
Challenges for Theory of Computing

Report of an NSF-Sponsored Workshop on Research in
Theoretical Computer Science

April 1999

Anne Condon, University of Wisconsin, Madison
Herbert Edelsbrunner, University of Illinois, Urbana-Champaign
E. Allen Emerson, University of Texas, Austin
Lance Fortnow, University of Chicago
Stuart Haber, Surety Technologies and InterTrust STAR Lab
Richard Karp, University of Washington
Daniel Leivant, Indiana University
Richard Lipton, Princeton University
Nancy Lynch, MIT
Ian Parberry, University of North Texas
Christos Papadimitriou, University of California, Berkeley
Michael Rabin, Harvard University
Arnold Rosenberg, University of Massachusetts
James S. Royer, Syracuse University
John Savage, Brown University
Alan L. Selman, University at Buffalo
Carl Smith, University of Maryland
Eva Tardos, Cornell University
Jeffrey Scott Vitter, Duke University

2

Executive Summary
This report is the culmination of a two-day workshop, funded by the National Science
Foundation (NSF), that took place March 11–12, 1999 in Chicago. Fourteen of the
authors and the Program Director of the Theory of Computing, Zeke Zalcstein, attended
this workshop. All of the authors participated in extensive discussions by email. The
purpose of this effort was to develop and offer a current perspective on research in
theoretical computer science.

This is an especially opportune time to carry out this exercise. The President’s
Information Technology Advisory Committee (PITAC) Report calls for an increase in
support of information technology research of roughly a billion dollars over the next five
years, and the Administration’s proposed Federal budget for FY 2000 demonstrates a
commitment to sustained growth in information technology research through its
initiative, Information Technology for the Twenty-First Century (IT2). Since NSF will be
the lead agency of IT2 and NSF is essentially the sole agency funding research in theory
of computing, it is certainly appropriate to inquire into the impact of theoretical research
on computer science and to attempt to measure the importance of theoretical research for
solving strategic long-range problems as called for by the PITAC Report.

We find that theory of computing is a vibrant and exciting discipline of essential
importance, about which we will demonstrate the following major points:

• Fundamental discoveries by theoreticians shape computer science dramatically.
• Resources invested in theory of computing research yield significantly multiplied

practical benefits.
• Current and future technology depends on research by theoreticians and on

collaborative projects that involve both theoreticians and practitioners.

Theoretical research will need to play a critical role in order to meet the challenges set
forth in the PITAC report. New fundamental advances will be necessary as will focused
research in various applications areas, where collaboration between theoreticians and
practitioners inform and enrich one another.

There is an historically demonstrated, enormous potential impact of theory of computing
research, in view of which, funding for cutting-edge theory of computing should be
increased dramatically. We find that there is a need to increase the number of researchers
in theoretical computer science, increase interaction among researchers, and encourage
various types of collaboration. To these ends, we conclude this report with a series of
specific recommendations to NSF. We recommend a sizable increase in the number and
size of awards, creation of a postdoctoral research program, and facilitation of proposals
from groups of researchers at different institutions. Also, we recommend several new
initiatives:

• Establishment of a national conference center for computer science activities,

3

• A professional development initiative to prepare theoreticians and practitioners
for productive collaborations, and

• A virtual theory center.

In addition, we urge increased representation of theory of computing on the CISE
Advisory Committee.

1. Introduction
Theory of computing is a critical component of the discipline of computer science.
Theory of computing provides computer science with concepts, models, and formalisms
to help reason about these concepts and models. Theory of computing addresses the
question of what is and is not feasibly computable and creates the algorithms for the
intellectual processes that are being automated. Software and efficient algorithms are the
base of today’s technology and of technology to come.

