
Data De-duplication and Event Processing for Security Applications on an
Embedded Processor

Harsha Nagarajaiah, Shambhu Upadhyaya
Computer Science and Engineering

University at Buffalo
Buffalo, NY 14260 USA

{hpn, shambhu}@buffalo.edu

Vinodh Gopal
Intel Corporation

75 Reed Road
Hudson, MA 01749 USA
vinodh.gopal@intel.com

Abstract—Network security schemes generally deploy

sensors and other network devices which generate huge
volumes of data, overwhelming the underlying decision making
algorithms. An example is corporate networks employing
intrusion detection systems where there is a deluge of alert
data, confounding the computations involved in sensor
information fusion and alert correlation. One way to obtain
fast and real-time responses is to preprocess such data to
manageable sizes. In this paper, we show that data de-
duplication using computationally efficient fingerprinting
algorithms can provide real-time results. We present an
algorithm which utilizes Rabin Fingerprinting/hashing scheme
for the purpose of data de-duplication. We have implemented
this algorithm on Intel Atom, which is a powerful, energy
efficient embedded processor. Our study is intended to show
that the relatively low performing embedded processors are
capable of providing the needed computational support if they
were to handle security functions in the field. When compared
to the algorithmic performance on a high end system, viz. Intel
Core 2 Duo processor, the positive results obtained make a
case for using the Atom processor in networked applications
employing mobile devices.

Keywords-Alert correlation, Embedded processors,
Fingerprinting, Mobile devices, Redundancy

I. INTRODUCTION
With the evolution of computer networks and the

explosive growth of the Internet, information assets of both
government and commercial organizations face credible
threats from complex goal-oriented multistage attacks.
Detection of these attacks as they unfold is essential
especially in critical systems where failure to do so may be
costly. This requires a high level understanding of the threat
situation which is typically accomplished by event
correlation and fusion of various cyber events [1]. In
corporate networks such cyber events are generated by
deploying intrusion detection and intrusion prevention
(IDS/IPS) systems. Military systems, on the other hand, are
more complex with airborne networks which are essentially
three-dimensional mobile ad hoc networks [2] that generate a
deluge of cyber events. Some of the processing nodes in
these networks may have severe power constraints limiting
their participation in alert correlation and fusion. Therefore,
the traditional software-based approach to information fusion
and situation awareness will have limited appeal in mission-
critical applications where systems are subject to cyber

attacks on a constant basis [3]. In order to make this solution
applicable to real networks, especially when mobile/wireless
devices are deployed, certain steps of alert correlation could
be expedited by taking advantage of the architectural features
of the processing nodes. In this regard, we propose to use
Intel Atom processor owing to its flexible applicability to
parallelization and flow processing [4] and its potential use
in embedded applications.

One of the major computations in sensor information
fusion and alert correlation is the removal of duplicate events
for pattern matching or correlation. This is so because
duplicate alerts may be generated when multiple sensors are
deployed on the network to sense an event and hence
network and host security systems may be presented with
huge data from these sensors and other network sources.
Typically, this data includes alerts streaming from sensors,
firewalls, and anti-virus tools and system and network level
data such as audit logs, packet information, netflows,
protocol and port information. It is important to preprocess
this data so that the correlation algorithms can be applied to a
manageable data set to obtain real-time responses.

The main contribution of this paper is an algorithm which
utilizes the Rabin Fingerprinting/hashing scheme [5] for the
purpose of data de-duplication. We have implemented this
algorithm on the Intel Atom processor, which is a powerful,
energy efficient embedded processor. Our study shows that
the relatively low performing embedded processors are
capable of providing computational support if they need to
handle security functions as well. When compared to the
algorithmic performance on a high end system, viz. Intel
Core 2 Duo processor, the positive results obtained make a
case for using the Atom processor in networked security
applications, especially in situations where a suite of mobile
devices is employed.

The rest of the paper is organized as follows. In Section
II, we give some background on Atom processor and Rabin
Fingerprinting. The main algorithm for alert data de-
duplication and processing is given in Section III. Details of
the evaluation of our scheme using a repository of alert data
from a federal project appear in Section IV. A discussion of
the application domain for the proposed scheme is presented
in Section V along with our concluding remarks.

II. BACKGROUND
The main experiment on data de-duplication using Rabin

Fingerprinting is done on a first generation Intel Z5xx

2012 31st International Symposium on Reliable Distributed Systems

1060-9857/12 $26.00 © 2012 IEEE

DOI 10.1109/SRDS.2012.18

418

(Atom) processor. The details of Atom and Rabin
Fingerprinting are presented next.

