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Abstract—Localization in the presence of malicious beacon
nodes is an important problem in wireless networks. Although
significant progress has been made on this problem, some
fundamental theoretical questions still remain unanswered: in
the presence of malicious beacon nodes, what are the necessary
and sufficient conditions to guarantee a bounded error during
2-dimensional location estimation? Under these necessary and
sufficient conditions, what class of localization algorithms can
provide that error bound? In this paper, we try to answer
these questions. Specifically, we show that, when the number
of malicious beacons is greater than or equal to some threshold,
there is no localization algorithm that can have a bounded error.
Furthermore, when the number of malicious beacons is below
that threshold, we identify a class of localization algorithms
that can ensure that the localization error is bounded. We also
outline two algorithms in this class, one of which is guaranteed
to finish in polynomial time (in the number of beacons providing
information) in the worst case, while the other is based on a
heuristic and is practically efficient. For completeness, we also
extend the above results to the 3-dimensional case. Experimental
results demonstrate that our solution has very good localization
accuracy and computational efficiency.

I. INTRODUCTION

Localization or location discovery in distributed wireless
networks is the problem where every node in the network
needs to efficiently and accurately determine its own location
w.r.t some local or global coordinate system. In this work, we
focus on beacon-based algorithms that use distance informa-
tion to compute locations ( [1], [2], [6], [7], [14], [15], [19],
[20]). Such algorithms require the presence of special nodes,
called beacon or anchor nodes, that are placed at strategic
positions in the network and they know their own locations.
Then, the remaining nodes estimate their location by comput-
ing distance estimates to a set of beacon nodes. Beacon-based
methods perform well when all the beacon nodes are honest,
but their accuracy suffers considerably due to the presence
of malicious beacon nodes. Malicious beacons can cheat by
broadcasting incorrect self locations or by manipulating the
transmit power levels, thus altering the distance computation
and eventually the estimated final location of the target node.

Previous research efforts in this direction have focused only
on either removing this (over)dependence on beacon nodes (
[4], [8], [21]) or on minimizing the effects of malicious bea-
cons ( [10], [11]) during localization. But, even before delving
into the possible solutions for this problem, we feel that there

are a plethora of questions that have been left unanswered by
previous research efforts: Under what condition(s) do there
exist algorithms that can overcome the cheating effect of the
malicious beacons? When such algorithms exist, how can we
find them out? What kind of guarantee on the solution quality
(in terms of bounds on the error in localization) can such
algorithms provide? None of the previous research works have
attempted to answer these questions. Specifically, there has
been no systematic study on the hardness and feasibility of the
localization problem in hostile environments. In this paper, we
attempt to fill this gap by first establishing the necessary (and
sufficient) condition for distributed distance-based localization
in the presence of malicious nodes. After such an initial
feasibility study, we identify a class of algorithms that provides
a guarantee on the localization accuracy, even in the presence
of cheating beacon nodes.

Specifically, we make the following contributions in this
paper. First, we prove that if the number of malicious nodes is
greater than or equal to n−2

2 , where n is the number of beacons
providing information, then no algorithm can provide any
degree of localization accuracy. Next, we show that there exist
algorithms that provide a guaranteed degree of localization
accuracy, if the number of malicious beacons is less than or
equal to n−3

2 . To prove this result, we identify a class of
algorithms such that each algorithm in this class determines
the location of a node with bounded localization error. Later,
we present two illustrative examples of algorithms in this class.
The first algorithm has a worst-case computational complexity
polynomial in n, while the second algorithm has much better
efficiency in practice. In addition to the above theorems and
algorithms, we extend our work to the 3-dimensional case,
where the location of every node is represented by points in
the three-dimensional coordinate system. Finally, we verify
the localization accuracy and computational efficiency of the
proposed algorithms through simulation experiments.

The rest of the paper is organized as follows. We discuss
the background and related work in Section II and present
our network model in Section III. In Section IV, we prove
the necessary condition for existence of localization algorithm
with guaranteed degree of accuracy; in Section V, we give
the definition of the algorithm class with guaranteed degree
of accuracy. Two example algorithms in the class are given in
Section VI, while the extension to 3-dimensional localization



is given in Section VII. Experimental evaluations are in
Section VIII. We conclude in Section IX.

