
Tamper-resistant Monitoring for Securing Multi-core

Environments

Ruchika Mehresh
1
, Jairaj J. Rao

1
, Shambhu Upadhyaya

1
, Sulaksh Natarajan

1
, and Kevin Kwiat

2

1
Department of Computer Science and Engineering, State University of New York at Buffalo, NY, USA

2
Air Force Research Laboratory, Rome, NY, USA

Abstract - Complex software is not only difficult to secure but

is also prone to exploitable software bugs. Hence, an intrusion

detection system if deployed in user space is susceptible to

security compromises. Thus, this ‘watcher’ of other software

processes needs to be ‘watched.’ In this paper, we investigate

a tamper-resistant solution to the classic problem of ‘Who

watches the watcher?’

In our previous work, we investigated this problem in a uni-

core environment. In this paper, we design a real-time, light-

weight, watchdog framework to monitor an intrusion

detection system in a multi-core environment. It leverages the

principles of graph theory to implement a cyclic monitoring

topology. Since our framework monitors intrusion detection

systems, the attack surface it has to deal with is considerably

reduced. The proposed framework is implemented and

evaluated using AMD SimNow simulator. We show that the

framework incurs a negligible memory overhead of only 0.8%

while sustaining strong, tamper-resistance properties.

Keywords: Attacks, Graph models, Intrusion detection,

Multi-core, Processor monitoring, Recovery, User space

components

1 Introduction

 Growing connectivity of computer networks has made

network services like wu-ftp, httpd, BIND, etc. a popular

target for cyber attacks. Exploitation of these services makes

the entire host vulnerable to further exploits. Since more and

more functionalities are added to such software programs

each day, their code base becomes larger and more complex.

This increases the probability of existing software bugs,

resulting in security vulnerabilities. There are many studies

conducted over the years that document the increasing trend

of software unreliability and growing intelligence of hacker

community [1], [2], [3].

 Over the years, industry and research communities have

produced several prevention, detection and recovery

methodologies. However, preventing all kinds of attacks in

today‟s open networking environment is practically

impossible. Therefore, the major burden of securing a system

effectively lies with the detection techniques employed.

Detection of attacks and suspicious behavior is generally

achieved with the help of automated tools such as intrusion

detection systems (IDS) [4]. Many IDS tools alert the

authorized user when some malicious activity is suspected, or

initiate a recovery without attempting to prevent the attack at

all. Sometimes they can detect and prevent an attack before it

causes any major damage – in which case, they are also called

intrusion prevention systems (IPS). In this paper, we discuss

intrusion detection systems but the findings equally apply to

intrusion prevention systems.

 Intrusion detection systems collect and analyze data at

two broad levels: the network level and the host level. Host

based IDSes have the advantage of proximity and hence can

monitor a system closely and effectively. Traditionally, IDSes

have been designed to operate in user space which makes

them vulnerable to compromises. Advanced malware has been

discovered that can disable them upon its installation [5], [6].

Recently, many compromises of IDSes were reported [7], [8],

[9]. Moving IDSes completely or partially to the kernel space

increases the trusted computing base (TCB), which in turn

introduces further (and more serious) problems [10].

Therefore, a simpler and more effective way of ensuring the

security of these systems is to design and deploy them in user

space, and ensure their correct operation by tamper-resistant

monitoring against subversion. If a malware is successful in

switching off the IDS, the monitoring system should be able to

report this change to an uncompromised authority. This

addresses the problem of ‘who watches the watcher’ that often

arises in an end-to-end security system.

 We have earlier studied this problem in a uni-core

environment [11]. However, with the advent of multi-core

technology, this problem needs to be revisited for two major

reasons. First, a multi-core environment presents new security

and design challenges [12], [13]. Therefore, existing security

solutions need to be reevaluated for adoption in this new

environment. Second, it offers the concurrency that can

increase the efficiency and efficacy of our previously

proposed framework [11], [14].

