
Accelerated Processing of Secure Email by Exploiting Built-in
Security Features on the Intel® EP80579 Integrated Processor

with Intel® QuickAssist Technology

Vallisha Keshavamurthy and Shambhu Upadhyaya
Computer Science and Engineering

University at Buffalo
Buffalo, NY 14260

{vallisha,shambhu}@buffalo.edu

Vinodh Gopal
Intel Corporation

75 Reed Road
Hudson, MA 01749

vinodh.gopal@intel.com

Abstract – Domain Keys Identified Mail (DKIM) is one of
the widely used mechanisms by which email messages can
be cryptographically signed, permitting a signing domain to
claim responsibility for the release of an email into the mail
stream. As the volume of emails exchanged becomes large,
the software implementations of DKIM using OpenSSL
library will become a limiting factor of performance due to
the heavy computations involved. In this largely empirical
work, we identify the computation intensive modules of
DKIM and solve the performance issues by implementing
their functions on COTS hardware. Our approach makes
use of the Intel Embedded processor Tolapai (Intel
EP80579) that has several built-in cryptographic
functionalities, viz. security accelerators for bulk
encryption, authentication, hashing and public/private key
generation and digital signing. Experimental results show
that an overall 50% acceleration can be achieved by
transparently migrating the DKIM functionalities to
hardware.

Keywords – Domain Keys Identified Mail, Hardware
security, Hashing, Intel EP80579, Secure email

I. INTRODUCTION

 A common synonym for spam is unsolicited bulk email
(UBE). The definition of spam usually includes the aspect
that an email is unsolicited and sent in bulk. Spam is one of
the media for fraudsters to scam users to enter personal
information on fake websites using email forged to look like
it is from a bank or other legitimate organization. This is
known as phishing [1].

According to IronPort’s 2008 Security Trend Report, as
much as 90% of inbound mail is spam today. Moreover,
spam is no longer simply an irritant but becomes
increasingly dangerous. About 83% of spam contains a
clickable link. Thus, phishing sites and Trojan infections of
office and home systems alike are just one click away.
State-of-the-art spam filtering techniques are based on
content analysis (e.g., SpamAssassin), host reputation
(SpamCop, Spamhaus) or authentication services (SPF,
DKIM) [2].

Our goal in this research work is to utilize a hardware
accelerating SOC processor which will improve the
performance of the domain keys identified mail (DKIM)
algorithm processing and in-turn the DKIM based spam
filters and phishing attack detectors. Such enhancements
will facilitate the speedy processing of large volumes of
emails exchanged at the gateways. We achieve our goals by
moving to hardware the computation-intensive hashing
functions and digital signature schemes using RSA and
SHA which are part of the core DKIM algorithm. This paper
is not about designing a new algorithm for DKIM based
spam filters. On the other hand, it achieves acceleration for
existing DKIM based spam filters and phishing attack
detectors through an empirical study and implementation.

We performed this empirical study by considering two
benchmarking methods with the goal of showing significant
performance improvement of DKIM using hardware
acceleration as compared to its software counterparts. The
first one is the OpenSSL’s built-in benchmark. This
benchmark tests the performance of the crypto library used
by DKIM. Second, we benchmark the response time of an
end to end implementation of DKIM written in C. The
results briefed out in sections IV and V show a significant
performance improvement by implementing DKIM
functions on hardware.

The organization of the paper is as follows. Section II
describes the related work on DKIM and milters (stands for
mail filters, which are used for filtering spam or viruses very
efficiently in the mail-processing chain) and earlier
approaches to move the milter functionalities to hardware.
Section III details the Intel processor, the DKIM approach
and the acceleration techniques. The experimentation that
was carried out to illustrate our performance goals is
described in Section IV. The results, conclusions and future
work are briefed out in sections V and VI respectively.

II. RELATED WORK

Luo [14] gives details on a plethora of research on spam
detection, filtering, elimination and some anti-spam
appliances that have been introduced to the market. The
DKIM algorithm and its scope and usage are explained in

[4], [6], [7] but there is no literature available on any
hardware approaches for accelerating the performance of
DKIM.

