
Chapter 2

INSIDER THREAT ANALYSIS USING

INFORMATION-CENTRIC MODELING

D. Ha, S. Upadhyaya, H. Ngo, S. Pramanik, R. Chinchani and
S. Mathew

Abstract Capability acquisition graphs (CAGs) provide a powerful framework for
modeling insider threats, network attacks and system vulnerabilities.
However, CAG-based security modeling systems have yet to be deployed
in practice. This paper demonstrates the feasibility of applying CAGs
to insider threat analysis. In particular, it describes the design and op-
eration of an information-centric, graphics-oriented tool called ICMAP.
ICMAP enables an analyst without any theoretical background to apply
CAGs to answer security questions about vulnerabilities and likely at-
tack scenarios, as well as to monitor network nodes. This functionality
makes the tool very useful for attack attribution and forensics.

Keywords: Insider threats, capability acquisition graphs, key challenge graphs

1. Introduction

A comprehensive model is required for understanding, reducing and
preventing enterprise network attacks, and for identifying and combating
system vulnerabilities and insider threats. Attacks on enterprise net-
works are often complex, involving multiple sites, multiple stages and
the exploitation of various vulnerabilities. As a consequence, security
analysts must consider massive amounts of information about network
topology, system configurations, software vulnerabilities, and even so-
cial information. Integrating and analyzing all this information is an
overwhelming task.

A security analyst has to determine how best to represent individual
components and interactions when developing a model of a computing
environment. Depending on the environment and task at hand, the an-
alyst may deal with network traffic data [15], routing data [14], network



18 ADVANCES IN DIGITAL FORENSICS III

connections [2], and, in the case of static analysis, network configurations
[13]. Visualization is an effective method for integrating and analyzing
diverse information, mostly because humans can process large amounts
of data through images, maps and graphs.

For this reason, attack graphs have received considerable attention by
the research community [6, 8, 10, 11]. Attack graphs provide a powerful
visual framework for understanding the effects of the interactions of local
vulnerabilities and for identifying global, less visible vulnerabilities that
are combinations of local vulnerabilities.

However, attack graphs have several limitations. The manual con-
struction of attack graphs for real network configurations is labor inten-
sive, tedious and error-prone; this means that automating the construc-
tion of attack graphs is critical. Several attack graph methods employ
model checking, which often produces an internal state explosion. This
is because model checking may examine all possible states although only
a fraction of states are eventually analyzed. Large state spaces require
significant processing time; for example, the NuSMV tool may take two
hours to analyze a network with a handful of hosts [12]. Even when they
are available, attack graph tools lack automation features and support
for interpreting results. For example, initial configuration data is usually
required as input, but its format is unnatural for humans, e.g., Boolean
tables for network connectivity or binary relations for capturing all rela-
tionships [12]. Furthermore, due to their size and notational differences,
it can be difficult to relate attack graphs to the original physical context;
this is a task often left to the user.

Capability acquisition graphs (CAGs) (formerly known as key chal-
lenge graphs (KCGs)) have been proposed as a modeling technique for
insider threat analysis [4, 5]. From the user’s point of view, CAGs are
more intuitive than attack graphs because they closely resemble the
input network topology [5]. Although originally developed for insider
threat modeling, CAGs are capable of modeling vulnerability-exploited
privilege escalation, similar to attack graphs.

This paper describes a novel CAG-based tool, which we call ICMAP
(Information-Centric Modeler and Auditor Program). ICMAP has sev-
eral useful features:

Users may import information in a convenient, systematic manner.
The initial input to ICMAP is a physical graph, which is easy to
construct as it is similar to a network configuration.

ICMAP automatically converts the physical graph to a logical
graph (CAG). Users may adjust the CAG and add new relation-
ships before performing further analysis.



Ha, et al. 19

System analysts may use ICMAP to answer questions about the
security of network setups, likely attack strategies and vulnera-
ble points. ICMAP helps in identifying locations for positioning
monitoring systems. The results are also mapped to the original
network context, making the display easy to comprehend.

Streaming alerts from IDS sensors and network monitoring tools
can be correlated to generate attack tracks. These attack tracks
can be compared with projected tracks during off-line analysis to
narrow probable attack paths and facilitate forensic analysis.

