
Abstract

With rapid advances in online technologies,
organizations are migrating from paper based
resources to digital documents to achieve high
responsiveness and ease of management. These digital
documents are the most important asset of an
organization and are hence the chief target of insider
abuse. Security policies provide the first step to prevent
abuse by defining proper and improper usage of
resources. Coarse grained security policies that
operate on the “principle of least privilege” [1] alone
are not enough to address the insider threat, since the
typical insider possesses a wide range of privileges to
start with. In this paper, we propose a security policy
that is tailored to prevent insider abuse. We define the
concept of subject, object, actions, rights, context and
information flow as applicable to the document control
domain. Access is allowed based on the principles of
“least privilege and minimum requirements”, subject
to certain constraints. Unlike existing techniques, the
proposed policy engine considers, among other factors,
the context of a document request and the information
flow between such requests to identify potential
malicious insiders. Enforcing these fine-grained access
control policies gives us a better platform to prevent
the insider abuse. Finally, for demonstration purposes,
we present a framework that can be used to specify and
enforce these policies on Microsoft Word documents,
one of the popular document formats.
Index terms-- Insider Threat, Digital Documents, Access
Control, Information Flow

1. Introduction

With the evolution of computerized data entry
methodologies, organizations have attempted to move

1
Research supported in part by Advanced Research and

Development Activity (ARDA), contract no. NBCHC030062.

towards the paperless office model. Digital documents
are at the core of these paperless offices. They have
become a means to express and store any piece of
information in an organization, ranging from open
office memos to top-secret design documents.
Protecting these documents is of paramount importance
to the corporate network, for the compromise of these
documents could be potentially devastating to the
survival of the organization. The protection of these
documents falls under the broad category of Digital
Rights Management.

This paper refers to the generic architecture of a
corporate network with users owning digital documents
as the “Document Control Domain” – referred to as
DCD. The users in the DCD have a need to collaborate
and share the documents securely and with restrictions
on the usage of the document contents. Existing
solutions like Microsoft Information Rights
Management for Microsoft™ Office 2003 [2],
Authentica™ PageRecall [3] for Adobe Acrobat, etc.,
allow for the protection of the documents (in doc or pdf
format). This broadly translates into encryption of the
documents for secure electronic transmission and
setting basic policies on the documents before they are
sent out to other parties. These policies typically dictate
if the receiving party can read or edit or print the
document. They are coarse-grained and setting them is
usually based on the discretion of the owner of the
document. These policies reflect the “principle of least
privilege implicitly” [1], i.e., by trusting that the human
operator will grant the appropriate permissions. These
existing solutions provide an effective line of defense
against the classic hacker who tries to penetrate the
organization from outside. They are however not at all
useful when it comes to combating the malicious
insider threat [4], [5]. For the purposes of this paper,
we take the working definition of the malicious insider
as an authorized user in a corporate network, (usually
an employee), who has a conflict of interest with the
organization. As an employee, he holds authorization
for various activities relating to his job function. Hence

Security Policies to Mitigate Insider Threat in the Document Control Domain1

Suranjan Pramanik, Vidyaraman Sankaranarayanan and Shambhu Upadhyaya
Department of Computer Science and Engineering

201 Bell Hall
University at Buffalo, Buffalo NY 14260

Phone: (716)645-3180; Fax: (716)645-3464
Email: {pramanik, vs28, shambhu}@cse.buffalo.edu

Proceedings of the 20th Annual Computer Security Applications Conference (ACSAC’04)
1063-9527/04 $ 20.00 IEEE

Authorized licensed use limited to: SUNY Buffalo. Downloaded on June 25, 2009 at 17:35 from IEEE Xplore. Restrictions apply.

his capability to cause damage to the organization ranks
on a higher scale than the classic hacker.

Security policies in the DCD can be thought of as
the first line of defense against insider abuse. An access
control framework in the DCD is a kind of security
policy that defines “authorized users” and “authorized
use” of resources. A simple policy in the document
control domain can be specified as (S, D, A), where S
is the set of subjects (users), D is the set of documents
and A is an access matrix. The entry A[s, d] gives the
privileges that s∈S has on d∈D. The drawback of such
basic security policies are that they do not consider the
context in which the access is being requested. The
context includes among others, the sequence of
requests already issued in the past, the documents that
are currently open, etc. With reference to the malicious
insider threat, such issues assume high importance in
the DCD and are the primary means through which the
access control framework is subverted. For example, if
a user is allowed to copy a document for which he is
not the owner, then he may copy the document contents
and set different rights on the new document for which
he would become the owner.