A. Atom Processor
Intel® Atom processors [4] are power-optimized to

deliver robust performance per watt, making them ideal for
many embedded applications such as interactive kiosks,
point-of-sale terminals, in-vehicle infotainment systems,
media phones, industrial automation equipment, digital
security systems, and residential gateways. These single-
core processors are software-compatible with previous 32-
bit Intel® architecture and complementary silicon. A three-
chip solution is offered with the Intel Atom processor N270
and the mobile Intel® 945GSE Express Chipset.

Intel hafnium-based 45nm Hi-k metal gate silicon
process technology reduces power consumption, increases
switching speed, and significantly increases transistor
density over previous 65nm process technology. Enhanced
Intel SpeedStep® Technology reduces average system
power consumption. Intel Hyper-Threading Technology
(Intel HT Technology) available in designated Stock
Keeping Units (SKU) provides high performance-per-watt
efficiency in an in-order pipeline. HT Technology provides
increased system responsiveness in multi-tasking
environments. One execution core appears as two logical
processors, and parallel threads are executed on a single
core with shared resources.

The Atom processor is currently used in innovative in-
vehicle infotainment (IVI) solutions. To keep pace with
consumer demand, IVI developers and auto manufacturers
need a platform that provides seamless integration between
home, office and car, and bridges the gap from generation-
to-generation of product development. Intel® architecture is
highly interoperable with Wi-Fi, Bluetooth, cellular,
WiMAX and emerging technologies like Ultra-Wideband,
allowing OEMs to easily incorporate digital content into a
head unit, now and in the future. Additionally, most
consumer software is developed on and for the PC which
lets developers easily add a breadth of applications to
Intel®-based IVI systems via software-only upgrades. When
coupled with extensive hardware and software from Intel’s
large community of developers, OEMs could benefit from
rapid development and simplified upgrades at minimal cost.
They include embedded lifecycle support, which protects
system investments by enabling extended product
availability for corporate networks that deploy intrusion
detection and intrusion prevention (IDS/IPS) systems.

B. Rabin Fingerprinting
An n-bit message m = m0... mn-1, can be viewed as a

polynomial f(x) of degree n-1 over the finite field GF(2) [6].
Let p(x) be a random irreducible polynomial of degree k
over GF(2). The Rabin Fingerprint of message m is defined
to be the remainder of division of f(x) by p(x) in GF(2)
which can be viewed as a polynomial of degree k-1 or as a
k-bit number [5]. It is fast and easy to implement, allows

compounding, and comes with a mathematically precise
analysis of the probability of collision. The probability of
two messages r and s yielding the same w-bit fingerprint
does not exceed max (|r|,|s|)/2w-1, where |r| denotes the
length of r in bits. The algorithm requires the previous
choice of a w-bit internal "key", and this guarantee holds as
long as the messages r and s are chosen without the
knowledge of the key.

Test results show that the time efficiency of Rabin’s
Fingerprinting method (linear in the length of the message)
is comparable to other well known hashing functions while
outperforming them in the sense of lower or even no
collision occurrences [7]. Rabin fingerprints offer provably
strong probabilistic guarantees that two different messages
will not have the same fingerprint. Other checksum
algorithms, such as MD5 and SHA, do not offer such
provable guarantees, and are also more expensive to
compute the fingerprints.

Data de-duplication is essentially a string matching
problem using digital fingerprints. Randomly chosen
irreducible polynomials are used to "fingerprint" bit strings
or messages. This method is applied to produce a very
simple real-time string matching algorithm [7]. The result of
application of Rabin’s method is shown to be independent
of the choice of irreducible polynomials. The probability of
error (different strings having the same fingerprint)
decreases with the increase of the degree of the irreducible
polynomial used. The performance of the method improves
with the increase of the degree of the irreducible polynomial
used and it is shown that with 64-bit fingerprint, the
percentage of collision is 0 [7]. Due to this efficiency, we
propose to use Rabin Fingerprinting for data de-duplication.
Some other applications of Rabin fingerprinting are in
detecting worms [8], [9], web cache [10], large file finding
[11] and redundancy elimination in large collections of files
[12].

