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Abstract—Network security schemes generally deploy 

sensors and other network devices which generate huge 
volumes of data, overwhelming the underlying decision making 
algorithms. An example is corporate networks employing 
intrusion detection systems where there is a deluge of alert 
data, confounding the computations involved in sensor 
information fusion and alert correlation. One way to obtain 
fast and real-time responses is to preprocess such data to 
manageable sizes. In this paper, we show that data de-
duplication using computationally efficient fingerprinting 
algorithms can provide real-time results. We present an 
algorithm which utilizes Rabin Fingerprinting/hashing scheme 
for the purpose of data de-duplication. We have implemented 
this algorithm on Intel Atom, which is a powerful, energy 
efficient embedded processor. Our study is intended to show 
that the relatively low performing embedded processors are 
capable of providing the needed computational support if they 
were to handle security functions in the field. When compared 
to the algorithmic performance on a high end system, viz. Intel 
Core 2 Duo processor, the positive results obtained make a 
case for using the Atom processor in networked applications 
employing mobile devices. 

Keywords-Alert correlation, Embedded processors, 
Fingerprinting, Mobile devices, Redundancy 

I. INTRODUCTION 
With the evolution of computer networks and the 

explosive growth of the Internet, information assets of both 
government and commercial organizations face credible 
threats from complex goal-oriented multistage attacks. 
Detection of these attacks as they unfold is essential 
especially in critical systems where failure to do so may be 
costly. This requires a high level understanding of the threat 
situation which is typically accomplished by event 
correlation and fusion of various cyber events [1]. In 
corporate networks such cyber events are generated by 
deploying intrusion detection and intrusion prevention 
(IDS/IPS) systems. Military systems, on the other hand, are 
more complex with airborne networks which are essentially 
three-dimensional mobile ad hoc networks [2] that generate a 
deluge of cyber events. Some of the processing nodes in 
these networks may have severe power constraints limiting 
their participation in alert correlation and fusion. Therefore, 
the traditional software-based approach to information fusion 
and situation awareness will have limited appeal in mission-
critical applications where systems are subject to cyber 

attacks on a constant basis [3]. In order to make this solution 
applicable to real networks, especially when mobile/wireless 
devices are deployed, certain steps of alert correlation could 
be expedited by taking advantage of the architectural features 
of the processing nodes. In this regard, we propose to use 
Intel Atom processor owing to its flexible applicability to 
parallelization and flow processing [4] and its potential use 
in embedded applications. 

One of the major computations in sensor information 
fusion and alert correlation is the removal of duplicate events 
for pattern matching or correlation. This is so because 
duplicate alerts may be generated when multiple sensors are 
deployed on the network to sense an event and hence 
network and host security systems may be presented with 
huge data from these sensors and other network sources. 
Typically, this data includes alerts streaming from sensors, 
firewalls, and anti-virus tools and system and network level 
data such as audit logs, packet information, netflows, 
protocol and port information. It is important to preprocess 
this data so that the correlation algorithms can be applied to a 
manageable data set to obtain real-time responses. 

The main contribution of this paper is an algorithm which 
utilizes the Rabin Fingerprinting/hashing scheme [5] for the 
purpose of data de-duplication. We have implemented this 
algorithm on the Intel Atom processor, which is a powerful, 
energy efficient embedded processor. Our study shows that 
the relatively low performing embedded processors are 
capable of providing computational support if they need to 
handle security functions as well. When compared to the 
algorithmic performance on a high end system, viz. Intel 
Core 2 Duo processor, the positive results obtained make a 
case for using the Atom processor in networked security 
applications, especially in situations where a suite of mobile 
devices is employed. 

The rest of the paper is organized as follows. In Section 
II, we give some background on Atom processor and Rabin 
Fingerprinting. The main algorithm for alert data de-
duplication and processing is given in Section III. Details of 
the evaluation of our scheme using a repository of alert data 
from a federal project appear in Section IV. A discussion of 
the application domain for the proposed scheme is presented 
in Section V along with our concluding remarks.  

II. BACKGROUND 
The main experiment on data de-duplication using Rabin 

Fingerprinting is done on a first generation Intel Z5xx 
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(Atom) processor. The details of Atom and Rabin 
Fingerprinting are presented next.  

A. Atom Processor 
Intel® Atom processors [4] are power-optimized to 

deliver robust performance per watt, making them ideal for 
many embedded applications such as interactive kiosks, 
point-of-sale terminals, in-vehicle infotainment systems, 
media phones, industrial automation equipment, digital 
security systems, and residential gateways. These single-
core processors are software-compatible with previous 32-
bit Intel® architecture and complementary silicon. A three-
chip solution is offered with the Intel Atom processor N270 
and the mobile Intel® 945GSE Express Chipset. 