The historical role of theory of computing is clear: “Theory pervades the daily practice
of computer science and lends legitimacy to the very identity of the field.” (Funding a
Revolution: Government Support for Computing Research, Computer Science and
Telecommunications Board, NRC). Today theory of computing is thriving. In this report
we will provide evidence to demonstrate the following major points:

• Fundamental discoveries by theoreticians shape computer science dramatically.
• Resources invested in theory of computing research yield significantly multiplied

practical benefits.
• Current and future technology depends on research by theoreticians and on

collaborative projects that involve both theoreticians and practitioners.

We will demonstrate that the National Science Foundation’s broad-based Theory of
Computing program is essential for computer science and the future of information
technology. Our concluding section provides recommendations to NSF designed to
ensure that we can meet the challenges that we herein describe.

2. From the Past toward the Future
The stored-program computer owes its intellectual origins to Alan Turing, who studied
the fundamental nature of computation in the 1930s. The practices of programming
computers and designing sequential circuits were significantly advanced by the
development of the theory of automata and languages by Chomsky, Rabin, and Scott in
the 1950s. Building on these foundations, Knuth and others introduced algorithms and
data structures for the efficient parsing of high-level languages, thereby enabling the
software revolution of the 1960s. In the 1970s, theoreticians, led by Cook and Karp,
exploring the intrinsic complexity of computational problems, identified the large class of
NP-complete problems, everyday problems that appear to be so difficult to solve that no
foreseeable increase in computing power would enable their solution. Theoreticians
interested in studying computational complexity were led to the discovery of
computationally hard problems that serve as the underpinnings for modern computer-
security systems, notably the RSA public-key cryptosystem. They demonstrated the

4

utility of mathematical logic and automata theory to the verification of complex computer
systems; model-checking technology, for example, is now widely used by hardware
manufacturers.

Research innovations in the last ten to fifteen years have resulted in new formulations and
results that promise a big impact in the future. Now we have fast (polynomial-time)
algorithms that provide approximate answers to many NP-complete problems. We use
randomized algorithms that provide almost surely fast solutions to hard problems. We
employ interactive proof systems, serving to convince one player of the truth of a
statement known to a second player, to verify electronic exchanges. These are but a few
examples of promising research directions. It is important to realize that several of these
innovations resulted from theoreticians’ attempts to understand fundamental aspects of
computing. They sprang out of the context of theory of computing and would not have
occurred in the context of specific applications within technologies that existed at the
time that those discoveries were made. Also, it is important to note that theoretical
concepts often have taken decades to be assimilated into the mainstream of computing,
but such assimilation has had profound practical impact.

Theory of computing “underlies many aspects of the construction, explanation, and
understanding of computers. … Many… theoretical concepts from different sources have
now become so embedded in computing and communications that they pervade the
thinking of all computer scientists.” (ibid.)

One strength of theory of computing is that it is not tied to any particular technology, but
provides tools for understanding and reasoning about technology in general. For
example, the concept of an abstract machine and the simulation of one abstract machine
by another, though invented by theoreticians decades ago, can help to understand the
modern Web browser. Namely, the Web browser provides users with a common abstract
machine across different computing platforms. When a user follows a link to data, a
browser invokes the proper interpreter (an abstract machine) to process the data, for
example to view an image or run a Java program.

Prospects for the Future
In concert with the PITAC committee, it is safe to predict that future computer systems
will be large, involved, and exhibit high emergent complexity. Understanding such
systems will be an enormous intellectual challenge that requires the efforts of both
theoretical and experimental computer scientists. Theoretical and software models of
such systems must be developed and subjected to analysis before making large
investments in their implementation. Emphasizing these challenges, George Strawn, of
the office of the Assistant Director for CISE, said “we don't understand at a scientific
level many of the things that we are building.” (Science News, v. 155, Feb 27, 1999)

To summarize, “We need more basic research— the kind of groundbreaking, high-
risk/high-return research that will provide the ideas and methods for new disciplinary
paradigms a decade or more in the future. We must make wise investments that will bear

5

fruit over the next forty years.” (Information Technology Research: Investing in Our
Future, PITAC Report, March 1998)

3. Challenges in Computing
“The Committee finds that the Federal agenda for information technology
R&D has moved too far in the direction of near-term applications
development, at the expense of long-term, high risk, fundamental
investigations in the underlying issues confronting the field.”
(PITAC Report, March 1998)

Here we explain how theoretical research will play a major role in carrying out the type
of fundamental research that is called for in the PITAC report. As we proceed, we will
substantiate the following points:

• Fundamental, unpredictable, theoretical discoveries literally change the field of
computer science.