The next section presents an overview of CAGs and their applications
to threat assessment. Section 3 describes the architecture of ICMAP,
a CAG-based information-centric modeling and analysis tool. Sections
4 and 5 discuss cost assignment techniques, scalability issues, and a
scenario involving a corporate network. Section 6 examines the forensic
applications of CAGs and CAG-based tools. The final section, Section
7, presents our conclusions and discusses avenues for future research.

2. Capability Acquisition Graphs

This section describes capability acquisition graphs (CAGs), which
were formerly known as key challenge graphs (KCGs) [5].

Definition 1 A capability acquisition graph is a tuple represented by:

CAG = (V,E,K, V0, VS , π, δ) (1)

V is a set of nodes; each entity in the physical network (hosts, firewalls,
user accounts) has a node in the graph. E is a set of edges; two nodes are
connected by an edge if it is possible to reach one node from the other. K
is a set of tokens; a token can represent system information or individual
information (e.g., password, date-of-birth or mother’s maiden name). V0

is the set of start nodes from where an attack can be launched; the skill
set of an attacker can be modeled by adjusting the set V0. VS is the set of
target nodes in the logical graph that an attacker intends to compromise.
The function π : V → K assigns tokens to nodes, e.g., a database node
may have records as tokens. The function δ : E → K×N×N represents
the edge attributes, consisting of token challenges and transition costs.

A CAG can be viewed as an abstract representation of a user’s walk
in a network. The user starts from a particular node in the graph with
certain tokens (knowledge). From the starting node, the user chooses an
edge, e(u, v) = (token,min,max), to move to an adjacent node. If the
token is already present in his set of knowledge, he incurs a cost of min
otherwise he incurs a cost of max. If V ′ is the set of visited vertices,



20 ADVANCES IN DIGITAL FORENSICS III

then the cost of visiting a new vertex v /∈ V ′ is the minimum cost edge
(u, v) for all u ∈ V ′. The cost of an attack sequence or attack trail
(v1, v2, . . . , vn) is the sum of the costs of visiting a new vertex from the
set of already-visited vertices. An attacker might try to minimize his cost
of reaching a target node by choosing edges with simple token challenges.
The goal of a systems administrator is to maximize the cost of attacks
by assigning proper token challenges to the edges. By enumerating the
paths of least resistance it is possible to identify the most likely attack
paths and either remove them from the network or place sensors along
the path to detect the attacks.

Model specification begins by identifying the scope of the threat; it
could be a small portion of the organization or the entire organization.
The size of the resulting model is a polynomial function of the input
information. However, the problem of determining the cost of least
resistance in a CAG is NP-Hard [4]. In fact, the problem is not even

approximable to within 2(log n)1−δ

where δ = 1− 1
log logc

n
for any c < 1/2.

Therefore, finding a least cost attack in an efficient manner is not possible
unless P = NP.

A greedy heuristic approach involving a one-step lookahead may be
used to identify an optimal walk [4, 5]. Note that even if a shorter path
to a goal exists, an attacker might avoid it believing that sensors might
be placed along the path. Therefore, the greedy heuristic approach has
to be run multiple times to identify the k best paths instead of one
optimal path. CAGs can also represent social engineering channels (e.g.,
telephone lines when identifying insider abuse paths). Due to the lack
of tools for measuring security weaknesses in organizations, which is a
primary concern for assessing insider threats, the majority of the tasks
related to modeling and analyzing social engineering links fall on the
security analyst.

3. ICMAP Architecture

This section describes ICMAP (Information-Centric Modeler and Au-
ditor Program), a CAG-based information-centric modeling and analysis
tool.

3.1 ICMAP Framework

The ICMAP framework is presented in Figure 1. The ICMAP engine
is the core of the CAG generation process. It takes the physical net-
work topology and information about vulnerabilities in network services
as external inputs, and combines them with network translation rules
(Section 3.3) and cost rules (Section 4.1) to obtain the CAG. Once the



Ha, et al. 21

Figure 1. ICMAP framework.

CAG is constructed, various heuristics, e.g., 1-step, k-step (constant k)
and n-step lookahead techniques, can be used to find an optimal path
from a source to a destination without having to enumerate all possible
paths. Also, using combinations of source and destination pairs, it is
possible to identify the best locations to position network sensors.

