Is BQP Squeezed Out or In?
 UB CSE Theory Group

Kenneth W. Regan ${ }^{1}$
University at Buffalo (SUNY)

$$
6 \text { May, } 2024
$$

${ }^{1}$ Includes joint work with Amlan Chakrabarti, U. Calcutta, and Chaowen Guan, U. Cincinnati

Dichotomy

The phenomenon of natural computational problems and mathematical entities clumping into an "easy" level A and a "hard" level B with little or nothing salient in between. Examples:
(1) "Almost all" problems in NP are either in P or NP-complete.
(2 For "most" problems the best known algorithm either runs in polynomial time or in exponential time (meaning time $2^{\Omega(n)}$ or time $2^{n^{\Omega(1)}}$ depending on the problem and encoding).
(3) Item 2 semi-follows from 1 insofar as all NP-complete languages are poly-time equivalent and exponential time is best known for SAT.
(1) Note: If $N P \neq P$ then there are languages in $N P \backslash(N P C \cup P)$. But they are expressly diagonal and thus "artificial."
(6) There is a tight deterministic time hierarchy...but the languages involved are diagonal or are "artificially complete."

Cases Where Dichotomy Holds Completely

- Schaefer's Dichotomy Theorem for SAT.
- Nonuniform CSP Dichotomy Theorem (see also this and these slides).
- Growth Rate in Groups: Given an infinite group G with finite generating set S, put $f(n)=$ the number of elements in G expressible as length- n words of g or g^{-1} over $g \in S$. Gromov's Theorem: $f(n)=n^{O(1)}$ iff G has a nilpotent subgroup of finite index.
- Gap Conjecture: Either $f(n)=n^{O(1)}$ or $f(n)=2^{\Omega(\sqrt{n})}$.
- Proved when G is a finitely-generated subgroup of a connected Lie group. (J. Tits).

NP-Intermediate Status

- Graph Isomorphism (GI) belongs to a natural cluster of algebraic problems.
- Laszló Babai recently put GI and hence all these problems into quasipolynomial (QP) time, indeed $n^{O(\log n)}$ time.
- Raises belief they are in P. (Or just redefine QP as "easy.")
- Factoring and Discrete Log are related. $2^{\tilde{\Omega}\left(n^{1 / 3}\right)}$ time lower bound for both? Neither has much of a cluster.
- The Minimum Circuit Size Problem (MCSP) has structural evidence for both "not in P" and "not NP-complete." Featured prominently in a recent big article in Quanta.
- The Kolmogorov Complexity Bounding Problem (given a string x and number k, does x have a polynomial-time verifiable seed s of length at most k ?) may be related to MCSP—but both are still fairly isolated.
- More-natural characterizations, or indelibly "Meta"?

Counting Problems

\# \mathbf{P} is the counting-problem analogue of NP. If $R(x, y)$ is a relation decidable in time $|x|^{O(1)}$, then

- $L_{R}=(\exists y) R(x, y)$ defines a problem in NP;
- $h_{R}(x)=|\{y: R(x, y)\}|$ defines a function in \#P; and all languages/functions in the respective classes arise that way.
- E.g., the function $h_{\text {SAT }}$ counting satisfying assignments of a 3CNF formula is complete for \#P under polynomial-time mapping reductions f of functions: $g \leq_{m}^{p} h$ via f means $g(x)=h(f(x))$.
- \#P is polynomial-time Turing-equivalent to the language class PP, which is characterized by languages of the form $L_{h}=\{(x, k): h(x) \geq k\}$ over $h \in$ \# .
- PP is the lowest known "simple" upper bound for BQP, bounded-error quantum polynomial time. (A technical subclass called AWPP contains BQP.)

Diagram of These Classes and Problems

Dichotomy Within \#P

- Counting version of Schaefer's theorem proved by Creignou and Hermann.
- More cases are \#P-complete, including monotone \#2SAT.
- Same for \#CSP for domain size 3 (A. Bulatov). Feder-Vardi conjecture: ditto for all sizes.
- Jin-Yi Cai and co-workers extended this to other CSP cases and also proved dichotomy for graph homomorphisms and holant problems. The former involve computing the partition function

$$
Z_{A}(G)=\sum_{h: V \rightarrow[m]} \prod_{(u, v) \in E} A[h(u), h(v)]
$$

where $G=(V, E)$ on n nodes and A is a symmetric $m \times m$ matrix.

- For many other counting problems, seemingly small changes in settings flip the problem between P and \#P-hard, with no sign of anything in between.

A Simple Example Over \mathbb{Z}_{4}

Consider quadratic polynomials $f\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ modulo 4 .

- Counting the number of zeroes is in P. (Follows by [Cai-Chen-Lipton-Luo, 2010].)
- Counting the number of zeroes in $\{0,1\}^{n}$ is \#P-complete.
- But if all cross-terms are $2 x_{i} x_{j}$ it is in P again.