 The overall scheme works as follows. We use a cyclic,

tamper-resistant monitoring framework that uses light-weight

processes (referred to as process monitors in the sequel) to

monitor the IDS. Though we focus on monitoring the host-

IDS, this framework can generally monitor any crucial

process. Thus, this framework can also assist in reducing the

size of a system‟s TCB. Process monitors in this framework

are responsible for performing simple conditional checks. A

primary conditional check is to continuously monitor if a

process is up and running. Rest of the conditional checks can

be implemented and enabled according to security and

efficiency requirements of the system. If any of the

conditional checks fail, an alert notification is sent to the

uncompromised authority (mostly the root). These process

monitors monitor each other in a cyclic fashion without

leaving any loose ends. If one of them is killed, the next in

the order raises an alert. Since the monitoring is cyclic, no

process monitor is left unmonitored. One of these process

monitors has an additional responsibility of monitoring the

host-IDS. If an attacker intends to subvert the IDS, he first

needs to subvert the process monitor monitoring it. Since this

process monitor is being monitored by another process

monitor, and so on, the subversion becomes almost

impossible (we discuss the possible attack scenarios in

Section V). Loop architectures and concepts from graph

theory have long been used to make designs reliable and

robust [15]. In this paper, we identify the benefits of a cyclic

monitoring framework, the issues in maintaining it and the

kind of performance overhead it incurs.

 The rest of this paper is organized as follows. Section 2

discusses the related work. Section 3 states the assumptions.

Section 4 gives the system architecture. Section 5 discusses

the threat model, while Section 6 presents the various

framework topologies. Section 7 describes the experiments

and results, followed by conclusion and future work in

Section 8.

2 Related Work

 As discussed previously, intrusion detection systems are

traditionally located in the user space. Tools like DWatch

[16] are implemented completely in user space and monitor

other daemon processes. Implementing IDS in user space may

have its performance advantages [19] but access to these

detection systems is not very well protected. Hence, they are

equally susceptible to a security compromise as any other

process. There are many intrusion detection systems that are

implemented completely inside the kernel [17]. Kernel space

implementation of an intrusion detection system is a very

tempting choice because it provides strong security (process

privileges required). However, such an implementation has

high associated overhead. Each time a kernel-implemented

IDS event is invoked, there is expensive context switching.

Besides, IDS being complex software has a high probability

of residual software bugs. These bugs can either cause severe

negative performance impacts at kernel level, or make the

entire kernel vulnerable to a security. Also, IDS tools

generally need to apply frequent updates because new attacks

are discovered each day. This not only results in high

performance overheads but carries a risk of infecting the TCB

with bad code. Implementations like the Linux security

modules (LSM) [21] provide a diffuse mechanism to perform

checks inside the kernel at crucial points, but it is an

expensive solution. There are some hybrid detection

techniques [18] that are partially in kernel space and rest in

the user space. Such techniques inherit some strengths as well

as weaknesses from both the domains. For instance, an entire

IDS implementation in kernel space, with just the notification

mechanism in user space can be subverted by curbing the

notifications.

 Some monitoring architectures secure intrusion

detection systems by proposing the use of isolated virtual

machines [5]. Such systems solve the problem of securing the

watcher, but require installation of separate virtual machines

and process hooks. These features increase the cost of such

security solutions.

 Our framework is an extension of the user space

framework proposed by Chinchani et al. [11]. They proposed

a tamper-resistant framework in a uni-core environment to

secure user space services. In this paper, the framework is

extended to protect user space components in a multi-core

environment.

3 Assumptions

i) All software components are assumed to be susceptible

to security attacks.

ii) We assume a zero-trust model. Therefore, an attacker

cannot predict the order of process monitors in the

framework topology by observing system behavior.

iii) All process monitors are identical and light-weight.

4 System Architecture

 The proposed framework runs on a K-core host. We

assume symmetrical multiprocessing (SMP), where all cores

are managed by the same operating system instance. This

system runs a user space, host-based IDS that monitors other

host processes for any suspicious activity. We mentioned

earlier that some malware can attack the IDSes upon their

installation. Since the IDS here is in the user space, it is

susceptible to security compromise as any other process.

Therefore, we design a monitoring framework to ensure that

the IDS is running in a tamper-resistant mode at all times.

 This framework primarily consists of light-weight

process monitors. These process monitors are simple

programs that monitor other processes for specific conditions.

The primary condition is to check continuously if the

monitored process is running. If it is killed or any other

condition fails, the process monitor detects it and sends an

alert to the root user.

 In the simplest topology of this framework, process

monitors are arranged in a cyclic fashion (as shown in Figure

1). Since there are no loose ends in a cycle, every process

monitor is monitored by another. To ensure parallel

monitoring, IDS and all the process monitors run on separate

cores. For instance, in a K-core system, if the IDS is running

on Core 1, rest of the K-1 cores run the process monitors, one

on each. Process monitor on Core 2 monitors the IDS on Core

1, as well as the process monitor on Core K.

Figure1: A simple-ring topology on a K-core system.