• Theory of computing must play a critical role in the development of the
technology of the future.

• Addressing high-risk, speculative problems provides the seed corn for future
technological innovations.

• Theory of computing will directly change the way science is carried out in the
future. The degree to which new technology will be successful in solving the hard
problems in science and society hinges on advances in theoretical research in
computing.

We substantiate these points in two ways. First, we describe five areas that pose major
technological challenges to computer science research and explain how theoretical
computer science research (in collaboration and in conjunction with research in many
other areas) will help in addressing these challenges. We emphasize that both basic,
foundational research, and theoretical research that is focused on individual applications
are needed in this endeavor. Second, we describe some types of fundamental theoretical
research that will expand the boundaries of our field over time.

Theoretical Computer Science Research Will Benefit Technology
The first area we mention, electronic commerce, is fast becoming ubiquitous in our
society. The next two areas focus on meeting the challenges of developing next-
generation computer technologies. All three of these areas are listed as research priorities
in the PITAC report. A fourth area, also discussed in the PITAC report, concerns
innovative computing technologies that may be a reality in the 21st century. The last
area, bioinformatics, is one in which theoretical computer science already has an
impressive track record in shaping the way biological research is done. In each of these
areas, theoreticians are currently successfully engaged.

Lasting contributions to these and other applications areas are likely to be rooted not only
in theoretical research that has an applications focus, but also in foundational research
whose relevance to a given application may not be apparent at first.

6

Reliable and Secure Electronic Commerce
The success of electronic commerce, fast becoming a trillion dollar-a-year industry, is
crucially dependent on modern cryptography, and thus on the unproven hypothesis of the
computational hardness of factoring integers. Yet, as far as we know, there may be a
linear time algorithm for factoring! Also there is little evidence that cryptographic
algorithms based on block ciphers (such as DES) or one-way hash functions (such as
MD5) are secure. In light of the tremendous financial investment in the “hardness” of
these problems, serious investment in complexity theory and, in particular, in complexity-
theoretic lower bounds is a necessity.

The problems of providing reliable and secure electronic commerce are far from solved.
There is a need to develop new cryptographic algorithms that will offer added security,
improved efficiency, and solve newly arising technical problems.

Cryptographic algorithms may be the cornerstone of network security, but on top of these
algorithms one must add multiple layers of network protocols, a common security
infrastructure, and software to actually realize all this. The security of a network depends
on the security and soundness of each of these components together with their
interactions. Yet how can we tell whether the software that implements these protocols
meets their specifications, or even if these specifications guarantee the desired level of
security? To deal with these very subtle problems, one needs tools from concurrency
theory, semantics, and formal methods. Theoreticians have and will continue to provide
formalisms for reasoning about the correctness and security of protocols. (Formal
approaches were used to identify the exact source of the Pentium bug.)

Scalable Information Infrastructure
The amount of information on the World-Wide Web is increasing at an astonishing rate,
and our nation's dependence on such global information is also increasing. Immediate
access to huge amounts of interesting and important information creates amazing
opportunities, but also creates challenges that need to be addressed through research. In a
rapidly evolving technology, theoretical work must come early, before aspects of the field
have frozen in unprincipled, ad hoc states.