We will see how this matters to universal quantum circuits. This brings up our main philosophical question:

If there is "nothing natural" between P and \#Pcomplete, where does that leave BQP?
(For this purpose, NP is tantamount to \#P.)

Quantum Circuits

Quantum circuits look more constrained than Boolean circuits:

But Boolean circuits look similar if we do Savage's TM-to-circuit simulation and call each column for each tape cell a "cue-bit."

Quantum Gates - three slides by M. Rötteler

Quantum gates

single qubit operation:

controlled-NOT:

unitary matrix $=\left(\begin{array}{cccc}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0\end{array}\right)$
controlled-U:

control	\bullet	
target	U	unitary matrix

0 \& 1 \& 0 \& 0

0 \& 0 \& U_{00} \& U_{01}

0 \& 0 \& U_{10} \& U_{11}\end{array}\right)\)
measurement in the $|0\rangle,|1\rangle$ basis:

Quantum circuit example

$$
\begin{aligned}
& H \otimes \mathbf{1}_{2}=\frac{1}{\sqrt{2}}\left(\begin{array}{rr}
1 & 1 \\
1 & -1
\end{array}\right) \otimes \mathbf{1}_{2} \\
& |0\rangle-+\rightarrow+\quad \operatorname{Prob}(\text { meas. }|00\rangle)=0.5 \\
& \frac{1}{\sqrt{2}}(|0\rangle+|1\rangle) \otimes|0\rangle \quad \frac{1}{\sqrt{2}}(|00\rangle+|11\rangle) \\
& \left.\frac{1}{\sqrt{2}}(|00\rangle+|10\rangle) \right\rvert\, \\
& |00\rangle \rightarrow|00\rangle \\
& |01\rangle \rightarrow|01\rangle \\
& |10\rangle \rightarrow|11\rangle \\
& |11\rangle \rightarrow|10\rangle
\end{aligned}
$$

Toffoli Gate

The Toffoli gate "TOF"

x	y	z	x^{\prime}	y^{\prime}	z^{\prime}
0	0	0	0	0	0
0	0	1	0	0	1
0	1	0	0	1	0
0	1	1	0	1	1
1	0	0	1	0	0
1	0	1	1	0	1
1	1	0	1	1	1
1	1	1	1	1	0

$$
\begin{array}{ll}
|x\rangle \longrightarrow \quad & |x\rangle \\
|y\rangle \longrightarrow- & |y\rangle \\
|z\rangle & |z \oplus x \cdot y\rangle
\end{array}
$$

Theorem (Toffoli, 1981)

Slides by
Martin
Rötteler

Some More Gates

$$
\begin{gathered}
\mathrm{X}=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right], \quad \mathrm{Y}=\left[\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right], \quad \mathrm{Z}=\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right], \\
\mathrm{S}=\left[\begin{array}{ll}
1 & 0 \\
0 & i
\end{array}\right], \quad \mathrm{T}=\left[\begin{array}{cc}
1 & 0 \\
0 & e^{i \pi / 4}
\end{array}\right], \quad \mathrm{R}_{8}=\left[\begin{array}{cc}
1 & 0 \\
0 & e^{i \pi / 8}
\end{array}\right], \\
\text { CNOT }=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0
\end{array}\right], \quad \mathrm{CZ}=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & -1
\end{array}\right], \quad \mathrm{CS}=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & i
\end{array}\right] .
\end{gathered}
$$

- The gates H, X, Y, Z, S, CNOT, CZ generate Clifford circuits, which are simulable in polynomial time.
- Adding any of $\mathrm{T}, \mathrm{R}_{8}$, or CS gives the full power of BQP.

Bounded-error Quantum Poly-Time

A language A belongs to BQP if there are uniform poly-size quantum circuits C_{n} with n data qubits, plus some number $\alpha \geq 1$ of "ancilla qubits," such that for all n and $x \in\{0,1\}^{n}$,

$$
\begin{aligned}
& x \in A \quad \Longrightarrow \operatorname{Pr}\left[C_{n} \text { given }\left\langle x 0^{\alpha}\right| \text { measures } 1 \text { on line } n+1\right]>2 / 3 \\
& x \neq A \quad \Longrightarrow \operatorname{Pr}[\ldots]<1 / 3
\end{aligned}
$$

One can pretend $\alpha=0$ and/or measure line 1 instead. One can also represent the output as the "triple product" $\langle b| C|a\rangle$, with $a=x 0^{\alpha}$, $b=0^{n+\alpha}$.
Two major theorems about BQP are:
(a) C_{n} can be composed of just Hadamard and Toffoli gates [Y. Shi].
(b) Factoring is in BQP [P. Shor].