Intel hafnium-based 45nm Hi-k metal gate silicon 
process technology reduces power consumption, increases 
switching speed, and significantly increases transistor 
density over previous 65nm process technology. Enhanced 
Intel SpeedStep® Technology reduces average system 
power consumption. Intel Hyper-Threading Technology 
(Intel HT Technology) available in designated Stock 
Keeping Units (SKU) provides high performance-per-watt 
efficiency in an in-order pipeline. HT Technology provides 
increased system responsiveness in multi-tasking 
environments. One execution core appears as two logical 
processors, and parallel threads are executed on a single 
core with shared resources. 

The Atom processor is currently used in innovative in-
vehicle infotainment (IVI) solutions. To keep pace with 
consumer demand, IVI developers and auto manufacturers 
need a platform that provides seamless integration between 
home, office and car, and bridges the gap from generation-
to-generation of product development. Intel® architecture is 
highly interoperable with Wi-Fi, Bluetooth, cellular, 
WiMAX and emerging technologies like Ultra-Wideband, 
allowing OEMs to easily incorporate digital content into a 
head unit, now and in the future. Additionally, most 
consumer software is developed on and for the PC which 
lets developers easily add a breadth of applications to 
Intel®-based IVI systems via software-only upgrades. When 
coupled with extensive hardware and software from Intel’s 
large community of developers, OEMs could benefit from 
rapid development and simplified upgrades at minimal cost. 
They include embedded lifecycle support, which protects 
system investments by enabling extended product 
availability for corporate networks that deploy intrusion 
detection and intrusion prevention (IDS/IPS) systems. 

B. Rabin Fingerprinting 
An n-bit message m = m0... mn-1, can be viewed as a 

polynomial f(x) of degree n-1 over the finite field GF(2) [6]. 
Let p(x) be a random irreducible polynomial of degree k 
over GF(2). The Rabin Fingerprint of message m is defined 
to be the remainder of division of f(x) by p(x) in GF(2) 
which can be viewed as a polynomial of degree k-1 or as a 
k-bit number [5]. It is fast and easy to implement, allows 

compounding, and comes with a mathematically precise 
analysis of the probability of collision. The probability of 
two messages r and s yielding the same w-bit fingerprint 
does not exceed max (|r|,|s|)/2w-1, where |r| denotes the 
length of r in bits. The algorithm requires the previous 
choice of a w-bit internal "key", and this guarantee holds as 
long as the messages r and s are chosen without the 
knowledge of the key.  

Test results show that the time efficiency of Rabin’s 
Fingerprinting method (linear in the length of the message) 
is comparable to other well known hashing functions while 
outperforming them in the sense of lower or even no 
collision occurrences [7]. Rabin fingerprints offer provably 
strong probabilistic guarantees that two different messages 
will not have the same fingerprint. Other checksum 
algorithms, such as MD5 and SHA, do not offer such 
provable guarantees, and are also more expensive to 
compute the fingerprints.  

Data de-duplication is essentially a string matching 
problem using digital fingerprints. Randomly chosen 
irreducible polynomials are used to "fingerprint" bit strings 
or messages. This method is applied to produce a very 
simple real-time string matching algorithm [7]. The result of 
application of Rabin’s method is shown to be independent 
of the choice of irreducible polynomials. The probability of 
error (different strings having the same fingerprint) 
decreases with the increase of the degree of the irreducible 
polynomial used. The performance of the method improves 
with the increase of the degree of the irreducible polynomial 
used and it is shown that with 64-bit fingerprint, the 
percentage of collision is 0 [7]. Due to this efficiency, we 
propose to use Rabin Fingerprinting for data de-duplication. 
Some other applications of Rabin fingerprinting are in 
detecting worms [8], [9], web cache [10], large file finding 
[11] and redundancy elimination in large collections of files 
[12].  

III. DATA DE-DUPLICATION ALGORITHM 
We have developed a data de-duplication scheme that is 

customized to remove redundant cyber events/alerts in a 
network with deployed IDS/IPS sensors such as SNORT. 
The algorithm is shown in Fig. 1 and described below in a 
step-by-step manner.  

a. Input alerts (alert log files) from various alert 
sources are collated into a single input file. The 
alerts in this file are sorted by their respective 
timestamp values. 

b. Based on a pre-specified threshold value of time, 
the alerts from the input file are split into multiple 
files. A single file contains alerts (with timestamp 
field removed) for the specified time duration. 
Each file forms an input to the Fingerprinting 
algorithm. Removal of timestamp leads to some 
degree of redundancy among the alerts (done to 
guarantee that there is sufficient redundancy in the 
data set for illustration purposes).  
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c. The Fingerprinting application processes each file 
and the resulting unique alerts, in the time duration 
under consideration, are stored in corresponding 
data structures. Internally the application uses 
Rabin Fingerprinting for fast pattern matching and 
data de-duplication. After redundant alert removal, 
the resulting unique alerts are stored in an 
appropriate data structure (such as the Multimap or 
Multihash [13]). 

d. The output of each data structure which consists of 
unique alerts for the specified time durations are 
written to a single output file. This file represents a 
manageable data set for real-time processing, and 
serves as an input to the alert correlation algorithm 
(discussed elsewhere). 