With the growing size of the Internet and the amounts of data available, the scalability of
our computational methods is becoming increasingly important. Extremely large
problems arise when searching the Web, and in managing huge servers that have to
service millions of requests per day against exabyte (1018 bytes) data stores.
Theoreticians have long focused on developing algorithms with low asymptotic
complexity and methods that work well on large data sets that reside on distributed
computing devices or external memories. With increased problem sizes this focus is
becoming even more important. Current methods already incorporate many nontrivial
theoretical ideas such as hashing, graph search techniques, and divide-and-conquer.

7

Theoreticians typically create algorithms that serve as the basic building blocks of large
systems. An important way for NSF to engage in long-term research in this area is to
invest more in such building blocks. New technologies are bringing many new
algorithmic problems into focus. Research on scalable methods and asymptotic
complexity provides the best basis for addressing the challenge that these problems
present. The following paragraphs elaborate on specific building blocks that theory of
computing will contribute to scalable information systems.

Theoreticians have developed methods that provide astonishing speedups for large
problem instances. Two of the most successful methods are randomization, such as
random sampling, and approximation algorithms. These techniques can provide
speedups that are well beyond what was previously conceivable. Research in these areas
is very active, producing a continuous stream of dramatically improved algorithms for
important problems. Random sampling is essential in order to obtain answers in
sublinear time. When a problem is known to be hard, typically the current response is to
resort to heuristics with no guarantees. Instead, approximation methods can lead to
simple and practical algorithms that guarantee a close to optimal solution. The difference
between an approximation algorithm and a heuristic is the proof that the latter has a
performance guarantee. Approaches such as these would have been nearly impossible to
discover in the absence of a suitable theoretical framework.

Thinking of the Web as a huge graph is frequently important for the development of Web
search techniques. Graph-algorithmic methods, studied by theoreticians for decades, are
used in current commercial Web search engines. Many new issues arise due to the Web’s
enormous size and the fact that the graph is dynamically changing and implemented as a
distributed system. Another important aspect is the information latent in the Web's
hyperlink structure. These issues lead to hard graph-algorithmic problems, which when
solved will be valuable for future Web search engines.

The fields of data mining and discovery science seek ways to find interesting properties
in information, with applications to commerce, user interfaces, and more. The challenge
is to query and process huge amounts of information quickly and accurately. Researchers
are exploring new methods that are rooted in graph algorithms, information theory, and
learning theory to advance these fields.

Many of the known asymptotically faster methods use linear space. Implementation of
these linear-space algorithms utilize external data storage. Researchers are trying to
discover whether we can make effective use of small internal memory instead.
Theoreticians are addressing the problem on multiple fronts. Some approaches seek to
compress data, often by provably good sampling techniques, so that the online processing
can be done in the much faster internal memory. Another important line of research is to
exploit locality in data layout in order to optimize access to the data in external storage.
Theory is needed to identify the performance limits of these approaches and to determine
when each is applicable.

8

The rapid growth of the Internet, the demands on network bandwidth, and the stringent
service requirements of real-time applications, such as on-demand video, highlight the
need for improved data compression and caching. Theoreticians have made a variety of
contributions to data compression. Often the contributions require expertise in more than
one theory domain, further emphasizing the needed role of the theoretician. For example,
prefetching and caching mechanisms based upon universal data compression techniques
have been shown to capture locality present in data accesses and thus optimize
bandwidth.

Safe and Verifiable Software
A broad spectrum of theoretical areas support the specification, verification, and
synthesis of both hardware and software systems, e.g., the areas of algebraic
specification, logics of programs, model checking, process algebras, program semantics,
and type theory. Each of the aforementioned areas has been instrumental in the
development of strong, practical tools in current use. We briefly consider the cases of
model checking and logics of programs.

Model checking provides an automatic verification method for hardware and software. It
has been very successful for large hardware designs because the regularity of hardware
supports the use of compact data structures (e.g., binary decision diagrams) that can
succinctly represent very large state spaces. To achieve similar success for software
systems, more flexible representational techniques must be found. In regard to
programming logics: modal and temporal logics provide the basis of model checking as
specification languages, process calculi are commonly used to design and analyze
network and cryptographic protocols, and the recent invention of proof-carrying code is
an important new tool for network security.