Two separate analyses can be performed on a CAG to refine a threat
assessment. The first is sensitivity analysis where different cost assign-
ments are used to identify the optimal cost assignment that results in
attack paths that are similar to known attacks. The second is to per-
form a defense-centric analysis where sensors are placed along the paths
of least resistance to help prevent network assets from being compro-
mised. The cost assignment is refined based on these two analyses.

The ICMAP engine is written in Java. It incorporates a GUI that
closely models real-world network components. Network topology infor-
mation such as connectivity and services are imported using drop-down
and pop-up menus. ICMAP also engages an underlying database of com-
mon entities such as vulnerabilities and services, which users may add
to or modify using ICMAP’s local menu. To promote interoperability,
ICMAP uses the MySQL database management system, and its outputs
are in XML format.



22 ADVANCES IN DIGITAL FORENSICS III

3.2 Physical Graph Construction

Entering network configuration data is arguably the most tedious,
error-prone and labor intensive work for any security analyst. Unfortu-
nately, this is the part that is usually ignored by current graph generation
tools. The data is either not mentioned [1] or implicitly assumed to be
provided [12, 13]. Even when data is provided, it is usually in a format
that is difficult for humans to comprehend. For example, network con-
nectivity is represented as a Boolean table where the columns and rows
are network hosts, and all trust relationships are represented as binary
relations. Needless to say, while these formats may simplify computer
processing, they are a burden for human analysts.

In contrast, ICMAP assists users in importing data in a most natural
way using visualization. Figure 2 illustrates the process of constructing
a physical graph based on input information about accounts and services
for a host (the topology is shown later in Figure 3). Two types of network
entities are depicted: normal hosts and a firewall. Each component
serves a different role; therefore, it is associated with a different set of
menus for further configuration (e.g., account and service information
for hosts and filter rules represented as token/key for firewalls). The
component type determines the conversion to a CAG. ICMAP supports
several types of components: hosts, firewalls, LANs, database servers,
hubs/bridges and switches; additional component types are currently
being implemented.

3.3 Logical Graph Construction

ICMAP automates the construction of a logical graph (CAG) from a
physical graph. This section describes the process, including the basic
rules used to identify the nodes, edges and tokens in a CAG.

As discussed in the context of a physical graph, a network consists of
hosts, physical boundary creators such as routers and firewalls, network
services such as ssh, ftp, http and nfs, and databases. A host contains
the host id, user accounts, network services, vulnerabilities and critical
files (henceforth called “jewels”). In order to build the CAG, for each
host, it is necessary to draw the user account nodes, service nodes, vul-
nerability nodes and jewel nodes. A user (or a malicious insider) either
connects to a service remotely or logs in from the console. Once the
user gains access to a host he uses the network resource and connects
to another host, uses the file system resource and edits files, exploits
vulnerabilities to escalate his privileges, or uses the cpu resource on the
host to execute programs, check mails, browse, etc. To represent the
above activities, edges (with their token challenges) are drawn entering



Ha, et al. 23

Figure 2. Constructing a physical graph.

the user accounts. The token challenges are marked on the edges. If the
token is known, then traversing the edge incurs a cost of LOW , other-
wise a cost of HIGH is incurred. Edges marked “0” do not have a token
challenge, so they always incur a cost of LOW . From the user accounts
there exist zero-cost transitions to the host service, and from the host
there exist transitions to other accounts in the network. We also add
zero-cost transitions from the root account to other accounts in the same
host to express the fact that the root can become any user. Once a user
gets to the host, vulnerabilities in the services can be exploited; thus
edges are drawn from the services to their vulnerabilities. The tokens in
the vulnerability node can be used to escalate privileges (e.g., become
root). Finally, edges exist from the user accounts and network services
(e.g., ssh and ftp) to the file system (e.g., nfs) of the host and from
the file system to the jewels.

It is important to mention that the automatic graph conversion is
intended to reduce the work of analysts, not to limit it. After the con-
version, an analyst can still perform various adjustments to the logical
graph (e.g., add/remove relationships, tokens and change the costs).
Adjustments to the physical graph at this step are also automatically
updated to the CAG. Because a CAG does not incorporate icons as in a



24 ADVANCES IN DIGITAL FORENSICS III

physical graph, it employs various colors and shapes to differentiate com-
ponent types and status. These features promote visual comprehension,
especially when dealing with large networks.

3.4 CAG Example

A physical graph of a subnet consisting of an ssh server, ftp server
and a firewall is presented in Figure 3. Figure 4 shows the corresponding
logical graph (CAG) whose nodes correspond to the various network
entities.