However, the growth of spam messages remains
rampant. There exists a strong call to design high-
performance email filtering systems. Most of the existing
research focuses on the design of protocols, authentication
methods, neural network based self-learning and statistical
filtering. In contrast, we approach the spam filtering issues
from a complementary perspective – improving the filtering
performance through the computer architecture support.

Gupta et al. [1] introduce a technique which improves
the performance of the Naïve Bayesian spam filters and
phishing attack detectors by moving hashing functions used
in Naïve Bayesian spam filters to Intel Tolapai (EP80579)
hardware. There have been attempts to patch OpenSSL, the
popular library used for DKIM implementations [11] and to
use the OCF driver on Linux which enables it to accelerate
cryptographic operations using the integrated cryptographic
accelerator of Intel Tolapai. Our approach is to use the same
multi-purpose cryptographic processor of Intel to achieve
performance improvement of DKIM protocol and in-turn
the DKIM based spam filters and phishing attack detectors.
Being a multi-purpose processor, Intel Tolapai (EP80579)
can run like a normal desktop processor and at the same
time make use of its accelerating capabilities for security
applications.

III. EXPERIMENTAL BASIS

 We are using Intel EP80579 (Tolapai) processor to
achieve acceleration of DKIM implementation using the
OpenSSL library at its core. The details are described next.

A. Intel EP80579 Processor
 The Intel® EP80579 Integrated Processor with Intel®
QuickAssist Technology, Tolapai, is a complete System-on-
a-Chip for security, communications, storage and embedded
designs.

a) Architectural Details of Tolapai

The Intel® EP80579 Integrated Processor (Tolapai) is a
System-On-a-Chip (SOC) integrating the Intel®
Architecture core processor, the Integrated Memory
Controller Hub (IMCH) and the Integrated I/O Controller
Hub (IICH) all on the same die. In addition, it has integrated
Intel® QuickAssist Technology, which provides
acceleration of cryptographic and packet processing. Fig. 1
shows the architecture of Intel EP80579.

The Intel® QuickAssist Technology components
housed in the Acceleration and I/O Complex (AIOC) are as
follows:

• The Security Services Unit (SSU) provides acceleration

of cryptographic processing for the most common
symmetric cryptographic algorithms (ciphers such as

AES, 3DES, DES, (A)RC4, and messages digest/hash
functions such as MD5, SHA-1, SHA-2, HMAC, etc.),
asymmetric cryptographic functions (modular
exponentiation to support public key encryption such as
RSA, Diffie-Hellman, DSA), and true random number
generation.

• The Acceleration Services Unit (ASU) includes packet
processing acceleration engines.

We utilize this acceleration capability of Intel EP80579

to improve the performance of DKIM implementation. The
RSA and hashing functions as identified in Section III.C are
moved to hardware as specified in Section III.C.b.

Fig. 1: Block Diagram of Intel EP80579 [3]

b) Features of Tolapai
 This SOC processor delivers a significant leap in
architectural design, with a good combination of
performance, power efficiency, footprint savings and cost-
effectiveness compared to discrete, multi-chip solutions.
Using multi-chip solutions for different security applications
poses scalability and cost issues. Tolapai aims to provide a
single chip solution for security applications. The integrated
accelerators in this SOC processor support Intel QuickAssist
Technology through software packages provided by Intel.
These software packages provide the library structures to
integrate security functionality into the application,
completely adjunct to the Intel architecture complex, freeing
up CPU cycles to support additional features and
capabilities. This provides the efficiency of customized
hardware with the flexibility to design diverse applications
with one platform. The design also includes security
accelerators for bulk encryption, hashing and public/private
key generation [3].
 Currently, the FWA-3240 [15], [16], which is a
board-level product developed by Advantech Co., Ltd.,

incorporates Intel’s Tolapai System-on-Chip which
combines Intel's QuickAssist Technology and integrates an
Intel Pentium M class core, memory controller and I/O
controller. The high-performance CPU core supplies the
horse power needed to perform deep packet inspection and
other complex operations and is particularly optimized for
entry to mid-range network security appliances.

