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Abstract - Complex software is not only difficult to secure but 

is also prone to exploitable software bugs. Hence, an intrusion 

detection system if deployed in user space is susceptible to 

security compromises. Thus, this ‘watcher’ of other software 

processes needs to be ‘watched.’ In this paper, we investigate 

a tamper-resistant solution to the classic problem of ‘Who 

watches the watcher?’ 

In our previous work, we investigated this problem in a uni-

core environment. In this paper, we design a real-time, light-

weight, watchdog framework to monitor an intrusion 

detection system in a multi-core environment. It leverages the 

principles of graph theory to implement a cyclic monitoring 

topology. Since our framework monitors intrusion detection 

systems, the attack surface it has to deal with is considerably 

reduced. The proposed framework is implemented and 

evaluated using AMD SimNow simulator. We show that the 

framework incurs a negligible memory overhead of only 0.8% 

while sustaining strong, tamper-resistance properties.  

Keywords: Attacks, Graph models, Intrusion detection, 

Multi-core, Processor monitoring, Recovery, User space 

components  

 

1 Introduction 

  Growing connectivity of computer networks has made 

network services like wu-ftp, httpd, BIND, etc. a popular 

target for cyber attacks. Exploitation of these services makes 

the entire host vulnerable to further exploits. Since more and 

more functionalities are added to such software programs 

each day, their code base becomes larger and more complex. 

This increases the probability of existing software bugs, 

resulting in security vulnerabilities. There are many studies 

conducted over the years that document the increasing trend 

of software unreliability and growing intelligence of hacker 

community [1], [2], [3]. 

 Over the years, industry and research communities have 

produced several prevention, detection and recovery 

methodologies.  However, preventing all kinds of attacks in 

today‟s open networking environment is practically 

impossible. Therefore, the major burden of securing a system 

effectively lies with the detection techniques employed. 

Detection of attacks and suspicious behavior is generally 

achieved with the help of automated tools such as intrusion 

detection systems (IDS) [4]. Many IDS tools alert the 

authorized user when some malicious activity is suspected, or 

initiate a recovery without attempting to prevent the attack at 

all. Sometimes they can detect and prevent an attack before it 

causes any major damage – in which case, they are also called 

intrusion prevention systems (IPS). In this paper, we discuss 

intrusion detection systems but the findings equally apply to 

intrusion prevention systems.  

 Intrusion detection systems collect and analyze data at 

two broad levels: the network level and the host level. Host 

based IDSes have the advantage of proximity and hence can 

monitor a system closely and effectively. Traditionally, IDSes 

have been designed to operate in user space which makes 

them vulnerable to compromises. Advanced malware has been 

discovered that can disable them upon its installation [5], [6]. 

Recently, many compromises of IDSes were reported [7], [8], 

[9]. Moving IDSes completely or partially to the kernel space 

increases the trusted computing base (TCB), which in turn 

introduces further (and more serious) problems [10]. 

Therefore, a simpler and more effective way of ensuring the 

security of these systems is to design and deploy them in user 

space, and ensure their correct operation by tamper-resistant 

monitoring against subversion. If a malware is successful in 

switching off the IDS, the monitoring system should be able to 

report this change to an uncompromised authority. This 

addresses the problem of ‘who watches the watcher’ that often 

arises in an end-to-end security system.  

 We have earlier studied this problem in a uni-core 

environment [11]. However, with the advent of multi-core 

technology, this problem needs to be revisited for two major 

reasons. First, a multi-core environment presents new security 

and design challenges [12], [13]. Therefore, existing security 

solutions need to be reevaluated for adoption in this new 

environment. Second, it offers the concurrency that can 

increase the efficiency and efficacy of our previously 

proposed framework [11], [14].  

 The overall scheme works as follows. We use a cyclic, 

tamper-resistant monitoring framework that uses light-weight 

processes (referred to as process monitors in the sequel) to 

monitor the IDS. Though we focus on monitoring the host-

IDS, this framework can generally monitor any crucial 

process. Thus, this framework can also assist in reducing the 

size of a system‟s TCB. Process monitors in this framework 



are responsible for performing simple conditional checks. A 

primary conditional check is to continuously monitor if a 

process is up and running. Rest of the conditional checks can 

be implemented and enabled according to security and 

efficiency requirements of the system. If any of the 

conditional checks fail, an alert notification is sent to the 

uncompromised authority (mostly the root). These process 

monitors monitor each other in a cyclic fashion without 

leaving any loose ends. If one of them is killed, the next in 

the order raises an alert. Since the monitoring is cyclic, no 

process monitor is left unmonitored. One of these process 

monitors has an additional responsibility of monitoring the 

host-IDS. If an attacker intends to subvert the IDS, he first 

needs to subvert the process monitor monitoring it. Since this 

process monitor is being monitored by another process 

monitor, and so on, the subversion becomes almost 

impossible (we discuss the possible attack scenarios in 

Section V). Loop architectures and concepts from graph 

theory have long been used to make designs reliable and 

robust [15]. In this paper, we identify the benefits of a cyclic 

monitoring framework, the issues in maintaining it and the 

kind of performance overhead it incurs. 