5 Threat model

i) Denial of Service attacks in multi-core systems: Memory

hogging [12] is a denial of service attack where one core

consumes shared memory unfairly. This results in

performance degradation at other cores due to resource

scarcity. This kind of attack can be handled by our

framework via conditional checks. A process monitor can

raise an alert if it observes exceptionally high scheduling

delays affecting the monitored process.

ii) Window of vulnerability: There are windows of

vulnerability introduced because of multi-core

scheduling. We assume that process monitors hosted on

separate cores can continuously monitor each other. This,

however, is not practically feasible. If the core hosting

the process monitor has other processes scheduled on it,

the process monitor will have to go back into the

scheduling queue periodically. During this window, if

monitored process is attacked, the process monitor

monitoring it cannot raise an alert. It can only do so when

it is rescheduled to run again. If such windows are

identified and exploited in order, it is possible to subvert

the entire framework. This vulnerability can be patched

by employing multiple degree of incidence, meaning that

one process monitor is monitored by (and monitors)

multiple other process monitors. This way, even when

some of them go back into scheduling queues, we can

still dynamically maintain at least one monitoring cycle

with a high probability. However, this arrangement leads

to a performance-security trade-off. Higher degree of

incidence provides stronger security but at a higher

monitoring cost.

iii) Exploiting system vulnerabilities (crash attacks, buffer

overflow, etc.): An attacker can try to crash (kill) any of

these process monitors by exploiting system

vulnerabilities. These vulnerabilities could be introduced

by other software running on the system. We will see in

Section 5 how such attacks are handled.

6 Framework Topologies

 A monitoring framework, cyclic or not, can have

numerous topologies. For a K-core system, we can choose

from a simple ring topology (as shown in Figure 1) to a

topology with multiple degree of incidence (as shown in

Figure 2). We will present a few basic topologies here that

provide strong tamper-resistance properties.

 In order to compare the various topologies, we need to

understand the basis on which they can be evaluated. There

are two questions that can be asked:

i) How secure a topology is?

ii) How efficient a topology is?

 Any topology that can be compromised with a high

probability is insecure. In [11], Chinchani et al. discuss the

subversion probabilities of simple replication and layered

hierarchy (onion peel) topologies. The paper claims that a

circulant digraph configuration provides the strongest tamper

resistance properties.

Topology 1: Simple Ring

 Simple ring topology represents an ordered cycle of process

monitors, as shown in Figure 1. It offers a much lower

probability of subversion compared to the onion peel model

[11]. Since we assumed a zero-trust model, an attacker needs

to try (n!-1) permutations (in the worst case), before he

figures out the right order. This topology works considerably

well for scenarios where all participating cores are minimally

loaded, and the process monitors run for most of the times.

However, when the workload increases, these process

monitors have to wait in scheduling queues for some finite

amount of time. If during this time, the processes that they are

monitoring are compromised, an alert cannot be raised.

Therefore, heavy system load can create windows of

vulnerability that if exploited in a certain order, can lead to

successful subversion of the framework.

Topology 2: Circulant Digraph

Earlier research proposed circulant digraph as the primary

approach to increase efficacy of this monitoring framework

(reduce false negatives) [11]. However, in a multi-core

environment it has an added benefit of reducing the creation

of windows of vulnerability. Higher the degree of incidence,

lower is the probability that a process monitor remains

unmonitored itself.

A circulant digraph CK(a1, . . . , an) with K vertices v0, . . .

vK−1 and jumps a1, . . . , an, 0 < ai < ⌊K/2⌋, is a directed graph

such that there is a directed edge each from all the vertices

vj±ai mod K, for 1 < i < n to the vertex vj, 0 < j <K – 1. It is

Intrusion detection or a

crucial user-space service

Lightweight process
monitor

Direction of Monitoring

A process i runs on core i, and 1≤i≤K

where K is the total number of cores

on the processor.

Numbers from 1-8 indicate the 8 cores

of the host‟s processor

2

3

4

5
_

.

1

K

_

.

also homogeneous, i.e., every vertex has the same degree

(number of incident edges), which is 2n, except when ai =K/2

for some i, when the degree is 2n−1. Figure 2 shows a

circulant digraph with 8 process monitors, degree of

incidence 3 and jumps {1, 2}.

Figure 2: Circulant digraph with 8 process monitors running

on 8 cores. One process monitor per core. This circulant

digraph has a degree of incidence 3 and jumps {1,2}.

