Methodology for Language Development.

Boston: Allyn and Bacon.

Scott, D. (1993). A type-theoretical alternative to ISWIM, CUCH, OWHY. Theoretical

Computer Science , 411-440.

Shapiro, S. (2004). Philosophy of Mathematics: Structure and Ontology. Oxford: Oxford

University Press.

Stoy, J. (1977). The Scott-Strachey Approach to Programming Language Semantics. Boston:

MIT Press.

Strachey, C. (2000). Fundamental Concepts in Programming Languages. Higher-Order and

Symbolic Computation. , 11-49.

Strachey, C. (1965). Towards a formal semantics. In T. B. Steel, Formal Language

Description Languages for Computer Programming. Amsterdam, North Holland (1965). .

Tennent, R. (1977). Language design methods based on semantic principles. Acta

Informatica, 8 , 97–112.

Tennent, R. (1981). Principles of Programming Languages. Oxford: Prentice-Hall

International.

23

Turing, A. (1937). On Computable Numbers, with an Application to the

Entscheidungsproblem. Proceedings of the London Mathematical Society, 2 42. , 230--65.

Turner, R. (2009). Computable Models. New York: Springer.

Turner, R. (2007). Understanding Programming Languages. Minds and Machines 17(2) ,

129-133.

Wang, H. (1974.). From Mathematics to Philosophy. London: London: Routledge & Kegan

Paul.

Wikibooks. (2009). Haskell/Denotational Semantics. Retrieved from Wikibooks:

http://en.wikibooks.org/wiki/Haskell/Denotational_semantics

Wirth, N. (1974). On the Design of Programming Languages. IEEE Trans. Software Eng. ,

386-393.

Key Terms and Their Definitions

1. Axiomatic Theories: Theories constituted by groups of axioms/rules. These

are not necessarily cast within a formal language i.e., they may be

informally presented.

2. Computational Theories: Theories that are axiomatisations of computational

notions. Examples include the λ and π calculi.

3. Informal Mathematics: Mathematics as practised; not as formalised in

standard formal systems.

4. Operational semantics: A method of defining programming languages in

terms of their underlying abstract machines.

5. Mathematical Theories. In this paper these are interpreted as axiomatic

theories in the logical sense.

6. Theoretical Computer Science: the mathematical theory of computer science.

In particular, it includes the development and study of mathematical

theories of computational notions.