B. DKIM Algorithm

Domain Keys Identified Mail (DKIM) is an anti-spam
approach that involves digitally signed email [7]. Stephen et
al. [7], Barry et al. [6] and Allman et al. [4] have provided
the details about the DKIM algorithm and the scope and
usage of it. The sender signing practices are explained by
Allman et al. [5]. Fig. 2 shows the working of the DKIM
algorithm. The flow is as follows:

• The sending domain publishes in its DNS record a

public key (e.g., generated using OpenSSL).
• The sending mail server then digitally signs, using the

private key, and sends the message.
• The receiving mail server verifies the digital signature

by retrieving the public key of the sending domain from
the DNS.

• The receiving mail server verifies the digital signature,
and if successful, delivers the email to the end user.

Fig. 2: The workings of DKIM [8]

C. Achieving Acceleration
The DKIM feature is implemented through a milter

(mail filter), which is an extension to the widely used open
source mail transfer agent (MTA) Sendmail and Postfix. It
allows administrators to add mail filters for
filtering spam or viruses very efficiently in the mail-
processing chain [17]. For example, Sendmail, Inc. has
released a free, Open Source implementation of the DKIM
signing and verifying software. A portable API is available
to allow DKIM to be embedded into any application. Also
provided is a milter plugin for Open Source sendmail, the
world's leading MTA. The milter plugin allows system
administrators to easily sign and verify messages using

DKIM signatures [9]. As may be noted from above section
the DKIM algorithm uses RSA public key cryptosystem
along with SHA-1 and SHA-256 hashing at its core, which
is provided using OpenSSL library utility by most of the
popular DKIM implementations.

a) OpenSSL

OpenSSL is an open source implementation of the
Secure Socket Layer (SSL) and Transport Layer Security
(TLS) protocols with the libcrypto library being the main
component which implements a wide range of cryptographic
algorithms used in various Internet standards. Libcrypto
library has the concept of engines to allow other
implementations to be plugged in, including hardware based
accelerators. One of the most useful features is the ability to
factor out processing intensive operations to specialist
hardware through an ‘engine’ interface. It is through this
engine subsystem that Costigan et al. [19] accelerate SSL by
using the Cell (Cell Broadband Engine by IBM) SPU’s
(synergistic processor units) vector processing capabilities.
Wrappers allowing the use of the OpenSSL library in a
variety of computer languages are available. Versions are
available for most Unix-like operating systems (including
Solaris, Linux, Mac OS X and the four open source BSD
Operating Systems), OpenVMS and Microsoft Windows.
IBM provides a port for the System i (OS/400) [10].

b) Hardware Acceleration for OpenSSL

The Intel Document [11] describes how to patch
OpenSSL to use the OpenBSD/FreeBSD Cryptographic
Framework (OCF) engine on Linux. OCF is a service
virtualization layer implemented inside the kernel that
provides uniform access to accelerator functionality by
hiding card-specific details behind a carefully-designed API
[18]. OCF also includes a user-space library which allows
the kernel driver to be accessed from user space via the
/dev/crypto device. Keromytis et al. [18] have shown that
the OCF is extremely efficient in utilizing cryptographic
accelerator functionality, attaining 95% of the theoretical
peak device performance, and over 800 Mbit/sec aggregate
throughput using 3DES, though not specifically on Tolapai.
Tolapai provides a “shim” or plugin for OCF to allow users
of the OCF API in the kernel or user space to be offloaded
to the integrated crypto accelerator. The OCF driver enables
OpenSSL to accelerate cryptographic operations using the
integrated cryptographic accelerator. The acceleration is
handled by the CRYPTODEV engine, provided by OCF in
the form of a plug-in to libcrypto.

IV. EXPERIMENTAL SETUP

We have two Intel EP80579 Development Boards at
our disposal and they were assembled as per the instructions
on the Intel user guide for EP80579 [12]. Fig. 3 and Fig. 4
depict the system configuration and a setup for experiments
in our lab. RedHat Linux kernel was installed on these

systems along with software drivers and kernel modules for
the QuickAssist Technology provided by Intel. A software
implementation of the Intel® QuickAssist Technology
cryptographic API uses the integrated crypto accelerator of
Tolapai. Both of these Tolapai boards were setup for DKIM
benchmarking. One was used to map the acceleration
provided by the hardware acceleration patched for OpenSSL
as specified in Sec. III.C.b by utilizing the QuickAssist
technology features whereas the other was used to setup the
software counterpart of the application (for comparison
purposes).

