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Abstract – Domain Keys Identified Mail (DKIM) is one of 
the widely used mechanisms by which email messages can 
be cryptographically signed, permitting a signing domain to 
claim responsibility for the release of an email into the mail 
stream. As the volume of emails exchanged becomes large, 
the software implementations of DKIM using OpenSSL 
library will become a limiting factor of performance due to 
the heavy computations involved. In this largely empirical 
work, we identify the computation intensive modules of 
DKIM and solve the performance issues by implementing 
their functions on COTS  hardware. Our approach makes 
use of the Intel Embedded processor Tolapai (Intel 
EP80579) that has several built-in cryptographic 
functionalities, viz. security accelerators for bulk 
encryption, authentication, hashing and public/private key 
generation and digital signing. Experimental results show 
that an overall 50% acceleration can be achieved by 
transparently migrating the DKIM functionalities to 
hardware. 
 
Keywords – Domain Keys Identified Mail, Hardware 
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I. INTRODUCTION 

       A common synonym for spam is unsolicited bulk email 
(UBE). The definition of spam usually includes the aspect 
that an email is unsolicited and sent in bulk. Spam is one of 
the media for fraudsters to scam users to enter personal 
information on fake websites using email forged to look like 
it is from a bank or other legitimate organization. This is 
known as phishing [1]. 

According to IronPort’s 2008 Security Trend Report, as 
much as 90% of inbound mail is spam today. Moreover, 
spam is no longer simply an irritant but becomes 
increasingly dangerous. About 83% of spam contains a 
clickable link. Thus, phishing sites and Trojan infections of 
office and home systems alike are just one click away. 
State-of-the-art spam filtering techniques are based on 
content analysis (e.g., SpamAssassin), host reputation 
(SpamCop, Spamhaus) or authentication services (SPF, 
DKIM) [2]. 

Our goal in this research work is to utilize a hardware 
accelerating SOC processor which will improve the 
performance of the domain keys identified mail (DKIM) 
algorithm processing and in-turn the DKIM based spam 
filters and phishing attack detectors. Such enhancements 
will facilitate the speedy processing of large volumes of 
emails exchanged at the gateways. We achieve our goals by 
moving to hardware the computation-intensive hashing 
functions and digital signature schemes using RSA and 
SHA which are part of the core DKIM algorithm. This paper 
is not about designing a new algorithm for DKIM based 
spam filters. On the other hand, it achieves acceleration for 
existing DKIM based spam filters and phishing attack 
detectors through an empirical study and implementation.         

We performed this empirical study by considering two 
benchmarking methods with the goal of showing significant 
performance improvement of DKIM using hardware 
acceleration as compared to its software counterparts. The 
first one is the OpenSSL’s built-in benchmark. This 
benchmark tests the performance of the crypto library used 
by DKIM. Second, we benchmark the response time of an 
end to end implementation of DKIM written in C. The 
results briefed out in sections IV and V show a significant 
performance improvement by implementing DKIM 
functions on hardware.  

The organization of the paper is as follows. Section II 
describes the related work on DKIM and milters (stands for 
mail filters, which are used for filtering spam or viruses very 
efficiently in the mail-processing chain) and earlier 
approaches to move the milter functionalities to hardware. 
Section III details the Intel processor, the DKIM approach 
and the acceleration techniques. The experimentation that 
was carried out to illustrate our performance goals is 
described in Section IV. The results, conclusions and future 
work are briefed out in sections V and VI respectively. 

II. RELATED WORK 

Luo [14] gives details on a plethora of research on spam 
detection, filtering, elimination and some anti-spam 
appliances that have been introduced to the market. The 
DKIM algorithm and its scope and usage are explained in 



[4], [6], [7] but there is no literature available on any 
hardware approaches for accelerating the performance of 
DKIM. 

However, the growth of spam messages remains 
rampant. There exists a strong call to design high-
performance email filtering systems. Most of the existing 
research focuses on the design of protocols, authentication 
methods, neural network based self-learning and statistical 
filtering. In contrast, we approach the spam filtering issues 
from a complementary perspective – improving the filtering 
performance through the computer architecture support. 