 The rest of this paper is organized as follows. Section 2 

discusses the related work. Section 3 states the assumptions. 

Section 4 gives the system architecture. Section 5 discusses 

the threat model, while Section 6 presents the various 

framework topologies. Section 7 describes the experiments 

and results, followed by conclusion and future work in 

Section 8. 

2 Related Work  

 As discussed previously, intrusion detection systems are 

traditionally located in the user space. Tools like DWatch 

[16] are implemented completely in user space and monitor 

other daemon processes. Implementing IDS in user space may 

have its performance advantages [19] but access to these 

detection systems is not very well protected. Hence, they are 

equally susceptible to a security compromise as any other 

process. There are many intrusion detection systems that are 

implemented completely inside the kernel [17]. Kernel space 

implementation of an intrusion detection system is a very 

tempting choice because it provides strong security (process 

privileges required). However, such an implementation has 

high associated overhead. Each time a kernel-implemented 

IDS event is invoked, there is expensive context switching. 

Besides, IDS being complex software has a high probability 

of residual software bugs. These bugs can either cause severe 

negative performance impacts at kernel level, or make the 

entire kernel vulnerable to a security. Also, IDS tools 

generally need to apply frequent updates because new attacks 

are discovered each day. This not only results in high 

performance overheads but carries a risk of infecting the TCB 

with bad code. Implementations like the Linux security 

modules (LSM) [21] provide a diffuse mechanism to perform 

checks inside the kernel at crucial points, but it is an 

expensive solution. There are some hybrid detection 

techniques [18] that are partially in kernel space and rest in 

the user space. Such techniques inherit some strengths as well 

as weaknesses from both the domains. For instance, an entire 

IDS implementation in kernel space, with just the notification 

mechanism in user space can be subverted by curbing the 

notifications.  

 Some monitoring architectures secure intrusion 

detection systems by proposing the use of isolated virtual 

machines [5]. Such systems solve the problem of securing the 

watcher, but require installation of separate virtual machines 

and process hooks. These features increase the cost of such 

security solutions. 

 Our framework is an extension of the user space 

framework proposed by Chinchani et al. [11]. They proposed 

a tamper-resistant framework in a uni-core environment to 

secure user space services. In this paper, the framework is 

extended to protect user space components in a multi-core 

environment.  

3 Assumptions  

i) All software components are assumed to be susceptible 

to security attacks.  

ii) We assume a zero-trust model. Therefore, an attacker 

cannot predict the order of process monitors in the 

framework topology by observing system behavior. 

iii) All process monitors are identical and light-weight. 

4 System Architecture 

 The proposed framework runs on a K-core host. We 

assume symmetrical multiprocessing (SMP), where all cores 

are managed by the same operating system instance.  This 

system runs a user space, host-based IDS that monitors other 

host processes for any suspicious activity. We mentioned 

earlier that some malware can attack the IDSes upon their 

installation. Since the IDS here is in the user space, it is 

susceptible to security compromise as any other process. 

Therefore, we design a monitoring framework to ensure that 

the IDS is running in a tamper-resistant mode at all times.   

 This framework primarily consists of light-weight 

process monitors. These process monitors are simple 

programs that monitor other processes for specific conditions. 

The primary condition is to check continuously if the 

monitored process is running. If it is killed or any other 

condition fails, the process monitor detects it and sends an 

alert to the root user.  

 In the simplest topology of this framework, process 

monitors are arranged in a cyclic fashion (as shown in Figure 

1). Since there are no loose ends in a cycle, every process 

monitor is monitored by another. To ensure parallel 

monitoring, IDS and all the process monitors run on separate 



cores. For instance, in a K-core system, if the IDS is running 

on Core 1, rest of the K-1 cores run the process monitors, one 

on each. Process monitor on Core 2 monitors the IDS on Core 

1, as well as the process monitor on Core K. 

 

 

 

 

 

 

Figure1: A simple-ring topology on a K-core system.  