This paper extends standard policy models and
applies them to the document control domain. The
policies are designed with a conscious attempt to thwart
the potential damage that a malicious insider could
cause, or at least flag a warning if such damage is
suspected. The goal is to specify and enforce security
policies on digital documents. We go beyond the
normal discretionary access control and role based
access control, by considering the context at which the
request is issued. This gives us the flexibility of
performing context sensitive decisions, rather than
standalone decisions. We also perform the runtime
monitoring of possible information flow between
documents and thus restrict access to a document if the
sequence of requests leads to an insider threat (see
Section 4.1). We have also developed a policy
specification tool that gives the security analyst or the
document creator a simple graphical interface for
specifying policies on Microsoft Word documents. The
final contribution is a secure viewer, which is a MS
Word add-in that can enforce the policies at runtime.

The rest of the paper is organized as follows.
Section 2 presents the related work in this area. In
section 3, we enumerate the possible insider threats in
the DCD. In section 4, we give a detailed description of
the security policies and an example scenario where the
policies can be applied. In section 5, we describe the
implementation of our scheme on Microsoft Word
documents. Finally, section 6 gives the conclusion and
some future work.

2. Related Work

Originator-based access control [6] and propagated
access control lists [7] are some of the access control
mechanisms that try to protect dissemination of
information by attaching an access control list with the
data. It prevents dissemination of content by
propagating the access control list of the object to other
subjects and objects to which the content can flow.
Though these techniques provide schemes for
protecting information, they can become too restrictive
as the information passes through several subjects.

Enforceable security policies [8] describe the notion
of security automata that can be used to specify the
types of security policies that can be enforced by
monitoring the system execution. Such class of
information policy is called EM for Execution
Monitoring. It uses information that can be obtained
just by observing the runtime events. More enforceable
security policies [9] improve on the previous work by
defining a superset of EM policies that includes the
ability to insert and remove events from the input
stream. The sequence of execution is important in these
cases but in our case we care only about the set of
actions that have occurred.

Multi-level security (MLS) policies such as Bell-
LaPadula [10] provide rigid constraints which need to
be relaxed during an emergency. For example, if a user
is on leave, then any other user, who takes over his job,
needs to be in the same security level. This highlights
the need for adaptive policies. Mandatory access
control policies such as Chinese-Wall model [11]
prevent conflict of interest in a commercial setting.
Objects are grouped into Conflict of Interest (COI) and
Common Database (CD) groups. Each COI can have
multiple CDs. The COI sets are mutually exclusive. A
user can access resources based on his rights, but if an
element in a particular CD is accessed, access to other
CDs in the same COI is denied.

Role-based access control (RBAC) is used to
specify policies for tasks, called roles, in the
organization rather than individual users [12]. The
users get assigned to roles in order to gain access to
resources. The assignment of users to roles follows
some constraints such as the “principle of separation of
duty”, role hierarchy, etc. RBAC provides an advantage
over other access control models, since they reduce the
inconsistencies that arise when policies have to be
specified for subjects individually. Though some of the
constraints can be leveraged into our framework, the
role-based access control does not address any
information flow restrictions. Temporal Role Based
Access Control (TRBAC), an extension of RBAC, also

Proceedings of the 20th Annual Computer Security Applications Conference (ACSAC’04)
1063-9527/04 $ 20.00 IEEE

Authorized licensed use limited to: SUNY Buffalo. Downloaded on June 25, 2009 at 17:35 from IEEE Xplore. Restrictions apply.

specifies time constraints on when a role can be
enabled or disabled [18]. For example, a constraint
stating that a document cannot be opened beyond
normal office hours can be specified in TRBAC. We go
beyond temporal analysis and consider other factors
such as machine’s IP address.

HRU model [19], Typed Access Matrix model [20]
and Take-Grant Protection model [21] are some models
that study the safety property of a system. They address
the transfer of right problem, that is whether a sequence
of commands exist that add a right not originally
present in the access control model. Our work is not
targeted to the safety problem, but to prevent illegal
information flows and abuse of privilege. In [22], the
take-grant model has been extended to model methods,
which can be used to share or steal information. Our
information flow model is different from [22] and more
specific to the DCD since we do not consider the
human channel for information flow. This is because,
an insider will have to cut and paste information from
one document to another, rather than rewrite it in his
own words, to maintain the authenticity.

In [13] advanced security policies are presented that
define legitimate user privileges on resources, can
adapt to system threat levels and detect abuse of
privilege. Though this scheme can be made to work on
a variety of resources, they are mainly targeted towards
network resources, such as bandwidth, whereas our
work is document centric. Various XML based
specifications such as XACML [14], XACL [15] are
available to specify adaptive security policies. We have
used XACML to specify our policies in a standardized
form.