 
Fig. 1. The flow diagram of data de-duplication. 

IV. EVALUATION 
We have implemented the Rabin Fingerprinting (FP) 

based data de-duplication algorithm in our lab using Intel® 
Atom™ processor N270 and Intel® System Controller Hub 
US15W development kit. The development kit is shown in 
Fig. 2.  

The algorithm is implemented in C++ and the code is 
executed on different machines/platforms. We have 
conducted controlled experiments using specific data sets. 
The data set for the controlled experiment is created using 
SNORT security alerts obtained from a federal project 
testbed [14] and Perl scripts. The timing analysis is 
performed on the processing unit of the Fingerprint 
application. The steps involved are – reading from alert 
files, duplicate alert elimination, storing unique alerts in an 
appropriate data structure and writing the output of all the 
data structures into a common output file. 

 
 

Fig. 2. Intel® system controller US15W development kit. 
 

We first processed the alerts in the data set using UNIX 
sort command to determine the ground truth on the 
uniqueness of the alerts. The results from the Fingerprinting 
application were compared and found to match the ground 
truth. This validates the Fingerprint application’s processing 
component. We also performed a runtime comparison of our 
fingerprinting based de-duplication with the results obtained 
using the UNIX “sort –u” command implementation.  For 
simple and short alerts we observe that the sort approach 
closely matches the performance of FP. This is because the 
alerts considered here corresponded to a single line in the 
input file. If the input alerts span over multiple lines then the 
simple sort approach suffers from considerable overhead 
involved in converting to the necessary format both before 
and after processing the alerts. If we consider a complex 
alert data set where the individual alert spans over multiple 
lines (typical of SNORT alerts), the results show that the 
performance of the Fingerprinting application is 
significantly better. Fig. 3 illustrates that Rabin 
Fingerprinting based algorithm performs 10 times faster 
than the de-duplication using simple sort, which justifies the 
usage of Rabin Fingerprinting. 

There are two versions of the FP code, viz. single 
threaded version and a corresponding multi-threaded 
version(s). There are different approaches to parallelize 
code execution. Some of the approaches are explicit 
threading, OpenMP, Intel Threading Building Block (TBB), 
Auto Parallelization, etc. In order to apply parallelization to 
the existing single-threaded version of FP code, we have 
considered using Intel TBB [15]. Intel TBB is used to 
express parallelism in the FP code. Intel TBB is not just a 
threads-replacement library but also represents a higher-
level, task-based parallelism that abstracts platform details 
and threading mechanisms for scalability and performance. 
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Fig. 3. Runtime performance of de-duplication algorithms. 
 
In order to make the FP code multi-threaded, sections of 

the serial code suitable for parallelization are identified. The 
identified sections are in turn replaced by the corresponding 
parallel version. There are two versions of multi-threaded 
code for the same FP application. The two versions differ in 
the extent to which parallelization is applied. Version 1 has 
a lesser degree of parallelization compared to Version 2 of 
the multi-threaded code. After parallelization, performance 
comparison based on timing analysis is done in a manner 
similar to the single-threaded timing analysis. Fig. 4 
illustrates the comparative performances of de-duplication 
with single thread and multi-threads. The performance gain 
due to multi-threading is approximately 1.2 times that of 
single threading. The gain by multi-threading is not so 
significant due to limited room for the parallelization of the 
FP algorithm. However, the data de-duplication itself is very 
fast. For example, 65,000 alerts are processed and 
redundancy removed under 2.5 seconds. 

We wanted to see how the Atom results would stack up 
against those obtained with more powerful desktop CPUs 
such as the Intel Pentium Core 2 Duo processor. The details 
of the two platforms are as follows. 

Pentium 4 Core 2 Duo Configuration is as follows: Freq: 
2.66 GHz;    RAM: 4 GB;    Cores: 2 L2 Cache: 4 MB. 
Hyper threading Enabled: NO/YES. 

 
 

Fig. 4. Code execution time for single thread vs. multi-
threads on Atom. 

 

Intel Atom Configuration is as follows: Freq: 1.6 GHz; 
RAM: 1 GB; L1 Instruction Cache - 32 KB L1 Data Cache - 
24 KB L2 Cache - 512 KB.  Hyper threading Enabled: 
NO/YES. 