While the tools and insights provided by model checking, logics of programs, and the
like, are quite useful, each of these areas addresses only a very narrow set of problems.
The practice of software development desperately needs a strong, sound mathematical
foundation that encompasses the entire development process. The challenge for theory is
to broaden and integrate these areas to deliver this foundation.

Speculative Computing Technologies
Theoretical computer scientists, along with physicists, chemists, molecular biologists,
and other scientists, are exploring computing technologies at the molecular level, or
technologies that are based on quantum mechanical principles. These emerging
technologies, by their very nature, are hypothetical, and thus to understand their potential,
theoretical models and simulations are essential. Results of theoretical computer
scientists have given a major boost to the work in both biomolecular and quantum
computing.

Related to biomolecular computing research is the area of molecular nanostructures,
which seeks to reliably self-assemble large structures from a small number of molecular
building blocks. Theoreticians have shown that the self-assembly process is controllable

9

by appropriate design (“programming”) of the initial building blocks, thereby
significantly expanding the potential for creation of interesting nanostructures.

In addition to the preceding speculative technological advances, there are numerous
innovative advances that already exist, but which are not being exploited to capacity due
to insufficient knowledge about how to use them. A prime example is the use of clusters
of workstations as a platform for parallel computing. Whereas the technology for
achieving cooperation among workstations in a cluster is well developed, the
environment that they present is sufficiently different from that of a multiprocessor that
we do not yet know how to schedule parallel computations effectively on clusters. A few
recent theoretical studies are just beginning to develop the understanding and the
algorithms necessary to remedy this situation.

Bioinformatics
Researchers in theory of computing have long been interested in modeling biological
phenomena, for example by cellular automata and Lindenmeyer systems.
Much current research in molecular biology is devoted to understanding the structure and
function of biomolecules, such as the human genome. Combinatorial algorithms play a
major role in the computational tasks of deducing accurate DNA sequence data from
short fragments that contain errors, of mapping out important “landmarks” in long
sequences, and also of predicting protein structure from the underlying amino acid
sequences. A second important role of theory of computing is to provide good models
and methods for reconstructing the process of evolution from such sequence data, such as
methods for constructing phylogenetic trees.

In addition, modeling of biomolecules raises new questions in geometry and physics. G.
D. Rose wrote that “what role a protein takes in the grand biological opera depends on
exactly one thing: its shape. For a protein molecule, function follows form.” (No
assembly required, The Sciences, 36 (1996), 26–31). New models for biomolecules, such
as alpha shapes, are being developed by theoretical computer scientists that can aid in the
design of drugs, in the classification of molecular components, and in the simulation of
docking and folding processes.

The proliferation of biological data, and the need for its systematic and flexible storage,
retrieval and manipulation, is creating opportunities in the database field. Genomic
databases are heterogeneous, distributed, and semistructured, or with a schema that is in
flux, thus offering novel challenges to database design, including its more fundamental
aspects. The study of gene expression, protein structure and cell differentiation, as well
as the emergence of microarrays, are introducing potentially unlimited data (while the
whole human genome is less than one gigabyte, a limited size that initially misled many
database researchers to underestimate the field). There are new challenges for indexing
of sequences and three-dimensional structures, for lab workflow storage and process
modeling, and for processing queries that involve specialized approximate pattern
matching and complex geometric relations such as docking. These problems would
benefit much from the theory community's extensive experience with string matching,
scheduling, and computational geometry. As it has happened in the past with several

10

other challenges to database research, early principled theoretical investigation of these
problems is already an important ingredient of the field's research agenda.