3. Insider Threat Scenarios in the DCD

In this section, we describe a sample DCD and focus on
the potential insider attacks possible in the DCD. Based
on these, we will formulate the design considerations of
the security policies necessary to overcome these
threats. The DCD can be visualized as a corporate
network with n users. Each user belongs to a group
with a specific function, usually dictated by the nature
of the organization. For instance a software company
might have the groups: {CEO, Board Member,
Administrator, Software Developer, Technical Writer,
and Secretary}. During the course of his work, a user
produces and consumes a variety of documents related
to his work function. The DCD aims at protecting these
documents from unwarranted usage and compromise.
The CEO might work on a merger document whose
compromise to the outside world could prove
catastrophic to the organization. The existing solutions

mentioned in Section 1 protect the document against
the classic outsider. However, a malicious insider in the
DCD starts off with several privileges. The CEO’s
secretary, for instance, could be leaking information to
the outside world. It is quite possible for the secretary
to forward the merger document she received for
corrections to a rival company. Hence if there are no
constraints on the privileges in the form of access
control, then a malicious insider is capable of inflicting
serious damage to the documents.

The possible insider threats are enumerated as
follows:
a) An insider can read, copy, and print any document

he has access to unless fine-grained access control
is in place.

b) An insider can become the owner of the document
by copying it to a new file and thus set new access
control on the copied document.

c) An insider can forward a document to another user
either inside or outside the organization.

d) A user can work late or early hours when the
intrusion/misuse detection systems are not running.

e) He can copy the contents of a document into
another document that is opened simultaneously.

f) An insider can remember the contents of a
document, which he opened before, and then create
a low priority document with the same contents.

g) An insider can take a dump of the document from
the memory (such as the video buffer), and then
print the document.

h) A malicious insider can tamper with the existing
rights on the documents.

In this paper we focus on threats (a) – (e). We do
not address the situation where a user can remember the
contents of a document he has read previously and
reproduce it at a later time (threat (f)). Also because we
are targeting the insider threat at the application level,
we cannot prevent a malicious user from taking a dump
of the document from the main memory, where it is
stored in plaintext format. This threat is different from
copying the documents from the hard disk, because in
the hard disk the documents are stored in an encrypted
format. Finally, since in our framework the policies are
stored separately from the document, as long as the
policies are stored in a safe repository, threat (h) does
not arise.

4. Policies Design Considerations

To design a policy specification to prevent the insider
threat in a DCD, we need to consider both the context
and information flow between requests. We take an

Proceedings of the 20th Annual Computer Security Applications Conference (ACSAC’04)
1063-9527/04 $ 20.00 IEEE

Authorized licensed use limited to: SUNY Buffalo. Downloaded on June 25, 2009 at 17:35 from IEEE Xplore. Restrictions apply.

approach where multiple policies are specified on the
same resource. The policies differ in the context when
they become applicable. For example, a policy might
allow access to a document in the normal office hours
but not during after-office hours. The current context is
contained in the request for access (or is alternatively
maintained on the policy server). The policy decision
engine matches the request with the current policies in
place and generates the new policy. We refer to such
newly generated policies as contextual policies.
Besides the current conditions the policies should also
contain the obligations [14] or the provisional
authorizations [16] that the subject should satisfy
before access can be granted. The obligations are
returned to the viewer at the client side as a part of
response to the request and the viewer is expected to
enforce them. An obligation might specify that a high
priority document can be opened if and only if no other
documents are currently open. Another obligation
might specify that the user can print a document if and
only if he has performed a biometric authentication.

The security policies can be bypassed if a user is
able to copy the document content and become the
owner of the document. In this way the user will be
able to specify his own authorization rules on the
document rather than using the rules specified by the
actual owner of the document. Besides the originator
control we also want to monitor the information flow
occurring between different documents. This is because
a sequence of authorized actions can cause information
flow between documents leading to an information
leak.

Consider an organization with a set of subjects S
and a set of documents D that it wants to protect. Each
subject s∈S has some attributes that can be represented
as a tuple <s1, s2, …, sn>. The attributes can be the
name of the subject, the role the subject has in the
organization, his classification in the organization, his
credentials, his age and so on. Each document d∈D
also has attributes <d1, d2, …, dm>, representing
features such as name of the document, the category of
the document (e.g., top-secret, secret, unclassified), the
type of document (e.g., system oriented, management
oriented) and so on. The documents will have a set of
actions A that can be performed on them. Without loss
of generality we can assume that the set A is same for
all documents (e.g., open, close, cut, copy, paste, print,
send-to, etc.). In the application domain, this translates
to the set of actions being the same for all similar
document formats (PDF, DOC). We denote the set of
policies as P. Each access control policy p∈P is
specified as a tuple <d, {Rule1, Rule2, …}>. Here d∈D
specifies the target of the policy and rules specify the

actions allowed/denied to subjects on this target. The
rules also contain the conditions under which the rules
apply. For example, a rule will allow a document to be
accessed during normal office hours, but won’t allow
such access after office hours. Table 1 summarizes all
the entities in our security policy.