Fig. 3: Tolapai system configuration used for testing

Fig. 4: Intel EP80579 Lab setup [12]

A. BENCHMARKING
The details of the experiment are summarized in Table

1. The table shows the input, output, algorithms used and
the number of runs used for averaging the results.

Table 1: Experiment Details

SOFTWARE OpenSSL 0.9.8e
INPUT using the OpenSSL provided

benchmarking suite “speed” utility.
- openssl speed <DKIM specific core
Algorithm>

ALGORITHMS SHA1, SHA256, RSA signing –
verification for 1024 and 2048 bits

OUTPUT profiling the performance of the core
DKIM algorithms using OpenSSL crypto
library using the setup described above

RUNS 100 (first 5 are reported)

a) OPENSSL’S BUILT-IN BENCHMARK

RESULTS FOR DKIM
Fig. 5, which maps increasing block sizes against

thousands of bytes on which the SHA1digest is applied per
second, shows that as block size increases for SHA1 the
Hardware version shows substantially improved
performance. The performance of the hardware version is
actually lower than software for smaller buffer sizes as the
stack is non-optimal (i.e., libcrypto to OCF engine layer to
OCF cryptodev, then into the kernel with buffer copying,
then through OCF, OCF shim, then the Quick Assist library
– and all the way back up again). A more optimal stack is
possible, but has not been implemented at this time. Fig. 6
shows a sample output of the OpenSSL speed test with its
various timelines for SHA1. The current OCF patch (OCF
shim implemented for Tolapai nor the OpenSSL engine
layer patch) doesn't provide hardware acceleration for
SHA256 and hence there isn't any significant difference in
performance between the software and hardware versions of
DKIM for SHA256. Figures 7 through 10 show that moving
the main functionality to the hardware produces a
substantial performance boost in that we can RSA-sign and
verify significantly more number of blocks per second.

Fig. 5: OpenSSL SHA1 profiling

Fig. 6: Sample SHA1 Run Output

Fig. 7: OpenSSL RSA signing - 1024 bits profiling

Fig. 8: OpenSSL RSA signing - 2048 bits profiling

Fig. 9: OpenSSL RSA verification - 1024 bits profiling

Fig. 10: OpenSSL RSA verification - 2048 bits profiling

b) END-TO-END IMPLEMENTATION
BENCHMARK RESULTS FOR DKIM

A dataset from an earlier research project [13] was used
for the emails, which consists of 1197 messages with
average size of 8.8KB, median of 7KB and the majority of
messages in the range of 1-20 KB. There were no messages
larger than 180KB. A code snippet in C using the threading
model was developed to map the timings as compared to a
shell script program to achieve the same result for the
purposes of getting the timing in milli-seconds which isn’t
possible via shell scripting.

The code was written for calculating the average time
of applying the core modules of DKIM (which use
OpenSSL for the algorithms) on the email repository to
determine the end-to-end performance enhancements, the
flow of which is as shown in Fig. 11. This implementation
doesn't include publishing and retrieval of the public key
from the DNS record along with additions of the message
header tags related to DKIM. The same code was run on
both Tolapai setups – one utilizing the hardware features

and the other not utilizing the hardware, and the results are
noted in tables 2 through 5. The speedups are apparent from
the tables.

Fig. 11: End-to-end implementation code flow

Table 2: RSA – 1024 bits with SHA1

 Hardware
(Avg Time - ms)

Software
(Avg Time - ms)

Signing 6.072024 9.946899
Verification 6.469257 6.677209

Table 3: RSA – 1024 bits with SHA256

 Hardware
(Avg Time - ms)

Software
(Avg Time - ms)

Signing 6.417706 9.999939
Verification 6.651458 6.932569

Table 4: RSA – 2048 bits with SHA1

 Hardware
(Avg Time - ms)

Software
(Avg Time - ms)

Signing 6.160404 13.968011
Verification 6.502682 7.183801

Table 5: RSA – 2048 bits with SHA256

 Hardware
(Avg Time - ms)

Software
(Avg Time - ms)