Gupta et al. [1] introduce a technique which improves 
the performance of the Naïve Bayesian spam filters and 
phishing attack detectors by moving hashing functions used 
in Naïve Bayesian spam filters to Intel Tolapai (EP80579) 
hardware.  There have been attempts to patch OpenSSL, the 
popular library used for DKIM implementations [11] and to 
use the OCF driver on Linux which enables it to accelerate 
cryptographic operations using the integrated cryptographic 
accelerator of Intel Tolapai. Our approach is to use the same 
multi-purpose cryptographic processor of Intel to achieve 
performance improvement of DKIM protocol and in-turn 
the DKIM based spam filters and phishing attack detectors. 
Being a multi-purpose processor, Intel Tolapai (EP80579) 
can run like a normal desktop processor and at the same 
time make use of its accelerating capabilities for security 
applications.  

III. EXPERIMENTAL BASIS 

        We are using Intel EP80579 (Tolapai) processor to 
achieve acceleration of DKIM implementation using the 
OpenSSL library at its core. The details are described next. 
 
A. Intel EP80579 Processor 
        The Intel® EP80579 Integrated Processor with Intel® 
QuickAssist Technology, Tolapai, is a complete System-on-
a-Chip for security, communications, storage and embedded 
designs.  
 
a) Architectural Details of Tolapai  

The Intel® EP80579 Integrated Processor (Tolapai) is a 
System-On-a-Chip (SOC) integrating the Intel® 
Architecture core processor, the Integrated Memory 
Controller Hub (IMCH) and the Integrated I/O Controller 
Hub (IICH) all on the same die. In addition, it has integrated 
Intel® QuickAssist Technology, which provides 
acceleration of cryptographic and packet processing. Fig. 1 
shows the architecture of Intel EP80579.  

The Intel® QuickAssist Technology components 
housed in the Acceleration and I/O Complex (AIOC) are as 
follows: 

 
• The Security Services Unit (SSU) provides acceleration 

of cryptographic processing for the most common 
symmetric cryptographic algorithms (ciphers such as 

AES, 3DES, DES, (A)RC4, and messages digest/hash 
functions such as MD5, SHA-1, SHA-2, HMAC, etc.), 
asymmetric cryptographic functions (modular 
exponentiation to support public key encryption such as 
RSA, Diffie-Hellman, DSA), and true random number 
generation. 

• The Acceleration Services Unit (ASU) includes packet 
processing acceleration engines.  

 
We utilize this acceleration capability of Intel EP80579 

to improve the performance of DKIM implementation. The 
RSA and hashing functions as identified in Section III.C are 
moved to hardware as specified in Section III.C.b. 

 

 
Fig. 1: Block Diagram of Intel EP80579 [3] 

b) Features of Tolapai  
 This SOC processor delivers a significant leap in 
architectural design, with a good combination of 
performance, power efficiency, footprint savings and cost-
effectiveness compared to discrete, multi-chip solutions. 
Using multi-chip solutions for different security applications 
poses scalability and cost issues. Tolapai aims to provide a 
single chip solution for security applications. The integrated 
accelerators in this SOC processor support Intel QuickAssist 
Technology through software packages provided by Intel. 
These software packages provide the library structures to 
integrate security functionality into the application, 
completely adjunct to the Intel architecture complex, freeing 
up CPU cycles to support additional features and 
capabilities. This provides the efficiency of customized 
hardware with the flexibility to design diverse applications 
with one platform. The design also includes security 
accelerators for bulk encryption, hashing and public/private 
key generation [3].  
 Currently, the FWA-3240 [15], [16], which is a 
board-level product developed by Advantech Co., Ltd., 



incorporates Intel’s Tolapai System-on-Chip which 
combines Intel's QuickAssist Technology and integrates an 
Intel Pentium M class core, memory controller and I/O 
controller. The high-performance CPU core supplies the 
horse power needed to perform deep packet inspection and 
other complex operations and is particularly optimized for 
entry to mid-range network security appliances.      
 