Table 1: Description of entities used in security policy.

Entity Description
S Set of subjects in

the organization
<s1, s2, …, sn> Attributes of a

subject
D Set of documents in

the organization
<d1, d2, …, dm> Attributes of a

document
A Set of actions on a

document
P Set of policies
p = <d, {Rule1, Rule2, …}> A policy specified

on document d
Rule = <S, A, permit/deny, C,
O>

A rule giving
authorization to a
subject

C Conditions under
which the
authorization is
allowed or denied

O Obligation that
should be satisfied
for the authorization
to be allowed

Req = <S, D, A,
Situation:Var� Values>

A request.

Situation:Var�Values Mapping the
context variables to
their values

Res = <permit/deny,
Obligation:Var�Values>

A response

Obligation:Var�Values Mapping the
obligation variables
to their values

The critical parts of the policy are the conditions
and the obligations. They are both static and dynamic
in nature. The static conditions are those that are based
on the known threats and remain the same whereas the
dynamic conditions are evaluated based on the system
conditions. While static conditions are evaluated based
on known threats, this does not imply that the threats
themselves are static. Known threats do change and

Proceedings of the 20th Annual Computer Security Applications Conference (ACSAC’04)
1063-9527/04 $ 20.00 IEEE

Authorized licensed use limited to: SUNY Buffalo. Downloaded on June 25, 2009 at 17:35 from IEEE Xplore. Restrictions apply.

when the threat knowledge base increases, the static
conditions on the policies will be revised. The
conditions are specified in propositional logic on the
subject attributes, object attributes and other system
attributes. The description of static conditions and
obligations are widely available in access control
literature [14] and are not discussed further. In the rest
of the section we focus on the dynamic conditions
based on the possible information flows between
documents.

For all document actions performed, a request is
generated which contains the user, document, action
requested and other client side information. If some
conditions are not specified in the request, the policy
decision point should be capable of determining them
from a third party. Among other variable, value pairs
contained in the request, the most prominent of them is
the set of currently open documents, OD.

The response contains the decision taken by the
policy engine and the obligations that need to be further
enforced. The static obligations are those that are
already specified in the policy statement. The dynamic
obligations are generated based on the current request
and the rights of other users. The decision algorithm for
generating these dynamic obligations is shown in
Figure 2.

Next, we define the building blocks used to monitor
information flow:
Definition 4.1: Information flow – We say there is an
information flow between document di and dj,
represented as di�dj, if a user has both di and dj opened
at the same time and the user has write permissions on
dj.
Definition 4.2: Information flow graph (IFG) – An
information flow graph is represented as IFG=(V, E),
where V is the set of documents currently open in the
user’s session and E is the set of edges, such that (di,
dj)∈E if and only if di, dj∈V and di�dj.
Definition 4.3: Privilege Graph – A privilege graph is
a directed graph and represented as PG=(V, E), where
V is the set of all documents a user has access to and E
is the set of edges, such that (di, dj)∈E if and only if di,
dj∈V and user has write permission on dj.

The concept of a privilege graph here is different
from the privilege graph defined in [17], because it is
not a representation of vulnerabilities in the computing
system but just a representation of rights a user has on
the documents in the organization. In our approach, a
node represents a document and an edge represents a
write permission owned by the user. Whereas in [17], a
node represents a user having some privileges in the
organization and an arc represents a vulnerability by

which a user can obtain greater privileges than what he
is specifically granted.

The information flow graph IFG is constructed at
runtime whereas the privilege graph PG is constructed
statically (and updated only when a document is created
or deleted). In both the graphs, IFG and PG, if a node
has write permissions then it has incoming arcs from all
the other existing nodes in the graph. Initially we start
with a static pool of users and documents in the
organization. Later in the section we relax this
assumption and allow for additions/deletions of users
and documents. Because of this assumption the size of
the graphs remains the same.

Figure 1: Algorithm for computing privilege graphs.

Once the system is deployed, its first task is to build
the privilege graph of all users in the organization. It is
a one time approach and needs to be modified only
when a new document gets created or an existing one is
deleted. The PGs are generated based on the policies
specified on the documents. Algorithm Generate-
Privilege-Graph, in Figure 1, is used to generate the
graphs for all the users in the organizations.