Continued Theoretical Research is Critical
Naturally, the areas above can only illustrate the need for theoretical research. The sole
intent of the discussion here is to demonstrate, by a few examples, strategic areas in
which theory of computing has been successful and in which continued theoretical
research is critical. This list is not intended to be exhaustive. Also, we wish to stress that
our list provides a view of the future from where we stand now. In truth, we do not know
what the exciting challenges fifty years from now will be. Fifty years ago there were no
more than a few computer experts and they could not have predicted the massive expanse
of computing and communications in our society today. Sixty years ago DNA had not
even been identified as the carrier of genetic information; the marshaling of science and
technology to address the new questions raised by biomolecular data would not have
been predictable.

Quite apart from technically-grounded evidence such as we present here, there are many
other indicators of the importance, relevance, and health of theory of computing today.
For example, consider the number of conferences centered on theoretical work, ranging
from some that focus heavily on particular application domains to others that focus on
foundational studies. Fundamental and innovative work in theoretical computer science
has received favorable attention in broad-based scientific publications and in the national
media over the past decade (for example, interactive proof systems, zero-knowledge,
probabilistically checkable proofs, descriptive complexity); this has helped to make
computer science research visible to those outside of our field. Researchers in theory of
computing collaborate with computer scientists and engineers in many areas, with
mathematicians, and with researchers in finance and the physical and biological sciences.
Several leading theoreticians at major research institutions have founded their own
companies in cryptography, security, web applications, and other areas. Many others are
being lured from academia to be leading scientists at such companies, at large well-
established corporations, and in arenas such as finance and biotechnology.

Foundational Research Transforms Computer Science
Recent successes strongly indicate that we can expect a continued flow of important
results from theoretical work for the foreseeable future— results that can transform the
course of computer science research and, ultimately, the way technology is used. In
many cases, these results emerge in unpredictable ways from apparently unrelated
investigations of fundamental problems.

While many of the deep theoretical problems that are attracting the best minds in our
field are rooted in, or inspired by, challenges such as those listed above, it is often
difficult for researchers to properly tackle such problems in the context of an application-
driven research environment. One reason for this is the long time period needed for work
on fundamental problems to come to full fruition. In addition, solutions to such problems
draw on diverse mathematical and computational methods, and so the interaction of a
broad community of theoretical researchers is essential.

11

Moreover, the best theoretical results typically influence the course of research in several
application areas, and so it is extremely useful to maintain an identifiable corpus of
theoretical knowledge that is accessible to the Computer Science community and to the
scientific research community at large.

A third reason for the importance of foundational research which is not targeted at a
specific application is that, because of its focus on high-risk and speculative problems,
and because of the often surprising or unpredictable consequences that stem from
theoretical research, such research provides the seed corn for innovations of the future.
This is underscored by the introductory quote of this section.

For all of these reasons, unfettered research in foundational theoretical areas is vital, in
order to provide better understanding of the capabilities and limitations of computers, and
to ensure future innovations in science and technology.

Models of Computation and Information; Complexity Theory
Fundamental questions remain on the relationships among models of computation,
information representation and manipulation, and on good ways to express algorithms.
The P versus NP question is perhaps the most famous of these, the refinement of which
has led to many other important questions in complexity theory. Progress on complexity-
theoretic problems, even when of the “negative” type (such as providing evidence for the
intractability of certain problems) can completely change computer scientists' approaches
to practical problems in surprising ways. For one thing, researchers no longer waste time
seeking efficient solutions to intractable problems. Instead, they invent and learn
techniques for coping with intractability. As we mentioned earlier, the computational
hardness of certain problems has been exploited for cryptography. Currently,
computational hardness of certain problems is being harnessed to obtain efficient
deterministic (error-free) algorithms for problems where randomness (and thus error-
prone) algorithms previously seemed necessary.

The theory of computing community continues to produce wonderful fundamental ideas,
and, over time, these influence practice in important ways. The interplay among concepts
such as pseudorandom number generation, interactive proofs, and secure cryptographic
protocols is beautiful and deep, and has significant potential to the practice of
cryptography. The introduction of interactive proof systems and probabilistically
checkable proofs has broadened and enriched our understanding of the concept of proof.
Probabilistically checkable proofs have turned out to be a fundamental tool for studying
the limits of polynomial-time approximation algorithms.