5 Threat model 

i) Denial of Service attacks in multi-core systems: Memory 

hogging [12] is a denial of service attack where one core 

consumes shared memory unfairly. This results in 

performance degradation at other cores due to resource 

scarcity.  This kind of attack can be handled by our 

framework via conditional checks. A process monitor can 

raise an alert if it observes exceptionally high scheduling 

delays affecting the monitored process. 

ii) Window of vulnerability:  There are windows of 

vulnerability introduced because of multi-core 

scheduling. We assume that process monitors hosted on 

separate cores can continuously monitor each other. This, 

however, is not practically feasible. If the core hosting 

the process monitor has other processes scheduled on it, 

the process monitor will have to go back into the 

scheduling queue periodically. During this window, if 

monitored process is attacked, the process monitor 

monitoring it cannot raise an alert. It can only do so when 

it is rescheduled to run again. If such windows are 

identified and exploited in order, it is possible to subvert 

the entire framework. This vulnerability can be patched 

by employing multiple degree of incidence, meaning that 

one process monitor is monitored by (and monitors) 

multiple other process monitors. This way, even when 

some of them go back into scheduling queues, we can 

still dynamically maintain at least one monitoring cycle 

with a high probability. However, this arrangement leads 

to a performance-security trade-off. Higher degree of 

incidence provides stronger security but at a higher 

monitoring cost. 

iii) Exploiting system vulnerabilities (crash attacks, buffer 

overflow, etc.): An attacker can try to crash (kill) any of 

these process monitors by exploiting system 

vulnerabilities. These vulnerabilities could be introduced 

by other software running on the system. We will see in 

Section 5 how such attacks are handled.  

6 Framework Topologies 

 A monitoring framework, cyclic or not, can have 

numerous topologies. For a K-core system, we can choose 

from a simple ring topology (as shown in Figure 1) to a 

topology with multiple degree of incidence (as shown in 

Figure 2). We will present a few basic topologies here that 

provide strong tamper-resistance properties.  

 In order to compare the various topologies, we need to 

understand the basis on which they can be evaluated. There 

are two questions that can be asked: 

i) How secure a topology is? 

ii) How efficient a topology is? 

 

 Any topology that can be compromised with a high 

probability is insecure. In [11], Chinchani et al. discuss the 

subversion probabilities of simple replication and layered 

hierarchy (onion peel) topologies. The paper claims that a 

circulant digraph configuration provides the strongest tamper 

resistance properties. 

Topology 1: Simple Ring 

 Simple ring topology represents an ordered cycle of process 

monitors, as shown in Figure 1. It offers a much lower 

probability of subversion compared to the onion peel model 

[11]. Since we assumed a zero-trust model, an attacker needs 

to try (n!-1) permutations (in the worst case), before he 

figures out the right order. This topology works considerably 

well for scenarios where all participating cores are minimally 

loaded, and the process monitors run for most of the times. 

However, when the workload increases, these process 

monitors have to wait in scheduling queues for some finite 

amount of time. If during this time, the processes that they are 

monitoring are compromised, an alert cannot be raised. 

Therefore, heavy system load can create windows of 

vulnerability that if exploited in a certain order, can lead to 

successful subversion of the framework.  

Topology 2: Circulant Digraph 

Earlier research proposed circulant digraph as the primary 

approach to increase efficacy of this monitoring framework 

(reduce false negatives) [11]. However, in a multi-core 

environment it has an added benefit of reducing the creation 

of windows of vulnerability. Higher the degree of incidence, 

lower is the probability that a process monitor remains 

unmonitored itself.  

A circulant digraph CK(a1, . . . , an) with K vertices v0, . . . 

vK−1 and jumps a1, . . . , an,  0 < ai < ⌊K/2⌋, is a directed graph 

such that there is a  directed edge each from all the vertices 

vj±ai mod K, for 1 < i < n  to the vertex vj, 0 < j <K – 1. It is 

Intrusion detection or a 

crucial user-space service  

Lightweight process 
monitor 

Direction  of Monitoring 

A process i runs on core i, and 1≤i≤K 

where K is the total number of cores 

on the processor. 

Numbers from 1-8 indicate the 8 cores 

of the host‟s processor 
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also homogeneous, i.e., every vertex has the same degree 

(number of incident edges), which is 2n, except when ai =K/2 

for some i, when the degree is 2n−1. Figure 2 shows a 

circulant digraph with 8 process monitors, degree of 

incidence 3 and jumps {1, 2}. 

 

 

 

 

 

 

 

Figure 2: Circulant digraph with 8 process monitors running 

on 8 cores. One process monitor per core. This circulant 

digraph has a degree of incidence 3 and jumps {1,2}. 