Information flow graph gets created and deleted
with every request for opening and closing a document.
Whenever a request is received the Generate-
Information-Flow-Graph is called which is the same as
Generate-Privilege-Graph, except it uses the set OD,
the set of documents currently open in the user’s
workspace (OD is contained in the request), rather than
the complete set of documents.

When a request is received and allowed by the
policies, the information flow graph and privilege
graphs are used to decide whether the right should be

Algorithm: Generate-Privilege-Graph
Input

D: set of documents in the organization
P: set of specified policies

Output
PG: privilege graph of a user

Steps:

1. PG = (V, E), V=φ and G=φ
2. for all d∈D
3. for all p∈P, s.t. p=<d, *>
4. if p allows read permission for the user
5. add vd to V /* vd : node for doc d */
6. if p allows write permission for the user
7. add a tag to vd

8. for all v∈V
9. if vd has a tag add edge e=(v, vd) to E
10. if (v has a tag) and (v� vd) add edge

e=(vd, v) to E

Proceedings of the 20th Annual Computer Security Applications Conference (ACSAC’04)
1063-9527/04 $ 20.00 IEEE

Authorized licensed use limited to: SUNY Buffalo. Downloaded on June 25, 2009 at 17:35 from IEEE Xplore. Restrictions apply.

granted. The algorithm in Figure 2 outlines the steps
used in making the decision.

Figure 2: Decision Algorithm for generating
dynamic obligations.

The primary objective of the decision algorithm is
to prevent illegal information flow from one document
to the other. Based on the definition of information
flow (see Definition 4.1), in order to prevent illegal
information flows we have to prohibit writing to a
document when another document is open. The new
restrictions are given in the form of obligations. For
example, if document d3 is being opened when another
document d1 is already open, the obligation might state
that the write permission on d1, previously allowed,
will be disabled as long as d3 is open. The restriction
will be enforced by the client side viewer by disabling
the edit options. When d3 is closed edit permissions on
d1 will be enabled again. This dynamic algorithm is run
each time a request comes from a user for a document.
We hypothesize that the number of documents any user
works on in a given time is not high and hence
application of the dynamic algorithm will not cause any
noticeable delay in an intranet.

In order to compute the new set of obligations, two
new graphs K|D| and ¬PG are computed. K|D| is the
complete graph on the set of documents with all reads
and writes enabled and ¬PG is the complement of PG
(difference between K|D| and PG). K|D| remains the
same as long as no document is created or deleted.
Similarly, ¬PG remains the same as long as PG doesn’t
change. Examples of PG and ¬PG are given in Figure
2. Step (b) of the decision algorithm first computes U,
the union of IFGi and PGj (union is taken over the set
of edges). The subscripts i and j represents user i and j,
where i�j. It then finds the common edges E, between
U and ¬PGi. E contains the illegal information flows,
which get created if the new document is opened. For
each (vi, vj)∈E, the obligation “no edit on vi” is added,
if the obligation is not already present. When the
document is closed, two sets of obligations are
computed. The first set is the one without the document
being closed and the second set is the one with the
document being closed. All the obligations present in

the first set but absent in the second is now allowed. In
section 4.1, we give an example scenario of the
framework in action.

Till now we had assumed that no new documents
get created or old documents get deleted from the
document pool. Here we relax those restrictions.
Whenever a new document gets created, a request is
sent to the policy server with the list of currently open
documents, OD. The rights that can be granted on the
new document will be a subset of all the allowed rights
on the currently opened documents. Such a restriction
prevents the current user from copying a document and
setting liberal rights on the copy (threat (b) in section
3). Also when a new document is created the privilege
graphs of all the users are recomputed. When a
document is deleted, the static access rights are
checked and if allowed then the document is deleted
and the privilege graphs of all the users are updated.

4.1. Example Scenario

In this section, we consider a set of two users and three
documents to illustrate our framework. The users are
identified as s1 and s2 and the documents are identified
as d1, d2 and d3. Table 2 gives the access control
matrix.

Table 2: Access control matrix
s1 s2

d1 R,W R
d2 R,W φ
d3 φ R,W

The following attack scenario is considered:
1. s1 opens d2 to read the contents.
2. s1 opens d1 to modify its contents.
3. s1 doesn’t have write permission on d3.
4. s1 writes onto d1.
5. s2 opens d3.
6. s2 opens d1.
7. s2 can now copy the contents of d1 to d3.
Effect: s1 is able to leak the contents of d2 into d3 with
s2’s help.