 Simple ring topology is a special case of circulant

digraph topology with degree of incidence 1. However, a

circulant digraph topology (with degree of incidence > 1) is

much more secure than a simple ring topology. This is

because the number of attempts required to find the right

permutation increases exponentially in the worst case (since

the attacker does not know the degree of incidence, the jump

and the order of process monitors).

Topology 3: Adaptive Cycle

 Since raising a large number of alarms is counter-

productive to a system‟s performance, a circulant topology

though effective, is not optimal. Even if an attacker is not in a

position to attack, he can tamper with the framework to make

it raise a large number of useless alerts. To counter this threat

and reduce the number of alerts produced by the circulant

topology, we propose an adaptive topology. It predicts the

system load and tries to maintain cyclic monitoring at all

times. This requires that process monitors at each core track

the load on other cores. As shown in Figure 3, the initial state

of this topology is set to be a simple ring. If process monitor

on core 2 realizes that core K has just been assigned a lot of

new processes, it starts monitoring process monitors K and K-

1, both. Similarly, if core 2 gets heavily loaded, process

monitor 3 starts monitoring process monitors 2, K and K-1.

So, the cores that are lightly loaded take up the responsibility

of monitoring the process monitors on heavily loaded cores

and the process monitors they were respectively responsible

for.

 Therefore, the final state of an adaptive cyclic topology

can be formally defined: For a K-core processor, a process

monitor on core i where 1≤i≤K, monitors process monitors on

all cores j, where i+1≤j≤K, if there is a directed edge from i to

j, or if there exists a z such that there is a directed edge from i

to z and from z to j.

 The probability of subversion for adaptive cycle

topology is equal to the probability of subversion for circulant

digraph topology. However, the number of attempts required

to find the right order of process monitors in an adaptive

topology is much larger than in circulant digraph topology (in

the worst case). This is because the degree of incidence and

jumps are always changing dynamically. Therefore, an

adaptive topology provides better performance and stronger

security as compare to the circulant digraph topology.

7 Experiment Design

Companies like Intel, AMD, etc., have made significant

progress in multi-core technology. Clearspeed‟s CSX600

processor with 96 cores [19] and Intel‟s Teraflops Research

chip with 80 cores [20] are the latest in this line. However,

such systems do not have a strong presence in the commercial

market yet. This generally restricts researchers to use a small

number of 2-6 cores. In order to bridge this gap between

unavailability of present technology and researching the

future needs of this technology, simulators have been

developed [21], [22]. These simulators emulate the

functioning of a multi-core platform on a system with lesser

number of cores (even uni-core processor). Amongst the

many open source multi-core simulators that are available

today, AMD SimNow closely emulates the NUMA

architecture. Therefore, we use it as a test-bed to experiment

with simple ring and circulant digraph topologies.

Figure 3: Adaptive topology when cores 2 and K are heavily

loaded.

7.1 Configuration

 Experiments are conducted on Intel Pentium Core2Duo

2.1 Ghz processor with 4GB RAM. AMD SimNow is

installed on Ubuntu 10.04 which is the host operating system.

Inside AMD SimNow, we run a guest operating system, i.e.,

FreeBSD 7.3. All experiments run on this guest operating

system. This system is configured to use emulated hardware

3

5

4

6

7

8

2

1

1

K-1

….

.

….

.

4

3

K

2

2

1

K-1

….

.

….

.

4

3

K

of AMD Awesim 800Mhz 8-core processor with 1024 MB

RAM.

 We use kernel level filters to implement process

monitoring. This is because inter-process communication

support provided by UNIX-like systems (like pipes or

sockets) does not suffice for our framework. Inter-process

communication delivers messages only between two live

processes. However, we require that a communication (alert)

be initiated when a process is terminated. For this purpose,

we use an event delivery/notification subsystem called

Kqueue, which falls under the FreeBSD family of system

calls. Under this setup, a process monitor interested in

receiving alerts/notifications about another process creates a

new kernel event queue (kqueue) and submits the process

identifier of the monitored process. Specified events (kevent)

when generated by the monitored process are added to the

kqueue of the process monitor. Kevent in our implementation

is the termination of the monitored process. Process monitors

can then retrieve this kevent from their kqueues at any time.

A process monitor can monitor multiple processes in parallel

using POSIX threads.

 Experimental setup consists of 8 simulated cores with

process monitors running on each one of them. We report on

the evaluation of only the circulant digraph topology as a

representative result. We experiment with different circulant

digraph topologies with varying number of process monitors

and degrees of incidence. The primary performance metrics in

a multi-core system are time and memory overheads. Each

reading in this analysis represents an average of 100 runs.