II. BACKGROUND AND RELATED WORK

In the past, researchers have followed two approaches
towards overcoming the problem of malicious nodes in local-
ization algorithms. The first approach is to detect malicious
nodes by observing the inconsistencies in the communication
from such nodes and efficiently eliminating them (from con-
sideration) before localization. Sastry et al. [17] proposed a
location verification technique to verify the relative distance
between a verifying node and a beacon node while Pires et
al. [9] gives protocols to detect malicious nodes in range-
based localization approaches by detecting malicious mes-
sage transmissions. Liu et al. [12] also proposed methods to
detect malicious beacon nodes in beacon-based localization
approaches by deploying special detector nodes that capture
malicious message transmissions by the beacon nodes.

Another approach towards robust localization is to ef-
ficiently perform localization in the presence of errors in
distance measurements. These errors can be a result of ex-
ternal factors like random noise, measurement errors etc. or
due to malicious nodes. Moore et al. [13] formulated the
localization problem as a two-dimensional graph realization
problem and described a beaconless (anchor-free), distributed,
linear-time algorithm for localizing nodes in the presence
of range measurement noise. Liu et al. [11] proposed two
methods for robust localization in the presence of malicious
beacon nodes. The first method filters out malicious beacon
signals on the basis of inconsistency among multiple beacon
signals, while the second method tolerates malicious beacon
signals by adopting an iteratively refined voting scheme. As
we will discuss later, this voting-based scheme proposed by
Liu et al. is an algorithm in the class of algorithms that can
provide bounded localization accuracy. Li et al. [10] develop
robust statistical methods to make localization attack-tolerant.
They propose an adaptive least squares and least median
squares position estimator for beacon-based localization using
triangulation. Similarly, Doherty et al. [3] use connectivity
constraints and convex optimization to minimize errors in
beacon-based localization techniques. Others have approached
this problem by eliminating the need for beacon nodes during
localization [4], [8], [15], [18]. Recently, researchers have also
applied ideas from other domains like coding theory to achieve
robustness in localization algorithms [16], [21].

III. NETWORK MODEL

In this section, we describe the network model for the
problem of distance-based localization (using beacon nodes)
of a mobile device M in hostile environments. In other words,
M wants to compute its own location using distance estimates
to beacon nodes that know their own location and these
beacon nodes may or may not cheat. Suppose that there are
n beacons available for localization, denoted as B1, . . . , Bn.
Among these n beacons, some are malicious. Let k be the
number of malicious beacons. It is important to note that

k is not necessarily known to the mobile device or to any
honest beacons. However, the value of k clearly has a great
influence on whether we can achieve a bounded localization
error. In Section IV, we will establish the condition for having
a bounded localization error based on the value of k.

Regardless of being honest or dishonest, each beacon Bi

provides M with a measurement d̃i of the distance between Bi

and M . (In practice, each beacon Bi actually provides M with
some information from which the distance d̃i can be computed
efficiently by M . We simplify this by letting Bi provide the
measurement directly, which should not affect the results.)
The precise distance between Bi and M is the Euclidean
distance between the position coordinates of Bi and M and
is denoted by dst(Bi,M). Let the set of honest beacons be
denoted by H . Then, for each beacon Bi ∈ H , d̃i is assumed
to be a random variable that follows some fixed probability
distribution, denoted as msr(dst(Bi,M)), such that

E[d̃i] = dst(Bi,M),

i.e., the expected (mean) value of the estimated distance d̃i

for each beacon Bi in H , is the precise distance between
the beacon Bi and the node M . Also, in the case when Bi

is honest, the difference between the estimated and the true
distance is assumed to be very small, i.e.,

|d̃i − dst(Bi,M)| < ε,

where ε is a small constant. Ideally, this difference should
be zero when the beacon is honest, but such discrepancies in
distance estimates can occur due to factors like measurement
errors either at the source or target. For each beacon Bi �∈ H ,
d̃i is a value selected arbitrarily by the adversary. Note that
we implicitly allow colluding attack here: In our model, we
consider a single adversary who controls all malicious beacon
nodes and decides d̃i for all Bi �∈ H . This is a very strong
adversary model that covers all possibility of collusion among
malicious beacon nodes.

Since we assume a distance-based localization strategy, the
output O of a localization algorithm can be defined by a
function F of the measured distances (d̃i) from the device
M to every beacon node in the network as shown below.

O = F (d̃1, . . . , d̃n).

The error e of the localization algorithm is defined as the
Euclidean distance between the actual position of the mobile
device and the one output by the algorithm.

e = E[dst(M,O)].

Our next aim is, given the above model, to derive the
necessary and sufficient condition for the existence of an algo-
rithm that can do distance-based localization with a bounded
localization error in the presence of malicious beacon nodes.