The privilege graphs of s1 and s2 are shown in
Figure 3. When s1 opens d1 the IFGs1 only contains d1
and nothing is done in this case because there is no
information flow possible (see definition 4.1). When s1
opens d2 the IFG of s1 is the same as PGs1. The next
step is to find U = IFGs1� PGs2 (see Figure 3). Finally,

the intersection of U and ¬PGs1 is computed
(represented as I in Figure 4). All the edges in I
represent the possible ways of information leak. As (d1,
d3) is an edge in I, we add an obligation that prevents

Decision Algorithm:
a) Consider the IFG of the current request and

the PG of another user.
b) If allowing the request in IFG leads to a

violation in the PG then either the request is
denied or some other obligations are added.

c) Steps (a) and (b) are repeated for all the
remaining users other than the one who
made the request.

Proceedings of the 20th Annual Computer Security Applications Conference (ACSAC’04)
1063-9527/04 $ 20.00 IEEE

Authorized licensed use limited to: SUNY Buffalo. Downloaded on June 25, 2009 at 17:35 from IEEE Xplore. Restrictions apply.

write access on d1 when any other document is open.
Read permission on d1 is still allowed and both read
and write on d2 are allowed. Now, since s1 cannot
write to d1 he cannot leak the information of d2 into
d3. This framework does not prevent information flow
through the human channel. Also, we are attempting to
prevent information flow given certain policy
specifications.

Figure 3: Privilege graphs and their complements.

Figure 4: Detecting malicious information flows.

5. Implementation

In this section, we describe our framework to set and
enforce custom policies to prevent insider abuse. The
DCD scenario as described in Section 1 is placed in
perspective in this section.

5.1. Initial Setup

All users in the DCD work on a set of machines
<M1,M2,….,Mn>. These machines run Windows XP
Professional. The targeted editing software is
Microsoft™ Word 2003 – henceforth referred to as
Word™ in this paper. We have developed an Add-in to
Word™ that has certain features added on to it. One of
those features is to enforce our custom policies. The
initial setup of the Secure Viewer creates an account for
the user at the policy server. Specifically, the steps
followed during the initial setup are:
1. Install the Secure Viewer Add-in Component

(Word™ 2003 must be pre-installed on the
machine with the .NET framework version 1.1)

2. The Secure Viewer is configured to load when
Word™ starts up.

3. Start up Word™ the first time after installing the
Secure Viewer. It’ll contact the Policy Server
which will create an account for the user.

The final version of the Secure Viewer is expected to
have support for importing certificates from reliable
sources if present (Active Directory, LDAP Server,
etc.) or generating one for the user on registration.
Our access control architecture is shown in Figure 5.

Figure 5: The Policy Enforcement Architecture

5.2. Policy Enforcement Point (PEP)

The policy enforcement point (PEP) is where the user
actually views the document on a machine. In our
architecture, we allow for the user to be an
administrator on the machine he is working on. We find
that this is typically the situation with most
organizations that use Windows XP. Users are granted
local administrator rights along with a firewall on the
hub where the machines are connected. The other
configuration most commonly found was a base Linux
distribution with virtualization software such as
Vmware™ installed. Windows™ XP was installed on
Vmware™ and users were granted local administrator
privileges on the virtual machine. Hence the Secure
Viewer Add-in is designed to render the document and
enforce the policies on the documents irrespective of
the rights the user has on the machine. This also implies
that the user could download any document onto his
laptop and view it at home. The policies on the
document would still be enforced. In fact he would be
able to read a document offline only if:
1. The Secure Viewer Add-in is installed on the local

machine AND
2. The policy on the document allows for offline

viewing.

<User, Policy
Decision
Engine

M

Secure Viewer
Add-in installed

Current
Context

Request

PoliciesSecurity Threats and
Network Conditions

Document with
obligationsResponseAllow/deny &

Perform
Obligations

Policy Enforcement Network Policy Decision Point

Contextual Policy

d3

d1

d2

d1

d3

d1

d2

d1

d2

d3

PGs1 ¬PGs

PGs2 ¬PGs

d1

d2

d3
d1

d3

U I

Proceedings of the 20th Annual Computer Security Applications Conference (ACSAC’04)
1063-9527/04 $ 20.00 IEEE

Authorized licensed use limited to: SUNY Buffalo. Downloaded on June 25, 2009 at 17:35 from IEEE Xplore. Restrictions apply.

5.2.1. Secure Viewer

The Secure Viewer is a COM Add-in to Microsoft™
Word 2003. Written in C#, it’s based on the .NET
framework version 1.1.
Its function is to:
1. Monitor all actions performed on Microsoft Word

– this is done through setting hooks to Word™
actions through delegates in C#.