7.2 Execution Performance

 The initial setup time is defined as the time taken for the

kqueue subsystem to get loaded before an attacker tries to

subvert the process monitors. This is the only major time

delay this system has been observed to incur. As shown in

Figure 4, initial setup time increases linearly with increasing

degree of incidence. With 8 process monitors in a circulant

digraph topology, the worst case initial setup delay of 0.3ns is

obtained with a maximum degree of incidence (i.e., 7).

Figure 4: Initial Setup overhead for circulant digraph

topology with 8 process monitors.

7.3 Memory Performance

 We define the memory overhead to be the amount of

memory consumed by a running instance of the framework as

a percentage of the entire system memory capacity. Memory

overhead is observed to increase linearly with the degree of

incidence. A circulant topology with 8 process monitors and

degree of incidence 7 incurs a 0.8% (0.1% per process)

memory overhead.

Table 1: Categorization of circulant digraph topologies

Configuration Number of processes Degree of Incidence

Series1 2 1

Series2 3 1,2

Series3 4 1,2,3

Series4 5 1,2,3,4

Series5 6 1,2,3,4,5

Series6 7 1,2,3,4,5,6

Series7 8 1,2,3,4,5,6,7

7.4 Attack Tolerance

 We experimented with different circulant digraph

topologies with varying number of process monitors and

degree of incidence, as shown in Table 1. For all topologies,

jumps start from a minimum of 1, incremented by 1, until it

satisfies the degree of incidence.

 The following attack scenarios were executed in order to

test the security strength of the framework.

Experiment 1: Killing process monitors without delay (under

light system load)

 We experiment with the worst case scenario where the

attacker already knows the correct order of the nodes in this

topology. We assume that he also identifies the windows of

vulnerability and uses them to his advantage (again, the worst

case). In Figure 5, the number of alerts generated shows the

sensitivity of this framework toward a crash attack executed

using SIGKILL.

Experiment 2: Killing process monitors without delay

(under heavy system load)

 Experiment 1 was repeated under heavy load conditions

to determine the impact of increasing system load on

framework‟s sensitivity (number of alerts) to an attack. A

heavy load condition is simulated by running Openssl

benchmark in the background. In this emulated multi-core

environment, a maximum of 6,164 processes can run on

FreeBSD operating system. We ran 6,000 processes to

achieve nearly 100% CPU consumption for all cores. As seen

in Figure 6, the framework generates lesser number of alerts.

This is because the process monitors have to wait in the

scheduling queue longer than in Experiment 1.

Figure 5: Alerts generated for killing process monitors in

sequential order without delay, under light system load.

Figure 6: Alerts generated for killing process monitors in

sequential order without delay, under heavy system load.

Experiment 3: Group Kill attack

 This framework is created by forking a process into

child processes. All child processes forked from the same

parent belong to the same group by default (identified by the

same group ID). An external process can easily identify the

group ID (GID) from the kernel proc structure using

commands such as „ps‟ from the user space. Any crash attack

on this process monitor group can be represented by a

SIGKILL signal sent to the GID of the process monitors. This

attack successfully subverts the framework and no alerts are

raised by any of the process monitors. Thus, this constitutes a

successful attack on the framework, where the property of all

the process monitors belonging to a common default group

becomes a vulnerability.

 In order to increase framework‟s resistance to these

kinds of attacks, we organized alternate process monitors

under two different groups. Process monitors with even PIDs

(process IDs) retain their default GID, which is the PID of the

parent process. The GID of process monitors with odd PIDs

is changed to their respective PIDs. Now, a SIGKILL signal

sent to the default GID of the group will successfully kill the

processes with even PIDs, but the odd ones will raise alerts.

8 Conclusion and Future work

 This paper proposed a tamper-resistance framework to

monitor the intrusion detection systems (IDS) in a multi-core

environment. We identified the benefits of our framework and

the related issues. We also analyzed two framework

topologies, viz. simple ring and circulant digraph. They are

found to incur low time and memory overhead, while still

retaining strong tamper-resistance properties.

 As a future work, we plan to investigate the adaptive

ring and other topologies. We plan to add more attack

scenarios to this analysis. For instance, a smart attacker can

replace a process monitor with a dummy process to subvert

the framework.

9 Acknowledgement

This research is supported in part by a grant from the Air

Force Office of Scientific Research (AFOSR). The work is

approved for Public Release; Distribution Unlimited:

88ABW-2011-1929 dated 31 March 2011.