Suppose it is necessary to determine if an external user, x-user, can
become an internal user in the presence of a firewall that allows only
incoming ssh traffic. To become root on the ssh server, x-user must
traverse the node sequence (x-user, host, firewall, root) and have
the root pd token to make the transition from the firewall node to
the root node. If x-user does not have the root pd token but only
the user pd token, then he can traverse the sequence (x-user, host,
firewall, user, sshd, ssh-vuln, sshd, root), where he exploits the
ssh vulnerability to become root. Similar steps can be followed for the
ftp service, but for this x-user will also have to become root on the
firewall by changing the firewall rules.

3.5 System Analysis

A major goal of any graph-based security analysis is to identify likely
attack scenarios based on system configuration and settings, attacker’s
knowledge and potential targets. This task can be done quite easily using
ICMAP. All the nodes corresponding to the initial states of the attacker
are marked as compromised. The nodes corresponding to entities that
must be protected (e.g., root account on a host) are marked as targets.

Next, the CAG is analyzed using brute force or a heuristic Dijkstra-
like algorithm. In our experience, a brute force approach is not practical
for graphs with more than 20 nodes. Readers are referred to [4] for a
discussion of the brute force and heuristic algorithms. The final top k
attack scenarios (based on minimum total cost), where k is a config-
urable parameter, are returned in a separate file; only the top scenario
is displayed by ICMAP. Note that because the CAG nodes do not repre-
sent network states as in attack graphs, each scenario is not necessarily
a path, but a walk (or a trail) with some nodes visited multiple times.
Presenting a walk using directed edges on top of a logical graph is vi-
sually complicated, so ICMAP only shows the induced spanning tree
of a walk. However, it is still possible to visualize the complete attack
sequence using ICMAP’s animation feature.



Ha, et al. 25

Figure 3. Physical graph of a subnet.

Figure 4. Logical graph of a subnet.

An attacker does not necessarily follow the shortest path when at-
tempting to compromise a computer system or network. Critical points
are points in a graph that the attacker has to pass through no matter
what attack trail is chosen. These points suggest critical weaknesses in
the system such as certain service vulnerabilities. They are also ideal
locations for system administrators to deploy IDS sensors or security
controls.

ICMAP is able to identify the critical points in a graph. ICMAP
recommends these points based on the top k walks returned from the



26 ADVANCES IN DIGITAL FORENSICS III

analysis (see Section 5). Note that finding the set of critical points is an
NP-Hard problem [9].

4. Practical Issues

This section discusses practical issues related to CAGs, including cost
assignment, scalability and abstraction.

4.1 Cost Assignment

After identifying the nodes, edges and tokens in a CAG, the next
step is to assign costs to the edges. The costs are determined based on
attack templates, CERT vulnerability reports (www.cert.org), attacker
privileges, and the assets that must be protected. They are divided into
three categories: LOW, MEDIUM and HIGH; however, the number of
cost categories can be adjusted as desired.

The cost of a transaction depends on certain categories, e.g., authenti-
cation mechanism, system patching rate, knowledge of vulnerability, etc.
We begin by describing the cost values determined by each category and
then present a technique for combining the cost values. Note that attack
graphs either assign probabilities for transitions based on the transition
profile [12] or implicitly consider zero costs for atomic attacks.

Figure 5 presents the two-tier classification hierarchy used for deter-
mining costs. The top tier consists of categories such as remote services,
level of social engineering and authentication mechanism. The second
tier consists of the security level within each category. For example,
remote services can be accessed in cleartext, or through the use of an
authentication mechanism on top of cleartext, or via an encrypted chan-
nel with authentication. The difficulty of compromising such services
increases as one moves down security levels (Figure 5); hence, the cost
increases. The classification hierarchy is not fixed, and may be extended
by adding more categories and security levels. Also note that the actual
numeric values of the cost categories, as well as the default costs are
stored in the database and can be set at the user’s convenience through
the ICMAP configuration menu.

The minimum and maximum costs of traversing an edge are computed
by querying the cost database. Figure 6 illustrates the queries made for
two edges. The first edge represents a connection to the root account
through the ftp service. Assuming that the ftp service belongs to cat-
egories such as authentication mechanism, remote access method, social
engineering, and resources being protected, the cost for each category is
determined; these are then combined to compute the overall cost.