 Simple ring topology is a special case of circulant 

digraph topology with degree of incidence 1. However, a 

circulant digraph topology (with degree of incidence > 1) is 

much more secure than a simple ring topology. This is 

because the number of attempts required to find the right 

permutation increases exponentially in the worst case (since 

the attacker does not know the degree of incidence, the jump 

and the order of process monitors). 

Topology 3: Adaptive Cycle 

  Since raising a large number of alarms is counter-

productive to a system‟s performance, a circulant topology 

though effective, is not optimal. Even if an attacker is not in a 

position to attack, he can tamper with the framework to make 

it raise a large number of useless alerts. To counter this threat 

and reduce the number of alerts produced by the circulant 

topology, we propose an adaptive topology. It predicts the 

system load and tries to maintain cyclic monitoring at all 

times. This requires that process monitors at each core track 

the load on other cores. As shown in Figure 3, the initial state 

of this topology is set to be a simple ring. If process monitor 

on core 2 realizes that core K has just been assigned a lot of 

new processes, it starts monitoring process monitors K and K-

1, both. Similarly, if core 2 gets heavily loaded, process 

monitor 3 starts monitoring process monitors 2, K and K-1. 

So, the cores that are lightly loaded take up the responsibility 

of monitoring the process monitors on heavily loaded cores 

and the process monitors they were respectively responsible 

for.  

 Therefore, the final state of an adaptive cyclic topology 

can be formally defined: For a K-core processor, a process 

monitor on core i where 1≤i≤K, monitors process monitors on 

all cores j, where i+1≤j≤K, if there is a directed edge from i to 

j, or if there exists a z such that there is a directed edge from i 

to z and from z to j. 

 The probability of subversion for adaptive cycle 

topology is equal to the probability of subversion for circulant 

digraph topology. However, the number of attempts required 

to find the right order of process monitors in an adaptive 

topology is much larger than in circulant digraph topology (in 

the worst case). This is because the degree of incidence and 

jumps are always changing dynamically. Therefore, an 

adaptive topology provides better performance and stronger 

security as compare to the circulant digraph topology.  

7 Experiment Design  

Companies like Intel, AMD, etc., have made significant 

progress in multi-core technology. Clearspeed‟s CSX600 

processor with 96 cores [19] and Intel‟s Teraflops Research 

chip with 80 cores [20] are the latest in this line. However, 

such systems do not have a strong presence in the commercial 

market yet. This generally restricts researchers to use a small 

number of 2-6 cores.  In order to bridge this gap between 

unavailability of present technology and researching the 

future needs of this technology, simulators have been 

developed [21], [22]. These simulators emulate the 

functioning of a multi-core platform on a system with lesser 

number of cores (even uni-core processor). Amongst the 

many open source multi-core simulators that are available 

today, AMD SimNow closely emulates the NUMA 

architecture. Therefore, we use it as a test-bed to experiment 

with simple ring and circulant digraph topologies. 

 

 

 

 

 

 

 

Figure 3: Adaptive topology when cores 2 and K are heavily 

loaded. 

7.1 Configuration 

 Experiments are conducted on Intel Pentium Core2Duo 

2.1 Ghz processor with 4GB RAM. AMD SimNow is 

installed on Ubuntu 10.04 which is the host operating system. 

Inside AMD SimNow, we run a guest operating system, i.e., 

FreeBSD 7.3. All experiments run on this guest operating 

system. This system is configured to use emulated hardware 
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of AMD Awesim 800Mhz 8-core processor with 1024 MB 

RAM.  

 We use kernel level filters to implement process 

monitoring. This is because inter-process communication 

support provided by UNIX-like systems (like pipes or 

sockets) does not suffice for our framework. Inter-process 

communication delivers messages only between two live 

processes. However, we require that a communication (alert) 

be initiated when a process is terminated. For this purpose, 

we use an event delivery/notification subsystem called 

Kqueue, which falls under the FreeBSD family of system 

calls. Under this setup, a process monitor interested in 

receiving alerts/notifications about another process creates a 

new kernel event queue (kqueue) and submits the process 

identifier of the monitored process. Specified events (kevent) 

when generated by the monitored process are added to the 

kqueue of the process monitor. Kevent in our implementation 

is the termination of the monitored process. Process monitors 

can then retrieve this kevent from their kqueues at any time. 

A process monitor can monitor multiple processes in parallel 

using POSIX threads.   

 Experimental setup consists of 8 simulated cores with 

process monitors running on each one of them. We report on 

the evaluation of only the circulant digraph topology as a 

representative result. We experiment with different circulant 

digraph topologies with varying number of process monitors 

and degrees of incidence. The primary performance metrics in 

a multi-core system are time and memory overheads. Each 

reading in this analysis represents an average of 100 runs.  