2. Read in an encrypted document, decrypt it and
display it to the user on the fly – this is done
through custom encryption and decryption
methodologies using standard algorithms. By
custom methodologies, we mean to say that the
Office Information Rights Management (IRM) [2]
backbone is currently not used, though it is
planned in the final version. The service provider
for the crypto system is provided by the office
API’s. Also, the document is encrypted whenever
it is on the disk. Hence lack of file level control is
irrelevant since the document cannot be viewed
without the Secure Viewer.

3. Read in the contextual policy sent in by the policy
server and enforce it on the user’s existing context.

4. Set user-defined policies on newly created
documents and encrypt them – these user-defined
policies are tuned to prevent the insider threat.

5. Other anomaly detection schemes for addressing
the malicious insider threat are embedded which
are not directly related to policies.

All these functions are performed unobtrusively in the
background. The only addition to Microsoft Word on
the interface part is a Menu-Bar button shown in Figure
6. As the name suggests, it’s created to set policies on
the document.

5.2.2. Policy Assignment Tool

The policy assignment tool is a stand alone application
that assigns policies on Word documents. It is also
integrated with the Secure Viewer so that the custom
policies may be set on documents when they are
created by the owner and uploaded to the file server.
The primary utility of the policy assignment tool as a
stand-alone application is during migration scenarios.
An organization that already has an unprotected
document infrastructure can use this tool to set policies
on multiple documents in order to set the document
policies and classifications. Permissions are set on
documents along with obligations (that are
organization-specific).

Figure 6: Secure Viewer Interface to Word™

Figures 7a and 7b show screenshots of the policy tool.

Figure 7a: Policy Tool
The administrator can choose entire directories or
individual files and the groups of users for whom the

Set
Policies

Proceedings of the 20th Annual Computer Security Applications Conference (ACSAC’04)
1063-9527/04 $ 20.00 IEEE

Authorized licensed use limited to: SUNY Buffalo. Downloaded on June 25, 2009 at 17:35 from IEEE Xplore. Restrictions apply.

permissions are applicable. The document type and its
security levels are set along with the obligations shown
in the lower half of figure 7.a. An optional expiry date
can also be set. Since the policies are expressed in
XACML for interoperability, it is also possible for the
organization to apply existing templates to the
documents, or alternatively, apply their own custom
templates, as shown in Figure 7.b.

Figure 7b: Policy Tool

5.2.3. Mechanisms

All documents in our architecture are stored at the
policy server to begin with. They are encrypted with
document specific keys at the storage point. These
encrypted documents cannot be viewed with the normal
out-of-the-box installation of Microsoft™ Word. They
require the Secure Viewer Add-in component to be
installed on the machines. This is the first step taken to
ensure that the documents cannot be read off-hand. To
open an existing document, the user is presented with a
custom interface that actually shows the documents
residing on the remote file/policy server. Once a
document is selected, the request from the user is
created. This request encapsulates the user
authentication token and the document identifier. The
Secure Viewer component also packages the current
context of the machine. This includes the documents
that are currently open, the authentication type of the
user, etc. This request is sent encrypted over the
network to the Policy Server.

5.3. Network

All communications over the network go through the
Secure Socket Layer. The user’s certificate that was

created during the setup procedure is used for
generating session specific keys for communication.
The certificate generation process during setup is also
secured when passing through the network. Although
this plays an important role in the overall security of the
DCD, this is not directly related to policy creation or
enforcement and the description is hence omitted.

5.4. Policy Decision Point (PDP)

The PDP is the place where the decision on the
incoming request is made and the document is sent out
with the relevant contextual policy. The PDP is a
logical representation of the policy server and the file
server in the organization. The decision algorithm in
Section 4 is applied at this point. The incoming request
is disassembled. At the first stage, a trivial policy check
is made if the user has the requisite permissions for the
actions requested on the document. Once this check has
passed, the IFG is generated from the Context of the
incoming request. The IFG and the PG are compared
with some additional input from the existing Security
Threats. The existing threats are an input that comes
from the Intrusion detection system (not shown) in our
architecture. The output of this comparison leads to the
decision (to send or not to send the document) along
with the obligations that the user must follow in order
to access the documents. This is referred to as the
contextual policy. The contextual policy is packaged as
the response and is sent to the PEP where the Secure
Viewer receives it and enforces the new contextual
policy.

6. Conclusion and Future Work

In this paper we have presented a security policy that
can be used to prevent insider abuse on digital
documents. The security policy takes into account the
system context when it is applied and the possible
information flows between documents. We have also
described a framework being developed for
demonstrating the application of such security policies.
The framework can be used by organizations to protect
their critical documents. Initial versions of certain parts
of the framework are available for download at
http://www.cse.buffalo.edu/DRM/prototype.