Foundational questions will require a concerted effort in the areas of classical Turing
machine-like models and variants (such as randomized or quantum models), models of
learning, formal methods and program inference, models of nonsymbolic reasoning,
logical characterization of complexity classes, lower bounds, models of on-line
computation, models for communication of information, models for inferring
information from incomplete data, models for data storage and retrieval in a multimedia

12

context, and parallel and distributed models. Study of connections between models and
results in more than one of these areas can be particularly fruitful. For example, on-line
algorithms, common in key frameworks such as operating systems, financial control, and
real-time systems, have generated fundamental concepts that are important for distributed
systems design, in particular where information flow is more complex than traditional
input/output.

Design and Analysis of Algorithms
Foundational work on algorithms design has the goal of breaking long-standing barriers
in performance. There are many situations where complicated algorithms, such as
Strassen and Schönhage's multiplication algorithm, were deemed inferior for years, but
with steady increases in problem sizes, such algorithms now are preferred on appropriate
high-performance computing platforms.

In other cases, (such as linear programming) initial breakthroughs in reducing asymptotic
running time, while not practical in and of themselves, serve to stimulate new research
that eventually leads to practical algorithms. What tends to happen is that once a barrier,
such as the existence of a polynomial-time algorithm for a problem, is broken, there is
strong justification and real motivation for researchers to revisit a problem that previously
appeared impenetrable. Very often, painstaking refinement of the seminal breakthrough
technique leads to a truly practical algorithm. Ultimately, this type of research has long-
lasting impact on the practice of computing. Tantalizing open questions remain, such as
whether there is a polynomial time algorithm for graph isomorphism, or whether one can
efficiently learn Boolean formulas that are in disjunctive normal form from random
examples.

New Theories of Algorithms and Heuristics
While theoretical work on models of computation and methods for analyzing algorithms
has had enormous payoffs, we are not done. In many situations, simple algorithms do
well. Take for example the Simplex algorithm for linear programming, or the success of
simulated annealing on certain supposedly “intractable” problems. We don't understand
why! It is apparent that worst-case analysis does not provide useful insights on the
performance of many algorithms on real data. Our methods for measuring the
performance of algorithms and heuristics and our models of computation need to be
further developed and refined. Theoreticians are investing increasingly in careful
experimental work leading to identification of important new questions in the algorithms
area. Developing means for predicting the performance of algorithms and heuristics on
real data and on real computers is a grand challenge in algorithms.

On numerous occasions, theory of computing research has provided the insights that
explain why popular, important heuristic algorithms work. Significantly, these insights
have suggested major improvements to the heuristics. One example of this scenario was
the study by Turner in the 1980s that explained why the decades-old Cuthill-McKee
heuristic for minimizing the bandwidth of sparse linear systems works well in practice;
this understanding allowed Turner to devise an improved heuristic. A second example,

13

also from the 1980s, explained why the Kernighan-Lin graph bisection heuristic, which is
important in the field of circuit layout, works well in practice.

4. Conclusions
This report demonstrated the following major points:

• Fundamental discoveries by theoreticians shape computer science dramatically.
• Resources invested in theory of computing research yield significantly multiplied

practical benefits.
• Current and future technology depends on research by theoreticians and on

collaborative projects that involve both theoreticians and practitioners.

We learned of the enormous potential impact of theory of computing research. For
purposes of illustrating this impact, we examined five major technological challenges to
computer science research, and explained the need for theoretical research in order to
address these challenges. As one lists the areas of theory of computing research that
relate to just these five challenges, the result is overwhelming and daunting: complexity
theory and complexity-theoretic lower bounds, design of efficient algorithms,
concurrency theory, semantics, formal methods, asymptotic complexity, approximation
algorithms, graph algorithms, learning theory, algebraic specification, logics of programs,
modal and temporal logics, model checking, process algebras, type theory, combinatorial
algorithms, string matching, scheduling, and computational geometry. (We list these
areas in the order in which they occurred in the previous section.) Let us add that several
of these challenges will benefit from advances in descriptive complexity and finite model
theory. Moreover, we reiterate that these five challenge areas were intended only to
illustrate the need for theoretical research, and were not intended to be exhaustive.