More-general forms of a known relation

- Assume all nonzero entries $r e^{i \theta}$ of gate matrices in quantum circuits C have equal magnitude $|r|$ and θ an integer multiple of $2 \pi / K$.
- Suppose C has h Hadamard gates as nondeterministic games.
- Let G be a field or ring such that G^{*} embeds the K-th roots of unity ω^{j} by a multiplicative homomorphism $\iota\left(\omega^{j}\right)$.

Theorem (multiplicative form, case $G=\mathbb{F}_{2}$ is Dawson et al. (2004) $+\ldots$)
Any $Q C C$ of n qubits can be quickly transformed into a polynomial P_{C} of the form $\prod_{g} P_{g}$ and a constant $R>0$ such that for all $x, z \in\{0,1\}^{n}$:

$$
\langle z| C|x\rangle=\frac{1}{R} \sum_{j=0}^{K-1} \omega^{j}\left(\# y: P_{C}(x, y, z)=\iota\left(\omega^{j}\right)\right)=\frac{1}{R} \sum_{y} P_{C}(x, y, z)
$$

Here g ranges over all gates and outputs of C and y ranges over $\{0,1\}^{h}$.
Degree is $\Theta(s)$ where s is the number of gates in C.

Additive Case

Theorem (RCG (2017), RC (2007-9), cf. Bacon-van Dam-Russell (2008))

Given C and K, we can efficiently compute a polynomial $Q_{C}\left(x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{h}, z_{1}, \ldots, z_{n}, w_{1}, \ldots, w_{t}\right)$ of degree $O(1)$ over \mathbb{Z}_{K} and a constant R^{\prime} such that for all $x, z \in\{0,1\}^{n}$:
$\langle z| C|x\rangle=\frac{1}{R^{\prime}} \sum_{j=0}^{K-1} \omega^{j}\left(\# y, w: Q_{C}(x, y, z, w)=j\right)=\frac{1}{R^{\prime}} \sum_{y, w} \omega^{Q_{C}(x, y, z, w)}$, where Q_{C} has the form $\sum_{\text {gates } g} q_{g}+\sum_{\text {constraints } c} q_{c}$.

- Gives a particularly efficient reduction from BQP to \#P.
- In P_{C}, illegal paths that violate some constraint incur the value 0 .
- In Q_{C}, any violation creates an additive term $T=w_{1} \cdots w_{\log _{2} K}$ using fresh variables whose assignments give all values in $0 . . K-1$, which cancel. (This trick is my main original contribution.)

Constructing the Polynomials

- Initially $P_{C}=1, Q_{C}=0$.
- For Hadamard on line $i\left(u_{i}-\mathrm{H}-\right)$, allocate new variable y_{j} and do:

$$
\begin{array}{rl}
P_{C} & *=\left(1-u_{i} y_{j}\right) \\
Q_{C} & +=2^{k-1} u_{i} y_{j}
\end{array}
$$

- CNOT with incoming terms u_{i} on control, u_{j} on target: u_{i} stays, $u_{j}:=2 u_{i} u_{j}-u_{i}-u_{j}$. No change to P_{C} or Q_{C}.
- S-gate: Q_{C} adds u_{i}^{2}.
- CS-gate: Q_{C} adds $u_{i} u_{j}$.
- Thereby CS escapes the easy case over \mathbb{Z}_{4} (with $k=2$).
- TOF: controls u_{i}, u_{j} stay, target u_{k} changes to $2 u_{i} u_{j} u_{k}-u_{i} u_{j}-u_{k}$.
- T-gate also goes cubic.

Gottesman-Knill: alternative methodology

- To represent $u_{i}-\mathrm{S}$ - we need $K=4$.
- H gives $Q_{C}+=2 u_{i} y_{j}$.
- CNOT: Nonlinear term has a 2 which will cancel the 2 from Hadamard.
- Equality constraint $w_{j}\left(u_{i}+z_{i}-2 u_{i} z_{i}\right)$: OK with [G-K], [CCLL] because w_{j} appears only here.
- S: u_{i} left alone but $Q_{C}+=u_{i}^{2}$.
- Inductively every term in Q_{C} has form y_{j}^{2} or $2 y_{i} y_{j}$.
- These terms are invariant under $0 \leftrightarrow 2,1 \leftrightarrow 3$.
- Hence poly-time simulation by solution counting in \mathbb{Z}_{4}.

Overpowered for Universal Quantum Circuits

- When we have a universal gate sets, these simulations zoom to \#P-complete cases.
- Chaowen Guan devised and programmed a simulation via Boolean formulas, but \#SAT is \#P-complete.
- Does not seem to reveal a "natural" subset B of Boolean formulas for which $\# B$ is equivalent to BQP .
- The Bremner-Jozsa-Shepherd IQP circuits are a postulated intermediate class, but even their simulation collapses the polynomial hierarchy.
- IQP circuits use Hadamard gates only at the beginning and end of the circuit, CS gates, and diagonal one-qubit gates.
- The same idea with only CZ and (optionally, for self-loops) Z gates between the two banks of Hadamards are called graph-state circuits, and are equivalent to general Clifford circuits in power.