B. DKIM Algorithm   

Domain Keys Identified Mail (DKIM) is an anti-spam 
approach that involves digitally signed email [7]. Stephen et 
al. [7], Barry et al. [6] and Allman et al. [4] have provided 
the details about the DKIM algorithm and the scope and 
usage of it.  The sender signing practices are explained by 
Allman et al. [5]. Fig. 2 shows the working of the DKIM 
algorithm. The flow is as follows:  

 
• The sending domain publishes in its DNS record a 

public key (e.g., generated using OpenSSL). 
• The sending mail server then digitally signs, using the 

private key, and sends the message.  
• The receiving mail server verifies the digital signature 

by retrieving the public key of the sending domain from 
the DNS. 

• The receiving mail server verifies the digital signature, 
and if successful, delivers the email to the end user. 
 

 
Fig. 2: The workings of DKIM [8] 

C. Achieving Acceleration 
The DKIM feature is implemented through a milter 

(mail filter), which is an extension to the widely used open 
source mail transfer agent (MTA) Sendmail and Postfix. It 
allows administrators to add mail filters for 
filtering spam or viruses very efficiently in the mail-
processing chain [17]. For example, Sendmail, Inc. has 
released a free, Open Source implementation of the DKIM 
signing and verifying software. A portable API is available 
to allow DKIM to be embedded into any application. Also 
provided is a milter plugin for Open Source sendmail, the 
world's leading MTA. The milter plugin allows system 
administrators to easily sign and verify messages using 

DKIM signatures [9]. As may be noted from above section 
the DKIM algorithm uses RSA public key cryptosystem 
along with SHA-1 and SHA-256 hashing at its core, which 
is provided using OpenSSL library utility by most of the 
popular DKIM implementations. 

 
a) OpenSSL 

OpenSSL is an open source implementation of the 
Secure Socket Layer (SSL) and Transport Layer Security 
(TLS) protocols with the libcrypto library being the main 
component which implements a wide range of cryptographic 
algorithms used in various Internet standards. Libcrypto 
library has the concept of engines to allow other 
implementations to be plugged in, including hardware based 
accelerators.  One of the most useful features is the ability to 
factor out processing intensive operations to specialist 
hardware through an ‘engine’ interface. It is through this 
engine subsystem that Costigan et al. [19] accelerate SSL by 
using the Cell (Cell Broadband Engine by IBM) SPU’s 
(synergistic processor units) vector processing capabilities. 
Wrappers allowing the use of the OpenSSL library in a 
variety of computer languages are available. Versions are 
available for   most Unix-like operating systems (including 
Solaris, Linux, Mac OS X and the four open source BSD 
Operating Systems), OpenVMS and Microsoft Windows. 
IBM provides a port for the System i (OS/400) [10].  

 
b) Hardware Acceleration for OpenSSL 

The Intel Document [11] describes how to patch 
OpenSSL to use the OpenBSD/FreeBSD Cryptographic 
Framework (OCF) engine on Linux.  OCF is a service 
virtualization layer implemented inside the kernel that 
provides uniform access to accelerator functionality by 
hiding card-specific details behind a carefully-designed API 
[18]. OCF also includes a user-space library which allows 
the kernel driver to be accessed from user space via the 
/dev/crypto device. Keromytis et al. [18] have shown that 
the OCF is extremely efficient in utilizing cryptographic 
accelerator functionality, attaining 95% of the theoretical 
peak device performance, and over 800 Mbit/sec aggregate 
throughput using 3DES, though not specifically on Tolapai. 
Tolapai provides a “shim” or plugin for OCF to allow users 
of the OCF API in the kernel or user space to be offloaded 
to the integrated crypto accelerator. The OCF driver enables 
OpenSSL to accelerate cryptographic operations using the 
integrated cryptographic accelerator. The acceleration is 
handled by the CRYPTODEV engine, provided by OCF in 
the form of a plug-in to libcrypto. 

IV. EXPERIMENTAL SETUP 

We have two Intel EP80579 Development Boards at 
our disposal and they were assembled as per the instructions 
on the Intel user guide for EP80579 [12]. Fig. 3 and Fig. 4 
depict the system configuration and a setup for experiments 
in our lab. RedHat Linux kernel was installed on these 



systems along with software drivers and kernel modules for 
the QuickAssist Technology provided by Intel. A software 
implementation of the Intel® QuickAssist Technology 
cryptographic API uses the integrated crypto accelerator of 
Tolapai. Both of these Tolapai boards were setup for DKIM 
benchmarking. One was used to map the acceleration 
provided by the hardware acceleration patched for OpenSSL 
as specified in Sec. III.C.b by utilizing the QuickAssist 
technology features whereas the other was used to setup the 
software counterpart of the application (for comparison 
purposes).  