7.2 Execution Performance 

 The initial setup time is defined as the time taken for the 

kqueue subsystem to get loaded before an attacker tries to 

subvert the process monitors. This is the only major time 

delay this system has been observed to incur.  As shown in 

Figure 4, initial setup time increases linearly with increasing 

degree of incidence. With 8 process monitors in a circulant 

digraph topology, the worst case initial setup delay of 0.3ns is 

obtained with a maximum degree of incidence (i.e., 7).  

 

Figure 4: Initial Setup overhead for circulant digraph 

topology with 8 process monitors. 

7.3 Memory Performance 

 We define the memory overhead to be the amount of 

memory consumed by a running instance of the framework as 

a percentage of the entire system memory capacity. Memory 

overhead is observed to increase linearly with the degree of 

incidence. A circulant topology with 8 process monitors and 

degree of incidence 7 incurs a 0.8% (0.1% per process) 

memory overhead. 

Table 1: Categorization of circulant digraph topologies 

Configuration Number of processes Degree of Incidence 

Series1 2 1 

Series2 3 1,2 

Series3 4 1,2,3 

Series4 5 1,2,3,4 

Series5 6 1,2,3,4,5 

Series6 7 1,2,3,4,5,6 

Series7 8 1,2,3,4,5,6,7 

 

7.4  Attack Tolerance 

 We experimented with different circulant digraph 

topologies with varying number of process monitors and 

degree of incidence, as shown in Table 1. For all topologies, 

jumps start from a minimum of 1, incremented by 1, until it 

satisfies the degree of incidence. 

 The following attack scenarios were executed in order to 

test the security strength of the framework. 

Experiment 1: Killing process monitors without delay (under 

light system load) 

 We experiment with the worst case scenario where the 

attacker already knows the correct order of the nodes in this 

topology. We assume that he also identifies the windows of 

vulnerability and uses them to his advantage (again, the worst 

case). In Figure 5, the number of alerts generated shows the 

sensitivity of this framework toward a crash attack executed 

using SIGKILL.  

Experiment 2: Killing process monitors without delay 

(under heavy system load) 

 Experiment 1 was repeated under heavy load conditions 

to determine the impact of increasing system load on 

framework‟s sensitivity (number of alerts) to an attack. A 

heavy load condition is simulated by running Openssl 

benchmark in the background. In this emulated multi-core 

environment, a maximum of 6,164 processes can run on 

FreeBSD operating system. We ran 6,000 processes to 

achieve nearly 100% CPU consumption for all cores. As seen 

in Figure 6, the framework generates lesser number of alerts. 

This is because the process monitors have to wait in the 

scheduling queue longer than in Experiment 1.  



 

Figure 5: Alerts generated for killing process monitors in 

sequential order without delay, under light system load. 

 

Figure 6: Alerts generated for killing process monitors in 

sequential order without delay, under heavy system load. 

Experiment 3: Group Kill attack 

 This framework is created by forking a process into 

child processes. All child processes forked from the same 

parent belong to the same group by default (identified by the 

same group ID). An external process can easily identify the 

group ID (GID) from the kernel proc structure using 

commands such as „ps‟ from the user space. Any crash attack 

on this process monitor group can be represented by a 

SIGKILL signal sent to the GID of the process monitors. This 

attack successfully subverts the framework and no alerts are 

raised by any of the process monitors. Thus, this constitutes a 

successful attack on the framework, where the property of all 

the process monitors belonging to a common default group 

becomes a vulnerability. 

 In order to increase framework‟s resistance to these 

kinds of attacks, we organized alternate process monitors 

under two different groups. Process monitors with even PIDs 

(process IDs) retain their default GID, which is the PID of the 

parent process. The GID of process monitors with odd PIDs 

is changed to their respective PIDs. Now, a SIGKILL signal 

sent to the default GID of the group will successfully kill the 

processes with even PIDs, but the odd ones will raise alerts.  

8 Conclusion and Future work  

 This paper proposed a tamper-resistance framework to 

monitor the intrusion detection systems (IDS) in a multi-core 

environment. We identified the benefits of our framework and 

the related issues. We also analyzed two framework 

topologies, viz. simple ring and circulant digraph. They are 

found to incur low time and memory overhead, while still 

retaining strong tamper-resistance properties. 

 As a future work, we plan to investigate the adaptive 

ring and other topologies. We plan to add more attack 

scenarios to this analysis. For instance, a smart attacker can 

replace a process monitor with a dummy process to subvert 

the framework. 
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