Rest of Talk

- Show https://rjlipton.com/2022/01/05/quantum-graph-theory/
- Show https://rjlipton.com/2019/06/17/contraction-and-explosion/
- Show
https://rjlipton.com/2019/08/26/a-matroid-quantum-connection/
- A graph can be viewed as a polymatroid in which the rank of an edge subset $A \subseteq E$ is the number of nodes involved in A.
- Augment the idea with "half loops" and "half edges" for S and CS, respectively.
- General observations-how wide are the possibilities and prospects?

More Ideas and the Logic Side

- Idea is to postpone exponential blowup until the end...
- ... when a full spec can be fed to equation solvers or SAT solvers.
- Algebraic side is joint work with Amlan Chakrabarti (U. Calcutta) since 2007.
- Logical side with Chaowen Guan, UB. Jointly became paper [RCG18] in Transactions on Computational Science, 2018.
- Logic-based full QC simulator, 8,000+ lines of C++. [show demo]

Theoretical Advance: Quadratic Equations over \mathbb{F}_{2}

- Stabilizer circuits (\equiv Clifford circuits) are the most salient classically solvable case.
- Vital in quantum error-correcting codes for fault-tolerant QC.
- Classical simulation of n qubits takes $O\left(n^{2}\right)$ time per single-qubit measurement [Aaronson-Gottesman, 2004], $O\left(n^{3}\right)$ time to measure all n qubits.
- We improve to time $O\left(n^{\omega}\right)$ where $\omega<2.3729$ is the known exponent for $n \times n$ matrix multiplication.
- Also give $O(N)$-time reduction ($N=n^{2}$) from computing $n \times n$ matrix rank over \mathbb{F}_{2} to the QC simulation.
- Means that the n^{2}-vs.- n^{ω} weak/strong simulation gap canot be closed unless matrix rank is in $O\left(n^{2}\right)$ time over \mathbb{F}_{2}.

How Achieved

- Stabilizer circuits C yield classical quadratic forms q_{C} over \mathbb{Z}_{4}.
- Exploit normal form q^{\prime} for q_{C} by Schmidt [2009].
- Apply new algorithm for LDU decompositions over \mathbb{F}_{2} by Dumas-Pernet [2018].
- Invert the LDU process but calculating in \mathbb{Z}_{4}.
- Painstaking analysis of how distributions of values were mapped yields a simple recursion then gives the result from the final "spectrum."
- Also yields an apparently new class of undirected graphs:

Boolean Logic Simulation

- Allocate free variables x_{i} for every input (qu)bit, z_{i} for corresponding outputs, and y_{j} for every nondeterministic gate (wlog. Hadamard gate).
- Also maintain "forced" variables giving the current phase and location of every Feynman path.
- Translation from circuit C to Boolean formula ϕ_{C} is again real-time.
- Solution counts over each phase for a target location yield its amplitude.
- \#SAT solvers such as sharpSAT and Cachet give hope of heuristic simulations of harder classes of circults.
- Our C++ simulator outputs DIMACS-compliant files for these solvers. SAT solvers have seen great success in many areas, but maybe not QC...
- Second main purpose of simulator [show] is to enable tinkering with approximative methods.

Higher Algebra and Applications

- Invariants based on Strassen's geometric degree $\gamma(f)$ concept may help quantify both entanglement and effort to keep coherence.
- Baur-Strassen showed that $\Omega\left(\log _{2} \gamma(f)\right)$ lower-bounds the arithmetical complexity of f, indeed the number of binary multiplication gates. Apply similar to quantum circuits?
- Already hard to formulate n-partite entanglement of (pure or mixed) states. How to define for circuits? Plausible axioms:

$$
\begin{aligned}
e\left(C^{*}\right) & =e(C), \\
e\left(C_{1} \otimes C_{2}\right) & =e\left(C_{1}\right)+e\left(C_{2}\right), \\
e(C ; \text { measure }) & \leq e(C), \\
e(C+\mathrm{LOCC}) & =e(C)
\end{aligned}
$$

- Singular points of varieties determine (most of?) amplitude under the Principle of Least Action, conjectured by Bacon, van Dam, and Russell [2008, unpublished]).

Summary

- Novel research ideas.
- Development of program infrastructure to experiment with them.
- Indo-US collaboration.
- References: Gödel's Lost Letter blog, textbook with MIT Press.
- Some other ideas there: chaotic walks on graphs, quantum graph networks.
- Greater relation to tensor network simulations of quantum circuits?
- Involvement in the general debate over Quantum Advantage.