III. DATA DE-DUPLICATION ALGORITHM
We have developed a data de-duplication scheme that is

customized to remove redundant cyber events/alerts in a
network with deployed IDS/IPS sensors such as SNORT.
The algorithm is shown in Fig. 1 and described below in a
step-by-step manner.

a. Input alerts (alert log files) from various alert
sources are collated into a single input file. The
alerts in this file are sorted by their respective
timestamp values.

b. Based on a pre-specified threshold value of time,
the alerts from the input file are split into multiple
files. A single file contains alerts (with timestamp
field removed) for the specified time duration.
Each file forms an input to the Fingerprinting
algorithm. Removal of timestamp leads to some
degree of redundancy among the alerts (done to
guarantee that there is sufficient redundancy in the
data set for illustration purposes).

419

c. The Fingerprinting application processes each file
and the resulting unique alerts, in the time duration
under consideration, are stored in corresponding
data structures. Internally the application uses
Rabin Fingerprinting for fast pattern matching and
data de-duplication. After redundant alert removal,
the resulting unique alerts are stored in an
appropriate data structure (such as the Multimap or
Multihash [13]).

d. The output of each data structure which consists of
unique alerts for the specified time durations are
written to a single output file. This file represents a
manageable data set for real-time processing, and
serves as an input to the alert correlation algorithm
(discussed elsewhere).

Fig. 1. The flow diagram of data de-duplication.

IV. EVALUATION
We have implemented the Rabin Fingerprinting (FP)

based data de-duplication algorithm in our lab using Intel®
Atom™ processor N270 and Intel® System Controller Hub
US15W development kit. The development kit is shown in
Fig. 2.

The algorithm is implemented in C++ and the code is
executed on different machines/platforms. We have
conducted controlled experiments using specific data sets.
The data set for the controlled experiment is created using
SNORT security alerts obtained from a federal project
testbed [14] and Perl scripts. The timing analysis is
performed on the processing unit of the Fingerprint
application. The steps involved are – reading from alert
files, duplicate alert elimination, storing unique alerts in an
appropriate data structure and writing the output of all the
data structures into a common output file.

Fig. 2. Intel® system controller US15W development kit.

We first processed the alerts in the data set using UNIX
sort command to determine the ground truth on the
uniqueness of the alerts. The results from the Fingerprinting
application were compared and found to match the ground
truth. This validates the Fingerprint application’s processing
component. We also performed a runtime comparison of our
fingerprinting based de-duplication with the results obtained
using the UNIX “sort –u” command implementation. For
simple and short alerts we observe that the sort approach
closely matches the performance of FP. This is because the
alerts considered here corresponded to a single line in the
input file. If the input alerts span over multiple lines then the
simple sort approach suffers from considerable overhead
involved in converting to the necessary format both before
and after processing the alerts. If we consider a complex
alert data set where the individual alert spans over multiple
lines (typical of SNORT alerts), the results show that the
performance of the Fingerprinting application is
significantly better. Fig. 3 illustrates that Rabin
Fingerprinting based algorithm performs 10 times faster
than the de-duplication using simple sort, which justifies the
usage of Rabin Fingerprinting.

There are two versions of the FP code, viz. single
threaded version and a corresponding multi-threaded
version(s). There are different approaches to parallelize
code execution. Some of the approaches are explicit
threading, OpenMP, Intel Threading Building Block (TBB),
Auto Parallelization, etc. In order to apply parallelization to
the existing single-threaded version of FP code, we have
considered using Intel TBB [15]. Intel TBB is used to
express parallelism in the FP code. Intel TBB is not just a
threads-replacement library but also represents a higher-
level, task-based parallelism that abstracts platform details
and threading mechanisms for scalability and performance.

420

Fig. 3. Runtime performance of de-duplication algorithms.

In order to make the FP code multi-threaded, sections of

the serial code suitable for parallelization are identified. The
identified sections are in turn replaced by the corresponding
parallel version. There are two versions of multi-threaded
code for the same FP application. The two versions differ in
the extent to which parallelization is applied. Version 1 has
a lesser degree of parallelization compared to Version 2 of
the multi-threaded code. After parallelization, performance
comparison based on timing analysis is done in a manner
similar to the single-threaded timing analysis. Fig. 4
illustrates the comparative performances of de-duplication
with single thread and multi-threads. The performance gain
due to multi-threading is approximately 1.2 times that of
single threading. The gain by multi-threading is not so
significant due to limited room for the parallelization of the
FP algorithm. However, the data de-duplication itself is very
fast. For example, 65,000 alerts are processed and
redundancy removed under 2.5 seconds.