Ha, et al. 27

Figure 5. Cost tree.

Figure 6. Cost computation.

The second edge is the cost of exploiting a vulnerability in the ftp

server. Queries are made for the knowledge of vulnerability and the
system patching rate to find the cost of this edge. The cost is computed
by taking the average of the values returned by the queries and using
the average as an exponent so that the cost increases exponentially as
the difficulty of making the transition increases. Thus, if n1, n2, . . . , nk

are the responses of the k queries made to the cost database, then the

cost of the edge is 2

Pk
i=1

ni

k . For flexibility, the actual numeric value



28 ADVANCES IN DIGITAL FORENSICS III

corresponding to each category is also stored in the database and can
be adjusted via the configuration menu.

4.2 Scalability and Abstraction

A major limitation of attack graphs is their inability to deal with
the large numbers of states involved in real-world applications. This
issue becomes critical for visualization-based tools – when the graph
is too large, it is extremely difficult for security analysts to assimilate
the presentation and manipulate the graph, significantly impeding the
analysis. Consequently, it is important to reduce the size of an attack
graph without hindering the accuracy of the representation.

In contrast, the size of a CAG is a polynomial function of the number
of hosts, services, accounts and vulnerabilities. In fact, the number of
CAG vertices equals the total number of these entities. Moreover, the
number of edges is quite small because certain connection topologies can
be abstracted at the logical level. For example, a physical ring topology
of hosts is represented not as full mesh, but as a star topology in the
logical CAG. The center of this star is an abstract node representing the
connections of individual hosts in the original topology.

Other abstraction techniques may also be used to reduce the complex-
ity of the final graph. One approach is to consider generalized, role-based
accounts. This is due to the fact that administrators often manage mul-
tiple user accounts as groups sharing the same privileges, rather than
dealing with each user account separately. Using role-based accounts
significantly reduces the number of CAG vertices without compromising
the accuracy of the representation.

However, ICMAP has certain scalability issues that remain to be ad-
dressed. For example, even when the number of CAG vertices is a linear
function of the number of vulnerabilities, dealing with a database of a
thousand or more entries is overwhelming. Fortunately, it is not neces-
sary to represent each vulnerability in the CAG; instead, a representative
abstract node can be created for each service. We intend to implement
this capability in a future version of ICMAP.

5. Enterprise Network Example

This section illustrates the use of a CAG for modeling an enterprise
network. In particular, the example elicits the relationships between
hosts, services, users and vulnerabilities. The network has subnets cor-
responding to four departments. Each domain has several network ser-
vices, hosts, resources and user accounts. One or more network services
are associated with a host and every host has at least one user account



Ha, et al. 29

and one root account. Moreover, every service has at least one vulnera-
bility, which can be exploited to obtain root access.

Figure 7 presents the network topology. The Civil Affairs, Logistics
and Procurement network domains each have five machines while the Se-
curity network domain has seven machines. Each machine runs a service
and has at least two accounts (one root and one normal account). Fig-
ure 8 presents the corresponding physical graph constructed by ICMAP.
Note that all the information (services, user accounts and tokens) is not
shown in the figure, but these are imported into the CAG.

Figure 9 presents the CAG generated by ICMAP from the physi-
cal graph. Hosts are represented by square boxes, accounts by circles,
and vulnerabilities by ellipses. The source is selected to be the account
rd ooty on Ooty, while the target is a jewel file on Taos. In the current
setup, only the root account on Taos has access to the jewel. However,
ICMAP’s analysis discovered that an insider could access the file by
logging into Ooty as rd ooty, then logging into Taos as rd taos, ex-
ploiting a sshd vulnerability to become root taos, and finally accessing
the jewel file. Figure 9 also shows a superimposed attack trail, which
may be displayed as an animation.

ICMAP recommended that network sensors be positioned at the LAN,
switch, source and target. These recommendations are expected; how-
ever, the real benefits of ICMAP are realized when the network being
analyzed is large and a limited number of sensors can be placed.