In the future, several insider attack scenarios will be
created based on the known insider threats. These
scenarios will be used to test the framework and help in
specifying optimal security policies. The framework
can also be deployed in a real test environment and
used to capture the malicious insider behavior in an
organization. Finally, the policy server will be made to

Proceedings of the 20th Annual Computer Security Applications Conference (ACSAC’04)
1063-9527/04 $ 20.00 IEEE

Authorized licensed use limited to: SUNY Buffalo. Downloaded on June 25, 2009 at 17:35 from IEEE Xplore. Restrictions apply.

work in tandem with an anomaly detector to capture
novel attacks.

Though the security policies have been
implemented for MS Word, it can be incorporated into
other document types also. MS Word was chosen for its
widespread use. In the future we will develop a secure
viewer for other document formats also.

7. References

[1] J. H. Saltzer and M. D. Schroeder. The protection of
information in computer systems. Communications of
the ACM 17(7), July 1974.

[2] http://www.microsoft.com/office/editions/prodinfo/techn
ologies/irm.mspx

[3] http://www.authentica.com/products/document_protec
tion.asp

[4] E. E. Schultz. A Framework for Understanding and
Predicting Insider Attacks. Computers and Security
21(6), pages 526-531, 2002.

[5] C. Bateman et al. A proposal for a Thread on the Insider
Threat Problem Proposal. System Dynamics Modeling
for Information Security: A Group Modeling Workshop,
January, 2004.

[6] R. Graubert. On the Need for a Third Form of Access
Control. In Proceedings of the 12th National Computer
Security Conference, pages 296-304, October, 1989.

[7] D. Wichers et al. PACLS: An Access Control List
Approach to Anti-Viral Security. In Proceedings of the
13th National Computer Security Conference, pages
340-349, October, 1990.

[8] F. Schneider. Enforceable security policies. ACM
Transactions on Information and System Security 3(1),
February, 2000.

[9] L. Bauer, J. Ligatti, and D. Walker. More enforceable
security policies. In Proceedings of the Workshop on
Foundations of Computer Security (FCS'02),
Copenhagen, Denmark, July 2002.

[10] D. E. Bell and L. J. La Padula. Secure computer
systems: Mathematical foundations and model.
Technical Report M74-244, The MITRE Corporation,
May 1973.

[11] D. F. C. Brewer and M. J. Nash. The Chinese wall
security policy. In IEEE Symposium on Security and
Privacy, pages 206-214, Oakland, CA, May 1989.

[12] D.F. Ferraiolo, D.R. Kuhn, R. Chandramouli, Role
Based Access Control, Artech House, 2003.

[13] T. Ryutov and C. Neuman. The Specification and
Enforcement of Advanced Security Policies. Policy
2002.

[14] S. Godik, T. Moses, et al. eXtensible Access Control
Markup Language (XACML) Version 1.0. OASIS
standard, February, 2003.

[15] M. Kudo and S. Hada. XML Document Security based
on Provisional Authorization. In 7th ACM Conference
on Computer and Communication Security (CCS 2000),
November, 2000.

[16] S. Jajodia, M. Kudo and V. S. Subramanian. Provisional
Authorizations, In Gosh, A., editor, E-Commerce
Security and Privacy, pages 133-159, 2001, Kluwer
Academic Press, Boston.

[17] M. Dacier and Y. Deswarte. The Privilege Graph: An
Extension to the Typed Access Matrix Model. In
European Symposium in Computer Security, 1994.

[18] E. Bertino, P. A. Bonatti and E. Ferrari. TRBAC: A
temporal role-based access control. ACM Transactions
on Information and System Security, 4(3), pages 191-
223, August, 2001.

[19] M. Harrison, W. Ruzzo and J. Ullman. Protection in
operating systems. CACM, pages 461-471, 19(8), 1976.

[20] R. Sandhu. The typed access matrix model. In IEEE
Symposium on Security and Privacy, 1992.

[21] A. Jones, R. Lipton, and L. Snyder. A linear time
algorithm for deciding security. In 17th Annual
Symposium on the Foundations of Computer Science,
pages 33-41, October, 1976.

[22] M. Bishop. Theft of information in the take-grant
protection model. Journal of Computer Security, 3(4),
pages 283-309, 1994/1995.

Proceedings of the 20th Annual Computer Security Applications Conference (ACSAC’04)
1063-9527/04 $ 20.00 IEEE

Authorized licensed use limited to: SUNY Buffalo. Downloaded on June 25, 2009 at 17:35 from IEEE Xplore. Restrictions apply.