Fig. 5 shows the relative performances on Atom and 
Pentium 4 (P4) with single threading. It can be seen that the 
P4 single threaded version executes 3.3 times faster than the 
Atom single threaded version. Considering that the Atom 
processor runs at much lower frequency than P4 and with 
RAM size one-fourth, the slowdown is only about 3 times. 
We have done experiments with multi-threaded versions 1 
and 2 on Atom and compared the performance with multi-
threaded versions 1 and 2 on P4. The slowdown is in the 
range of 3.5 to 3.9 times. 

For completeness, the Rabin Fingerprinting scheme is 
contrasted with one other fingerprinting algorithm, also used 
for data de-duplication. We have considered the widely used 
Adler32 algorithm [16] for comparison. The performances 
of both multi-threaded and single threaded versions on 
Atom and Pentium Core 2 Duo processors are compared and 
a summary of results is given here (without any 
charts).

Fig. 5. Comparison of code execution times on Atom and 
Pentium 4 (single threaded). 

 
On the Atom processor, the single threaded version of 

the Adler32 algorithm executes 1.7-1.8 times faster than the 
single threaded version of Rabin FP algorithm. The multi-
threaded version of the Adler32 algorithm executes 1.5 
times faster than the multi-threaded version of Rabin FP 
algorithm. On the Intel Core 2 CPU, the single threaded 
version of the Adler32 algorithm executes 1.5-1.6 times 
faster than the single threaded version of Rabin FP 
algorithm. The multi-threaded version of the Adler32 
algorithm executes 1.3 times faster than the multi-threaded 
version of Rabin FP algorithm.  

Though the Adler32 performs better (faster) than the 
Rabin FP algorithm, the accuracy of data de-duplication is 
not 100% in the case of Adler32. When the Adler32 
algorithm generates the same checksum for two different 
alerts, these alerts are treated as though they are identical 
(collision) and it results in unique alerts being discarded. 
This may result in important alerts being discarded prior to 
being input to alert correlation engines. In the chosen alert 
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data set of 5,000 unique alerts, 14 unique alerts were not 
detected. In a set of 10,000 unique alerts, 24 unique alerts 
were not detected and in a set of 13,000 unique alerts, 33 
unique alerts were not detected. In the case of Rabin FP 
algorithm, all the unique alerts are correctly determined as 
unique. Thus, Adler32 could prove to be detrimental if used 
for redundancy removal in real-time safety applications 
unlike the Rabin FP algorithm. 

V. DISCUSSIONS AND CONCLUSION 
Based on the results of the timing analysis, we can 

conclude that the Rabin Fingerprinting scheme used for data 
de-duplication is both feasible and efficient. We have shown 
that there is a significant performance gain in the execution 
of the Fingerprinting application on the Atom processor due 
to its inherent parallelization capability (i.e., hyper-
threading). Also, the fingerprinting application performs 
very efficiently on common high end systems indicating that 
it could be deployed on a larger scale, e.g., corporate 
networks that deploy intrusion detection/prevention 
systems.  

Our research has potential for significant impact on 
mobile application security such as the vehicular networks 
(VANET) security [17]. Second generation Atom processors 
are breaking into the In-Vehicle Infotainment (IVI) market 
[18]. In the case of security schemes deployed in VANETs, 
a vehicle may receive the same messages/alerts from 
different sources multiple times. This could be a result of 
message forwarding, repeated transmission of messages, 
and so on. This could lead to numerous duplicate alerts 
being provided as input to safety applications making real-
time processing difficult. If we utilize data de-duplication 
algorithms in such scenarios, it will result in a manageable 
data set being provided as input to real-time applications. 
The duplicate alerts are filtered by the algorithm and hence 
the application processes useful unique alerts to provide 
real-time responses.  

Also, in safety applications, Denial of Service (DoS) is 
one form of attack where the adversary can try to prevent 
access to a service or create false alarms about a non-
existent situation by flooding the target system with 
repeated messages. The data de-duplication algorithm would 
discard such duplicate messages. The data de-duplication 
algorithm can also keep track of the number of discarded 
duplicate messages. If all the duplicate alerts are genuine, 
then the number of duplicate alerts helps the application to 
deduce the seriousness of the threat.  

In VANETs, the data set size is small as compared to the 
large data set size in corporate networks. However, the 
fingerprinting application is effective for both small and 
large data sets. The Atom processor performs efficiently in 
both scenarios. Our research ensures that the Atom 
(embedded) processor can be used in security applications at 
virtually no extra cost, because significant performance gain 
is obtained by utilizing the inherent architectural capabilities 

of the processor. They can be especially useful in situations 
where mobile/wireless devices are deployed. 

It is desirable to run our experiments on other generic 
processors as well as other embedded processors in order to 
generalize our results. This is part of our future work. 
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