Signing 6.189453 13.984166
Verification 6.621802 7.185308

V. DISCUSSION OF RESULTS

Though the results of Section IV.A.a are shown only
for the first five runs, the experiment was run 100 times and
averaged so that any noisy timing measurements are
eliminated. Our experiments show a 30x and 15x boost in
performance for 1024-bits RSA signing and verification
respectively, as a result of moving to hardware. These
figures are twice as good for 2048-bits RSA signing and
verification. A summary of the results of our end-to-end
benchmark experiments in Section IV.A.b is presented in
Table 6. The results in Section IV.A.a show a much higher
relative performance difference between the hardware and
software based implementations when compared with the
results of Section IV.A.b. This is because the former
experiments use the optimal inbuilt OpenSSL commands
and the latter end-to-end performance experiments include
multiple core DKIM algorithms, some of which are
inherently slower. Overall, the data shows that performance
for DKIM algorithm implementation and DKIM milters can
be significantly increased by using the Tolapai processor.
Our approach not only achieves better performance but at
the same time doesn’t require a dedicated hardware co-
processor or chip.

Table 6: End-to-end gains by hardware implementation

Algorithm used in
DKIM

Signing/Verification
%Gain
 w.r.t
Software

RSA – 1024 bits
with SHA1

Signing 63.82%

RSA – 1024 bits
with SHA1

Verification 3.21%

RSA – 1024 bits
with SHA256

Signing 55.82%

RSA – 1024 bits
with SHA256

Verification 4.23%

RSA – 2048 bits
with SHA1

Signing 126.74%

RSA – 2048 bits
with SHA1

Verification 10.47%

RSA – 2048 bits
with SHA256

Signing 125.94%

RSA – 2048 bits
with SHA256

Verification 8.51%

Experimental results in Table 6 show that an overall

acceleration of 49.84% is achieved by transparently

migrating the DKIM functionalities implemented using
OpenSSL library to hardware.

Being a commercial off-the-shelf (COTS) processor, no
additional chip is required to achieve this acceleration. The
interface to hardware through APIs that are provided by
Intel, make the acceleration completely transparent to the
user. The implementation of DKIM milter is still flexible,
thus, overcoming shortcomings of any dedicated hardware
modules. Other security applications can make use of the
accelerating capabilities of Tolapai without additional costs.
Our conclusion is that DKIM milters utilizing the Tolapai
processor features will perform better in applying the DKIM
algorithms on email messages and could detect spam and
phishing emails in real-time even when the traffic volume is
significantly high.

VI. FUTURE WORK

Our future work would consist of improving the
OpenSSL OCF driver for SHA-256 performance
acceleration required for DKIM. We plan to move the full
end-to-end implementation of DKIM milter at an MTA to
the hardware and profile the performance. We also plan on
utilizing Tolapai to implement other security applications
which will be more efficient in performance than their
software counterparts. We have already done some
preliminary research in this area by moving certain
functions of the Naïve Bayesian spam filters to Intel
EP80579 hardware [1]. Moving more functions such as
“tokenizing” which is a major time consuming function in
spam filtering will be a useful future work. Finally, we will
also look into exploiting the acceleration features of other
(upcoming) SoC processors such as the Stellarton [20] to
achieve higher performances for security applications (such
as secure email) on embedded processor platforms.

ACKNOWLEDGEMENTS

 This research has been done in part through a grant
from Intel Corporation. The authors would like to thank
Pranil Gupta and Ajay Nagrale for the useful discussions
during the course of this research.

REFERENCES

[1] Pranil Gupta, Ajay Nagrale and Shambhu Upadhyaya,
“Accelerating Techniques for Rapid Mitigation of Phishing
and Spam Emails.” Workshop on Embedded Systems and
Network Security, in conjunction with IEEE SRDS 2009, Sept.
2009. Available:
http://www.cse.buffalo.edu/srds2009/escs2009_submission_G
upta.pdf.

[2] Schatzmann, Martin Burkhart and Thrasyvoulos Spyropoulos,
“Flow-level Characteristics of Spam and Ham.” TIK-Report
No. 291, Computer Engineering and Networks Laboratory,
ETH Zurich, Switzerland, 29. August 2008.