We wanted to see how the Atom results would stack up
against those obtained with more powerful desktop CPUs
such as the Intel Pentium Core 2 Duo processor. The details
of the two platforms are as follows.

Pentium 4 Core 2 Duo Configuration is as follows: Freq:
2.66 GHz; RAM: 4 GB; Cores: 2 L2 Cache: 4 MB.
Hyper threading Enabled: NO/YES.

Fig. 4. Code execution time for single thread vs. multi-
threads on Atom.

Intel Atom Configuration is as follows: Freq: 1.6 GHz;
RAM: 1 GB; L1 Instruction Cache - 32 KB L1 Data Cache -
24 KB L2 Cache - 512 KB. Hyper threading Enabled:
NO/YES.

Fig. 5 shows the relative performances on Atom and
Pentium 4 (P4) with single threading. It can be seen that the
P4 single threaded version executes 3.3 times faster than the
Atom single threaded version. Considering that the Atom
processor runs at much lower frequency than P4 and with
RAM size one-fourth, the slowdown is only about 3 times.
We have done experiments with multi-threaded versions 1
and 2 on Atom and compared the performance with multi-
threaded versions 1 and 2 on P4. The slowdown is in the
range of 3.5 to 3.9 times.

For completeness, the Rabin Fingerprinting scheme is
contrasted with one other fingerprinting algorithm, also used
for data de-duplication. We have considered the widely used
Adler32 algorithm [16] for comparison. The performances
of both multi-threaded and single threaded versions on
Atom and Pentium Core 2 Duo processors are compared and
a summary of results is given here (without any
charts).

Fig. 5. Comparison of code execution times on Atom and
Pentium 4 (single threaded).

On the Atom processor, the single threaded version of

the Adler32 algorithm executes 1.7-1.8 times faster than the
single threaded version of Rabin FP algorithm. The multi-
threaded version of the Adler32 algorithm executes 1.5
times faster than the multi-threaded version of Rabin FP
algorithm. On the Intel Core 2 CPU, the single threaded
version of the Adler32 algorithm executes 1.5-1.6 times
faster than the single threaded version of Rabin FP
algorithm. The multi-threaded version of the Adler32
algorithm executes 1.3 times faster than the multi-threaded
version of Rabin FP algorithm.

Though the Adler32 performs better (faster) than the
Rabin FP algorithm, the accuracy of data de-duplication is
not 100% in the case of Adler32. When the Adler32
algorithm generates the same checksum for two different
alerts, these alerts are treated as though they are identical
(collision) and it results in unique alerts being discarded.
This may result in important alerts being discarded prior to
being input to alert correlation engines. In the chosen alert

421

data set of 5,000 unique alerts, 14 unique alerts were not
detected. In a set of 10,000 unique alerts, 24 unique alerts
were not detected and in a set of 13,000 unique alerts, 33
unique alerts were not detected. In the case of Rabin FP
algorithm, all the unique alerts are correctly determined as
unique. Thus, Adler32 could prove to be detrimental if used
for redundancy removal in real-time safety applications
unlike the Rabin FP algorithm.

V. DISCUSSIONS AND CONCLUSION
Based on the results of the timing analysis, we can

conclude that the Rabin Fingerprinting scheme used for data
de-duplication is both feasible and efficient. We have shown
that there is a significant performance gain in the execution
of the Fingerprinting application on the Atom processor due
to its inherent parallelization capability (i.e., hyper-
threading). Also, the fingerprinting application performs
very efficiently on common high end systems indicating that
it could be deployed on a larger scale, e.g., corporate
networks that deploy intrusion detection/prevention
systems.

Our research has potential for significant impact on
mobile application security such as the vehicular networks
(VANET) security [17]. Second generation Atom processors
are breaking into the In-Vehicle Infotainment (IVI) market
[18]. In the case of security schemes deployed in VANETs,
a vehicle may receive the same messages/alerts from
different sources multiple times. This could be a result of
message forwarding, repeated transmission of messages,
and so on. This could lead to numerous duplicate alerts
being provided as input to safety applications making real-
time processing difficult. If we utilize data de-duplication
algorithms in such scenarios, it will result in a manageable
data set being provided as input to real-time applications.
The duplicate alerts are filtered by the algorithm and hence
the application processes useful unique alerts to provide
real-time responses.