 

 
Fig. 3: Tolapai system configuration used for testing 

 
 

Fig. 4: Intel EP80579 Lab setup [12] 

A.  BENCHMARKING  
The details of the experiment are summarized in Table 

1. The table shows the input, output, algorithms used and 
the number of runs used for averaging the results. 

 
 

Table 1: Experiment Details 

SOFTWARE OpenSSL  0.9.8e 
INPUT using the OpenSSL provided 

benchmarking suite “speed” utility. 
- openssl speed <DKIM specific core 
Algorithm> 

ALGORITHMS SHA1, SHA256, RSA signing – 
verification for 1024 and 2048 bits 

OUTPUT profiling the performance of the core 
DKIM algorithms using OpenSSL crypto 
library using the setup described above 

RUNS 100 (first 5 are reported) 
 
a) OPENSSL’S BUILT-IN BENCHMARK 

RESULTS FOR DKIM 
Fig. 5, which maps increasing block sizes against 

thousands of bytes on which the SHA1digest is applied per 
second, shows that as block size increases for SHA1 the 
Hardware version shows substantially improved 
performance. The performance of the hardware version is 
actually lower than software for smaller buffer sizes as the 
stack is non-optimal (i.e., libcrypto to OCF engine layer to 
OCF cryptodev, then into the kernel with buffer copying, 
then through OCF, OCF shim, then the Quick Assist library 
– and all the way back up again).  A more optimal stack is 
possible, but has not been implemented at this time. Fig. 6 
shows a sample output of the OpenSSL speed test with its 
various timelines for SHA1. The current OCF patch (OCF 
shim implemented for Tolapai nor the OpenSSL engine 
layer patch) doesn't provide hardware acceleration for 
SHA256 and hence there isn't any significant difference in 
performance between the software and hardware versions of 
DKIM for SHA256. Figures 7 through 10 show that moving 
the main functionality to the hardware produces a 
substantial performance boost in that we can RSA-sign and 
verify significantly more number of blocks per second. 

 

Fig. 5: OpenSSL SHA1 profiling 



 

Fig. 6: Sample SHA1 Run Output 

 
Fig. 7: OpenSSL RSA signing - 1024 bits profiling 

 
Fig. 8: OpenSSL RSA signing - 2048 bits profiling 

 
Fig. 9: OpenSSL RSA verification - 1024 bits profiling 

 
Fig. 10: OpenSSL RSA verification - 2048 bits profiling 

b) END-TO-END IMPLEMENTATION 
BENCHMARK RESULTS FOR DKIM 

A dataset from an earlier research project [13] was used 
for the emails, which consists of 1197 messages with 
average size of 8.8KB, median of 7KB and the majority of 
messages in the range of 1-20 KB. There were no messages 
larger than 180KB. A code snippet in C using the threading 
model was developed to map the timings as compared to a 
shell script program to achieve the same result for the 
purposes of getting the timing in milli-seconds which isn’t 
possible via shell scripting.  

The code was written for calculating the average time 
of applying the core modules of DKIM (which use 
OpenSSL for the algorithms) on the email repository to 
determine the end-to-end performance enhancements, the 
flow of which is as shown in Fig. 11. This implementation 
doesn't include publishing and retrieval of the public key 
from the DNS record along with additions of the message 
header tags related to DKIM. The same code was run on 
both Tolapai setups – one utilizing the hardware features 



and the other not utilizing the hardware, and the results are 
noted in tables 2 through 5. The speedups are apparent from 
the tables. 