6. Forensic Applications

Forensic tools such as EnCase Enterprise Automated Incident Re-
sponse Suite provide sophisticated data gathering and analysis capabil-
ities, but are not as useful at assisting with investigations of insider at-
tacks. Due to the complexity of insider attacks, special guidance schemes
are necessary to perform attack attribution. The digital forensics re-
search community has only recently started to address this issue. One
strategy is to use a layered genetic algorithm-based technique to gen-
erate an optimized rule set that identifies unauthorized processes and
performs role-based process verification [3]. However, this work is only
at a preliminary stage and is admittedly fraught with false alarms. This
section describes two strategies through which the attack semantics em-
bedded in ICMAP can be used to facilitate post-attack analysis.

As seen in the previous sections, ICMAP’s off-line analysis produces
a list of top k probable attack trails. These trails are constructed based
on the knowledge of network topology, service vulnerabilities, authenti-
cation mechanisms used for the various services and social engineering



30 ADVANCES IN DIGITAL FORENSICS III

Figure 7. Testbed topology (Courtesy Telcordia Technologies, Inc.).

Figure 8. Physical topology.



Ha, et al. 31

Figure 9. Security analysis results along with a superimposed attack trail.

possibilities. In a system where alerts from intrusion detection sensors
and audit logs (Apache, Windows IIS log files, etc.) are monitored, such
real-time data can be used to narrow down the list of probable attack
trails. Since the ICMAP-generated attack trails already have the attack
semantics embedded in them (attack origination nodes and possible at-
tack sequences), the real-time data can be utilized in a variety of ways
to understand the details of the attacks.

The first strategy requires no changes to the CAG model and the
ICMAP engine. The top k attack trails that are generated a priori
by ICMAP constitute the most likely attacks on the system. The set
of likely attacks can be further refined using forensic data such as IDS
alerts and audit logs (Figure 10). The refinement can be run periodically
at the discretion of the system analyst or forensic investigator.

The refinement module can make use of well-known techniques for
correlating alerts in the case of multi-stage attacks. These techniques
would label involved nodes (hosts) either as stepping stones or as victims
of full-fledged attacks. Bayesian causality graphs [7] could then be used
to construct evidence graphs from the evidence stream obtained from the
log events. Having created the evidence graphs, a sequence of nodes may
be extracted from these graphs and matched (fully or partially) with the



32 ADVANCES IN DIGITAL FORENSICS III

Refinement
Module

Network Configuration

ICMAP Vulnerabilities Top k Trails

Cost Assignment

Alerts

Audit Logs

Top m<k Trails

Figure 10. Combining monitored data sequentially for forensic analysis.

Network Configuration

ICMAP Vulnerabilities Top k Trails

Cost Assignment

Alerts Audit Logs

Figure 11. Combining monitored data with static knowledge for forensic analysis.

k attack trails generated by ICMAP to determine m < k most probable
attack trails. In a sense, the refinement module works as a likelihood
function in statistics. Indeed, some likelihood estimators could play a
major role in implementing the module.

The second strategy is to use a notion of “distance” to indicate how
close an attack is to the observed data stream. For instance, depending
on how real-life events are captured and modeled, an investigator may be
able to reconstruct the CAG edges that most likely caused the security
compromise. This way the set of events would correlate strongly to a set
of CAG edges. A suitable distance function in this case is the number
of “real-life” edges contained in an attack trail.

The first strategy is highly modular, allowing for increased design
flexibility. The main limitation is inaccuracy due to the fact that the
top k attack scenarios are generated a priori without considering the
events that actually occurred.



Ha, et al. 33

Implementing the second strategy requires the CAG model and the
ICMAP engine to be modified to accommodate incremental updates of
the physical network graphs (Figure 11). For example, logged events
may change tokens at vertices, edge costs and token challenges. Each
incremental update to the parameters and/or topology of the CAG re-
quires an adjustment to the top k attack trails. Ensuring that the current
heuristic technique works with on-line updates is an important topic for
future research. This feature is useful not only for forensic purposes, but
also for speeding up the heuristic technique when there are actual (good)
changes made by system administrators. The advantage of this strategy
is more accurate input, which leads to more accurate top k trails.

7. Conclusions

According to the annual CSI/FBI surveys, internal attacks and insider
abuse constitute a significant portion of security incidents in enterprise
networks. Insider attacks are extremely damaging and can be launched
with a short or non-existent reconnaissance phase. Security controls such
as firewalls and intrusion detection systems developed to protect against
external attacks are inadequate because insider attacks may be launched
from any server and from a position of privilege in terms of resource ac-
cess and knowledge of targets and vulnerabilities. Consequently, insider
threat detection and attack attribution have become major issues, which
are just beginning to be addressed by the research community.