IV. NECESSARY CONDITION FOR BOUNDED

LOCALIZATION ERROR

In this section, we give a threshold of k such that if the
number of malicious beacons is greater than or equal to this



threshold then no algorithm would be able to guarantee a
bounded localization accuracy just based on the distances to
the beacon nodes. Consequently, having the number of mali-
cious beacons below this threshold is a necessary condition for
getting a bounded localization error out of any distance-based
localization algorithm.

Theorem 1: Suppose that k ≥ n−2
2 . Then, for any distance-

based localization algorithm, for any locations of the beacons,
there exists a scenario in which e is unbounded.

Proof: Without loss of generality, we assume that k =
n−2

2 (because more malicious beacons clearly can launch any
attack that n−2

2 malicious beacons can launch). We give the
proof for the above theorem by a contradiction argument.
Suppose that, in all scenarios, the output error e < a, where
a is a constant. We show that this supposition leads to a
contradiction. We first prove that for a fixed set of beacon
nodes and beacon locations, if the above threshold holds (and
if the exact identities of the malicious nodes are not known)
then there exists at least two distinct scenarios having the
same distribution of distances from the target node to the
beacon nodes. This makes it impossible for any algorithm
to differentiate between the two scenarios. Since the target
location in the two scenarios have a significant difference, any
algorithm must fail in one of the two scenarios.

Consider the two scenarios S1 and S2, as shown in Figure 1.
The locations of all the beacons are same in both the scenarios,
but the set of honest beacon nodes and the position of the target
node M is assumed to be different in each scenario. Select an
arbitrary point P in the line segment B1B2 and draw a line
L through P such that L is perpendicular to B1B2. Choose
an arbitrary number a′ > a. Then there are two points P1 and
P2 on the line L such that

dst(P1, P ) = dst(P2, P ) =
1
2
dst(P1, P2) = a′ ≥ a.

Fig. 1. Two Scenarios for Lower Bound Theorem

In scenario S1, M is at location P1 and the set of honest
beacons is H1 = {B1, B2, B3, . . . , Bk+2}. Denote by d̃i,1 the
measurement d̃i in scenario S1. So, for each Bi ∈ H1,

d̃i,1 ∼ msr(dst(Bi, P1)).

In scenario S2, M is at location P2 and the set of honest
beacons is H2 = {B1, B2, Bk+3, . . . , B2k+2}. Denote by d̃i,2

the measurement d̃i in scenario S2. So, for each Bi ∈ H2,

d̃i,2 ∼ msr(dst(Bi, P2)).

Assume that in scenario S1, the adversary chooses
d̃k+3,1, . . . , d̃2k+2,1 such that

∀i ∈ {k + 3, . . . , 2k + 2}, d̃i,1 ∼ msr(dst(Bi, P2)).

Similarly, assume that in scenario S2, the adversary chooses
d̃3,2, . . . , d̃k+2,2 such that

∀i ∈ {3, . . . , k + 2}, d̃i,2 ∼ msr(dst(Bi, P1)).

Since B1 and B2 are on the perpendicular bisector of line
segment P1P2, we have

dst(B1, P1) = dst(B1, P2);

dst(B2, P1) = dst(B2, P2).

Therefore, we have two pairs of identical distributions:

msr(dst(B1, P1)) ∼= msr(dst(B1, P2));

msr(dst(B2, P1)) ∼= msr(dst(B2, P2)).

Now, it is easy to see that (d̃1,1, d̃2,1, d̃3,1, . . . , d̃2k+2,1) and
(d̃1,2, d̃2,2, d̃3,2, . . . , d̃2k+2,2) are identically distributed. Con-
sequently, the two outputs

O1 = F (d̃1,1, d̃2,1, d̃3,1, . . . , d̃2k+2,1)

and
O2 = F (d̃1,2, d̃2,2, d̃3,2, . . . , d̃2k+2,2)

are also identically distributed. This implies that

E[dst(P2, O1)] = E[dst(P2, O2)].

On the other hand, by our assumption, the output errors in
both scenarios are less than a:

e1 = E[dst(P1, O1)] < a,

e2 = E[dst(P2, O2)] < a.

Consequently,

dst(P1, P2) = E[dst(P1, P2)]
≤ E[dst(P1, O1)] + E[dst(P2, O1)]
= E[dst(P1, O1)] + E[dst(P2, O2)]
< a + a

= 2a.