10 References

[1] A. Nhlabatsi, B. Nuseibeh, and Y. Yu, "Security

requirements engineering for evolving software

systems: A survey," Journal of Secure Software

Engineering, vol. 1, pp. 54–73, 2009.

[2] N. Dulay, V. L.Thing, and M. Sloman, "A Survey of

Bots Used for Distributed Denial of Service Attacks,"

International Federation for Information Processing

Digital Library, vol. 232, 2010.

[3] T. Heyman, K. Yskout, R. Scandariato, H. Schmidt,

and Y. Yu, "The security twin peaks," Third

international conference on Engineering secure

software and systems, 2011.

[4] F. Sabahi, and A. Movaghar, "Intrusion Detection: A

Survey," Third International Conference on Systems

and Networks Communications (ICSNC), pp. 23-26,

2008.

[5] B. D. Payne, M. Carbone, M. Sharif, and L. Wenke,

"Lares: An Architecture for Secure Active Monitoring

Using Virtualization," IEEE Symposium on Security

and Privacy (SP), pp. 233-247, 2008.

[6] T. Onabuta, T. Inoue, and M. Asaka, "A Protection

Mechanism for an Intrusion Detection System Based

on Mandatory Access Control," Society of Japan, vol.

42, 2001.

[7] Greg Hoglund, "Malware commonly hunts down and

kills anti-virus programs," Computer Security Articles

2009.

[8] Hermes Li, “Fake Input Method Editor(IME) Trojan,”

Websense Security Labs, 2010.

[9] Christopher Null, “New malware attack laughs at your

antivirus software,” Yahoo! News, 2010.

[10] M. M. Swift, B. N. Bershad, and H. M. Levy,

"Improving the reliability of commodity operating

systems," ACM Transactions on Computer Systems

(TOCS), vol. 23, pp. 77-110, 2005.

[11] R. Chinchani, S. Upadhyaya, and K. Kwiat, "A

tamper-resistant framework for unambiguous detection

of attacks in user space using process monitors," First

IEEE International Workshop on Information

Assurance (IWIAS), pp. 25-34, 2003.

[12] T. Moscibroda, and O. Mutlu, "Memory performance

attacks: denial of memory service in multi-core

systems," Proceedings of 16th USENIX Security

Symposium on USENIX Security Symposium (SS),

2007.

[13] C. E. Leiserson, and I. B. Mirman, "How to Survive

the Multicore Software Revolution (or at Least Survive

the Hype)," Cilk Arts Inc., 2008.

[14] S.P. Levitan and D. M. Chiarulli, "Massively parallel

processing: It's Déjà Vu all over again," 46th

ACM/IEEE Design Automation Conference (DAC), pp.

534-538, 2009.

[15] S.L. Hakimi, and A. T. Amin, "On the design of

reliable networks," Networks, vol. 3, pp. 241-260,

1973.

[16] U. Eriksson, "Dwatch - A Daemon Watcher,"

http://siag.nu/dwatch/, 2001.

[17] C. Wright, C. Cowan, S. Smalley, J. Morris, and G.

Kroah-Hartman, "Linux Security Modules: General

Security Support for the Linux Kernel," in

Foundations of Intrusion Tolerant Systems (OASIS),

pp. 213, 2003.

[18] N. Provos, "Improving host security with system call

policies," Proceedings of the 12th conference on

USENIX Security Symposium, 2003.

[19] Y. Nishikawa, M. Koibuchi, M. Yoshimi, A. Shitara,

K. Miura, and H. Amano, "Performance Analysis of

ClearSpeed's CSX600 Interconnects," IEEE

International Symposium on Parallel and Distributed

Processing with Applications, pp. 203-210, 2009.

[20] Intel, "Teraflops Research Chip "

http://techresearch.intel.com/ProjectDetails.aspx?Id=

151.

[21] J.E. Miller, H. Kasture, G. Kurian, C. Gruenwald, N.

Beckmann, C. Celio, J. Eastep, and A. Agarwal,

"Graphite: A distributed parallel simulator for

multicores," Sixth IEEE International Symposium on

High Performance Computer Architecture (HPCA),

pp. 1-12, 2010.

[22] A. Vasudeva, A. K. Sharma, and A. Kumar, "Saksham:

Customizable x86 Based Multi-Core Microprocessor

Simulator," First International Conference on

Computational Intelligence, Communication Systems

and Networks, pp. 220-225, 2009.