[3] Product Brief - Intel® EP80579 Integrated Processor with

Intel® QuickAssist Technology Embedded Computing
[Online]. Available:
http://download.intel.com/design/intarch/ep80579/319944.pdf

[4] E. Allman, J. Callas, M. Delany, M. Libbey, J. Fenton and M.

Thomas, “DomainKeys Identified Mail (DKIM)”, Internet
Engineering Task Force, RFC 4871, May, 2007.

[5] E. Allman, M. Delany and J. Fenton, “DKIM Sender Signing

Practices”, Internet Draft,
http://www.ietf.org/internetdrafts/draft-allman-dkim-ssp-
09.pdf, Feb, 2009.

[6] Barry Leiba and Jim Fenton, “DomainKeys Identified Mail
(DKIM): Using Digital Signatures for Domain Verification.”
CEAS 2007 – Fourth Conference on Email and Anti-Spam,
August 2-3, 2007, Mountain View, California, Available:
http://www.ceas.cc/2007/papers/paper-78.pdf,
http://domino.research.ibm.com/comm/research_people.nsf/p
ages/leiba.pubs.html/$FILE/dkim_rc23995.pdf.

[7] Stephen Farrell, “DomainKeys Identified Mail Demonstrates

Good Reasons to Re-invent the Wheel.” Public key
infrastructure: Third European PKI workshop: theory and
practice, EuroPKI 2006, Turin, Italy, June 2006, edited by
Andrea S. Atzeni, Antonio Lioy.
http://books.google.com/books?hl=en&lr=&id=tvydhUrrDUI
C&oi=fnd&pg=PA145&ots=0_uEi4liP5&sig=g9VXohpq4W
pqTjDRThPKkQ1Xpxk#v=onepage&q&f=false , visited Dec
25th, 2010.

[8] M. Libbey, “DKIM fights phishing and e-mail forgery”,

http://www.networkworld.com/news/tech/2005/080805techup
date.html, visited July 26, 2010.

[9] http://www.sendmail.com/sm/wp/dkim/, visited July 26,

2010.

[10] Wikipedia, OpenSSL, (electronic) – The free encyclopedia.
Available [Online]. http://en.wikipedia.org/wiki/OpenSSL.

[11] Installing Accelerated OpenSSL (OCF) and Apache* on

Linux* — For use with Intel® EP80579 Software for
Security Applications on Intel® QuickAssist Technology,
Application Notes, September 2008.

[12] Intel® EP80579 Integrated Processor with Intel® QuickAssist
Technology Development Kit User Guide [Online].
Available:
http://download.intel.com/design/intarch/ep80579/320067.pdf

[13] Madhusudhanan Chandrasekaran, Krishnan Narayanan,
Shambhu Upadhyaya. ”Phishing Email Detection based on
Structural Properties”, NYS Cyber Security Conference,
Albany, NY, June 2006.

[14] Yan Luo, “Workload characterization of spam email filtering
systems”, International Journal of Network Security & Its
Application (IJNSA), Vol. 2, No. 1, January 2010.

[15] http://origindownload.advantech.com//productFile/1-
3LI2F1/Manual-FWA-3240-1st_Ed.pdf, visited Dec 25th,
2010.

[16] http://origindownload.advantech.com/ProductFile/1-
FTBFVT/FWA-3240_DS(10.6.17).pdf, visited Dec 25th,
2010.

[17] Wikipedia, Milter, (electronic) – The free encyclopedia.
Available [Online]. http://en.wikipedia.org/wiki/Milter.,
visited Dec 25th, 2010.

[18] Angelos D. Keromytis, Jason L. Wright and Theo de Raadt.
OpenBSD Project and Columbia University.
http://www.openbsd.org/papers/ocf.pdf, visited Dec 25th,
2010.

[19] Costigan, N., Scott, M.: Accelerating SSL using the vector
processors in IBM's Cell broadband engine for Sony
Playstation, SPEED 2007 Workshop, 2007.

[20] http://www.intel.com/newsroom/kits/idf/2010_fall/gallery_ke
ynotes.htm?wapkw=%28stellarton%29. Visited June 9, 2011.