We learned that unfettered research in foundational theoretical areas, research that is not
targeted at specific applications, is vital. Historic evidence demonstrates that such
research transforms computer science dramatically.

Recommendations
The current funding model and level of funding (single-PI grants, with funds for at most a
single graduate student and limited travel money) is dangerously insufficient, to the
extent that important research is not being carried out for lack of resources. In view of
the potential impact of theory of computing research that this report has demonstrated,
funding for cutting-edge theory of computing should be increased dramatically. There is
a need to increase the number of researchers in theory of computing, enhance interactions
between researchers, and encourage various types of collaborations.

Our recommendations fall into two broad categories. The first addresses ways in which
traditional NSF funding for theory of computing needs to be strengthened. The second
lists innovative new initiatives for enhancing research capabilities.

The traditional grant program should be improved by the following means:

14

• Increase the number of awards from the current level of approximately 30 per
year to at least 60 per year.

• Increase the duration of awards from three years to five years.
• Increase the size of awards to allow for more than one graduate student, adequate

travel money to foster collaboration, and sufficient equipment money to ensure a
modest but up-to-date computing environment.

• Create a postdoctoral research funding program. Grants should be awarded to
established researchers rather than individual postdoctoral students in order to
increase the diversity of available research experiences.

• Encourage and facilitate proposals from groups of researchers at different
institutions.

In addition to strengthening traditional grants support, we urge the NSF to undertake the
following innovative initiatives.

Conference Center
We propose the establishment of a research conference center in a rural setting along the
lines of Oberwolfach and Dagstuhl in Germany. We recommend establishing the
conference center as an independent entity, and suggest that such a center would be of
benefit if created to include all of the disciplines within CCR. This center would act as a
crucible, bringing together researchers from around the country to participate in
workshops and collaborations in an informal and congenial setting. We envision both
specialized and interdisciplinary workshops to enable interactions.

Professional Development
We propose a new faculty development initiative to enhance the skills and knowledge of
theoreticians and enable them to work with researchers from other fields on important
problems. Under this initiative, a program will be established to provide funds for
researchers to spend one or two semesters studying and learning in some other discipline
preparatory to starting collaborative research activities.

Virtual Theory Center
We propose the establishment of a Virtual Theory Center along the lines of the PITAC
recommendation of expeditions into the 21st century. We envision using web-based
technology to foster interactions between geographically diverse researchers without the
need for expensive and time-consuming travel, including activities such as the following:

• Real-time storage and retrieval facilities for research colloquia;
• Web-based video conferencing technology for interactions among members of a

research team.

The Virtual Theory Center will enable researchers at under-represented, under-funded,
and geographically isolated institutions to participate in research activities.
Establishment of this center would require:

15

• A centralized computational server, with coordination, management, and
technical staff, and

• Infrastructure to enable researchers to use the facilities of the Virtual Theory
Center, including video cameras, electronic whiteboards, and high-speed network
links.

The Virtual Theory Center can enable continuation of collaborations created as an
outcome of the Professional Development Initiative, and the Conference Center.

CISE Advisory Board
We strongly recommend increased representation of theory of computing on the CISE
Advisory Committee. As this report has demonstrated, theory of computing is essential
to all CISE activities.

Acknowledgments
The authors appreciate the interest and encouragement of Zeke Zalcstein, Theory of
Computing Program Director, Mike Evangelist, C-CR Division Director, and Ruzena
Bajcsy, CISE Assistant Director. We thank Ed Clarke for his useful pointers and
comments, and Juris Hartmanis, past CISE Assistant Director, for his many insights.