Also, in safety applications, Denial of Service (DoS) is
one form of attack where the adversary can try to prevent
access to a service or create false alarms about a non-
existent situation by flooding the target system with
repeated messages. The data de-duplication algorithm would
discard such duplicate messages. The data de-duplication
algorithm can also keep track of the number of discarded
duplicate messages. If all the duplicate alerts are genuine,
then the number of duplicate alerts helps the application to
deduce the seriousness of the threat.

In VANETs, the data set size is small as compared to the
large data set size in corporate networks. However, the
fingerprinting application is effective for both small and
large data sets. The Atom processor performs efficiently in
both scenarios. Our research ensures that the Atom
(embedded) processor can be used in security applications at
virtually no extra cost, because significant performance gain
is obtained by utilizing the inherent architectural capabilities

of the processor. They can be especially useful in situations
where mobile/wireless devices are deployed.

It is desirable to run our experiments on other generic
processors as well as other embedded processors in order to
generalize our results. This is part of our future work.

ACKNOWLEDGEMENT
This research has been supported in part by a grant from

Intel Corporation and a grant from the Department of
Defense (Grant No. H98230-11-1-0463). Usual disclaimers
apply.

REFERENCES
[1] S. Mathew, S. Upadhyaya, M. Sudit and A. Stotz,

“Situation Awareness of Multistage Cyber Attacks by
Semantic Event Fusion”, IEEE MILCOM, Oct. 2010.

[2] B. Ames, “Airborne Networking Challenges”, Military
and Aerospace Electronics Magazine, 2004.

[3] S. Manganaris, M. Christensen, D. Zerkle, and K.
Hermiz, “A Data Mining Analysis of RTID Alarms”,
Computer Networks, 34:571-577, 2000.

[4] "Intel® Atom™ Processor Z520, Intel, 2008,
http://ark.intel.com/products/35466/Intel-Atom-
Processor-Z520-%28512K-Cache-1_33-GHz-533-
MHz-FSB%29

[5] M.O. Rabin, “Fingerprinting by Random Polynomials”,
Center for Research in Computing Technology,
Harvard University, Tech Report TR-CSE-03-01, 1981.

[6] W.W. Peterson, Error-Correcting Codes, MIT Press,
1961.

[7] C. Chen and H. Lu, “Fingerprinting Using Polynomial
(Rabin’s Method)”, Term Project, U. of Alberta, 2001.

[8] H. Kim and B. Karp, “Autograph: Toward Automated,
Distributed Worm Signature Detection”, Proceedings of
the 13th Usenix Security Symposium, Aug. 2004.

[9] S. Singh, C. Estan, G. Varghese and S. Savage,
“Automated Worm Fingerprinting”, Proceedings of the
6th conference on Symposium on Operating Systems
Design & Implementation (OSDI), 2004.

[10] L. Fan, P. Cao, J. Almeida and A. Broder, “Summary
Cache: A Scalable Wide-Area Web Cache Sharing
Protocol”, ACM Transactions on Networking, vol. 8,
No. 3, 2000.

[11] U. Manber, “Finding Similar Files in a Large File
System”, USENIX Winter Technical Conference, 1994.

[12] P. Kulkarni, F. Douglis, J. La Voie and J.M. Tracey,
“Redundancy Elimination within Large Collections of
Files”, Proceedings of the 2004 Usenix Annual
technical Conference, June 2004.

[13] Standard Template Library Programmer's Guide,
Silicon Graphics International.

[14] R. Stapleton-Gray and S. Gorton, “Rendering the
Elephant: Characterizing Sensitive Networks for an
Uncleared Audience”, Proceedings of the IEEE
International Information Assurance Workshop, pages
208-214, West Point, NY, USA, 2006.

422

[15] Intel Threading Building Blocks (TBB) for Open
Source. http://threadingbuildingblocks.org/

[16] P. Deutsch and J.-L. Gailly, ZLIB Compressed Data
Format Specification Version 3.3, IETF RFC 1950,
May 1996.

[17] P. Papadimitratos, L. Buttyan, T. Holczer, E. Schoch, J.
Freudiger, M. Raya, Z. Ma, F. Kargl, A. Kung and J.-P.

Hubaux, “Secure vehicular communications: design and
architecture”, IEEE Communications Magazine, vol.
46, no. 11, pp. 100-109, November 2008.

[18] Setting the pace in automotive technology,
http://www.intel.com/content/www/us/en/embedded-
developers-engineers/automotive-overview.html

423