The ICMAP tool presented in this paper is very effective at modeling
insider threats, analyzing vulnerabilities and evaluating sensor deploy-
ment locations. Red teams can also use the tool to determine attack
trails when evaluating network security.

ICMAP has several features that make it very useful for conducting
post-incident (forensic) analyses. In particular, it captures the seman-
tics of possible insider attacks via the generation of top k attack trails.
Moreover, the CAG representation retains the topological structure of
the enterprise network; this facilitates the mapping and displaying of the
results of forensic analysis in the original network context.

Our future research will refine the cost estimation process of ICMAP
based on larger real-world experiments. Also, we will investigate summa-
rization methods to address scalability while retaining the visualization
features. Another important topic is to enhance automation capabilities,
e.g., automatic configuration, file input and output format conversion
(to promote interoperability with other tools). Finally, we will work on
refining ICMAP to support large-scale network forensic investigations,
which require comprehensive analysis and visualization facilities.



34 ADVANCES IN DIGITAL FORENSICS III

References

[1] P. Ammann, D. Wijesekera and S. Kaushik, Scalable, graph-based
network vulnerability analysis, Proceedings of the Ninth ACM Con-
ference on Computer and Communications Security, pp. 217–224,
2002.

[2] R. Ball, G. Fink and C. North, Home-centric visualization of net-
work traffic for security administration, Proceedings of the ACM
Workshop on Visualization and Data Mining for Computer Secu-
rity, pp. 55–64, 2004.

[3] P. Bradford and N. Hu, A layered approach to insider threat de-
tection and proactive forensics, Proceedings of the Twenty-First
Annual Computer Security Applications Conference (Technology
Blitz), 2005.

[4] R. Chinchani, D. Ha, A. Iyer, H. Ngo and S. Upadhyaya, On the
hardness of approximating the Min-Hack problem, Journal of Com-
binatorial Optimization, vol. 9(3), pp. 295–311, 2005.

[5] R. Chinchani, A. Iyer, H. Ngo and S. Upadhyaya, Towards a theory
of insider threat assessment, Proceedings of the International Con-
ference on Dependable Systems and Networks, pp. 108–117, 2005.

[6] M. Dacier and Y. Deswarte, Privilege graph: An extension to the
typed access matrix model, Proceedings of the European Symposium
on Research in Computer Security, pp. 319–334, 1994.

[7] M. Jordan (Ed.), Learning in Graphical Models, MIT Press, Cam-
bridge, Massachusetts, 1998.

[8] S. Mauw and M. Oostdijk, Foundations of attack trees, in Informa-
tion Security and Cryptography (LNCS 3935), D. Won and S. Kim
(Eds.), Springer, Berlin-Heidelberg, Germany, pp. 186–198, 2005.

[9] C. Phillips, The network inhibition problem, Proceedings of the
Twenty-Fifth Annual ACM Symposium on the Theory of Comput-
ing, pp. 776–785, 1993.

[10] C. Phillips and L. Swiler, A graph-based system for network vulner-
ability analysis, Proceedings of the New Security Paradigms Work-
shop, pp. 71–79, 1998.

[11] B. Schneier, Attack trees: Modeling security threats, Dr. Dobb’s
Journal, December 1999.

[12] O. Sheyner, J. Haines, S. Jha, R. Lippmann and J. Wing, Auto-
mated generation and analysis of attack graphs, Proceedings of the
IEEE Symposium on Security and Privacy, pp. 273–284, 2002.



Ha, et al. 35

[13] L. Swiler, C. Phillips, D. Ellis and S. Chakerian, Computer-attack
graph generation tool, Proceedings of the DARPA Information Sur-
vivability Conference and Exposition, vol. 2, pp. 307–321, 2001.

[14] S. Teoh, K. Ma and S. Wu, A visual exploration process for the anal-
ysis of Internet routing data, Proceedings of the Fourteenth IEEE
Visualization Conference, pp. 523–530, 2003.

[15] X. Yin, W. Yurcik, M. Treaster, Y. Li and K. Lakkaraju, Visflow-
connect: Netflow visualizations of link relationships for security sit-
uational awareness, Proceedings of the ACM Workshop on Visual-
ization and Data Mining for Computer Security, pp. 26–34, 2004.