 

 
Fig. 11: End-to-end implementation code flow 

Table 2: RSA – 1024 bits with SHA1   

 Hardware  
(Avg Time - ms) 

Software 
(Avg Time - ms) 

Signing 6.072024 9.946899 
Verification 6.469257 6.677209 

Table 3: RSA – 1024 bits with SHA256   

 Hardware  
(Avg Time - ms) 

Software 
(Avg Time - ms) 

Signing 6.417706 9.999939 
Verification 6.651458 6.932569 

Table 4: RSA – 2048 bits with SHA1 

 Hardware  
(Avg Time - ms) 

Software 
(Avg Time - ms) 

Signing 6.160404 13.968011 
Verification 6.502682 7.183801 

Table 5: RSA – 2048 bits with SHA256   

 Hardware  
(Avg Time - ms) 

Software 
(Avg Time - ms) 

Signing 6.189453 13.984166 
Verification 6.621802 7.185308 

V. DISCUSSION OF RESULTS 

Though the results of Section IV.A.a are shown only 
for the first five runs, the experiment was run 100 times and 
averaged so that any noisy timing measurements are 
eliminated. Our experiments show a 30x and 15x boost in 
performance for 1024-bits RSA signing and verification 
respectively, as a result of moving to hardware. These 
figures are twice as good for 2048-bits RSA signing and 
verification. A summary of the results of our end-to-end 
benchmark experiments in Section IV.A.b is presented in 
Table 6. The results in Section IV.A.a show a much higher 
relative performance difference between the hardware and 
software based implementations when compared with the 
results of Section IV.A.b. This is because the former 
experiments use the optimal inbuilt OpenSSL commands 
and the latter end-to-end performance experiments include 
multiple core DKIM algorithms, some of which are 
inherently slower. Overall, the data shows that performance 
for DKIM algorithm implementation and DKIM milters can 
be significantly increased by using the Tolapai processor. 
Our approach not only achieves better performance but at 
the same time doesn’t require a dedicated hardware co-
processor or chip.  

Table 6: End-to-end gains by hardware implementation  

Algorithm used in 
DKIM 

Signing/Verification 
%Gain  
   w.r.t 
Software 

RSA – 1024 bits 
with SHA1   

Signing 63.82% 

RSA – 1024 bits 
with SHA1   

Verification 3.21% 

RSA – 1024 bits 
with SHA256 

Signing 55.82% 

RSA – 1024 bits 
with SHA256 

Verification 4.23% 

RSA – 2048 bits 
with SHA1   

Signing 126.74% 

RSA – 2048 bits 
with SHA1   

Verification 10.47% 

RSA – 2048 bits 
with SHA256   

Signing 125.94% 

RSA – 2048 bits 
with SHA256 

Verification 8.51% 

 
Experimental results in Table 6 show that an overall 

acceleration of 49.84% is achieved by transparently 



migrating the DKIM functionalities implemented using 
OpenSSL library to hardware. 

Being a commercial off-the-shelf (COTS) processor, no 
additional chip is required to achieve this acceleration. The 
interface to hardware through APIs that are provided by 
Intel, make the acceleration completely transparent to the 
user. The implementation of DKIM milter is still flexible, 
thus, overcoming shortcomings of any dedicated hardware 
modules. Other security applications can make use of the 
accelerating capabilities of Tolapai without additional costs. 
Our conclusion is that DKIM milters utilizing the Tolapai 
processor features will perform better in applying the DKIM 
algorithms on email messages and could detect spam and 
phishing emails in real-time even when the traffic volume is 
significantly high. 

VI. FUTURE WORK 

Our future work would consist of improving the 
OpenSSL OCF driver for SHA-256 performance 
acceleration required for DKIM. We plan to move the full 
end-to-end implementation of DKIM milter at an MTA to 
the hardware and profile the performance. We also plan on 
utilizing Tolapai to implement other security applications 
which will be more efficient in performance than their 
software counterparts. We have already done some 
preliminary research in this area by moving certain 
functions of the Naïve Bayesian spam filters to Intel 
EP80579 hardware [1]. Moving more functions such as 
“tokenizing” which is a major time consuming function in 
spam filtering will be a useful future work. Finally, we will 
also look into exploiting the acceleration features of other 
(upcoming) SoC processors such as the Stellarton [20] to 
achieve higher performances for security applications (such 
as secure email) on embedded processor platforms.     
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