This is contradictory to the fact that dst(P1, P2) = 2a′ ≥ 2a.

This brings us to our next result in which we prove that,
given the network model as explained in Section III, with no
more than n−3

2 malicious beacons we can definitely compute
the location of M with an error bound proportional to ε.



V. ALGORITHM CLASS AND ERROR ANALYSIS

In the previous section, we have shown that having n−2
2

or more malicious beacons makes it impossible to compute
the location of M with a bounded error. In this section, we
show that having n−3

2 or fewer malicious beacons makes it
possible to compute the location of M with a bounded error. In
particular, we identify a class of algorithms that can compute
the location under this condition and present a formal analysis
of the maximum localization error of such algorithms.

A. Class of Algorithms for Robust Localization

Before defining this algorithm class, we describe some ter-
minology that we will be using during its definition. For each
beacon Bi, define a ring Ri using the following inequality:

d̃i − ε < dst(Bi,X) < d̃i + ε.

As mentioned in Section III, ε is a small constant signifying
some small measurement error. Clearly, there are altogether n
rings. The boundary of these n rings consists of 2n circles—
we call these circles the boundary circles. In particular, the
inner circle of a ring is called an inner boundary circle, while
the outer circle of a ring is called an outer boundary circle.

Definition 1: We say a point is a critical point if it is the
intersection of at least two boundary circles. We say an arc is
a continuous arc if it satisfies the following three conditions:

• The arc is part of a boundary cirle.
• If the arc is not a complete circle, then its two ends are

both critical points.
• There is no other critical point in the arc.

We say an area is a continous region if it satisfies the following
two conditions:

• The boundary of this area is one or more continous arcs.
• There is no other continuous arc inside the area.
For each beacon Bi, define a ring Ri using the inequality:

d̃i − ε < dst(Bi,X) < d̃i + ε. We give the definition of our
algorithm class based on these rings:

Definition 2: A localization algorithm is in the class of
robust localization algorithms if its output is a point in a
continuous region r such that r is contained in the intersection
of at least k + 3 rings.

Note that, in the definition above, we have defined a non-
empty class of algorithms. To see this, we show that, as long as
k ≤ n−3

2 , we can always find a non-empty continuous region
r satisfying the above requirement.

Theorem 2: For k ≤ n−3
2 , there exists a non-empty contin-

uous region r in the intersection of at least k + 3 rings.
Proof: Consider the real location of mobile device M .

Clearly, for each honest beacon Bi, M must be in the ring
Ri:

d̃i − ε < dst(Bi,M) < d̃i + ε.

Since k ≤ n−3
2 , i.e., n ≥ 2k+3, there are at least k+3 honest

beacons. So M must be in the intersection of at least k + 3
rings. Define r as the continuous region in the intersection of
these rings that contains the real location of M . Since M is
in r, r must be non-empty. (Figure 2 gives an illustration.)

Fig. 2. Existence of Intersection of Rings (k = 2)

In fact, an example algorithm that belongs to this class is the
voting-based localization scheme proposed by Liu et al. [11].
In Liu et al.’s scheme, they compute the intersection region (as
discussed above) by dividing the entire localization area into a
square grid and then taking a vote for each candidate location
on the grid. The candidate locations with the maximum votes
belong to the intersection area. Although very simple, the
voting-based algorithm is computationally expensive, as it has
to store the states of all the points on the grid and does an
exhaustive search for the point with the maximum votes. In
Section VI, we propose two other algorithms in this class
that are much more efficient, one having a low worst-case
complexity, the other running very fast in practice.

B. Error Bound Analysis

To analyze the error bound of algorithms in this class, we
need to establish a couple of new definitions.

Definition 3: The beacon distance ratio (γ) is defined as the
minimum distance between a pair of beacons divided by the
maximum distance between a beacon and the mobile device:

γ =
minBi,Bj

dst(Bi, Bj)
maxBi

dst(Bi,M)
.

Definition 4: Consider the lines going through pairs of
beacons. Denote by ang(BiBj , Bi′Bj′) the angle between
lines BiBj and Bi′Bj′—to avoid ambiguity, we require that
0◦ ≤ ang(BiBj , Bi′Bj′) ≤ 90◦. The minimum beacon angle
(α) is defined as the minimum of such angles:

α = min
Bi,Bj ,Bi′ ,Bj′

ang(BiBj , Bi′Bj′).

The following theorem bounds the maximum localization
error possible in our robust localization framework.

Theorem 3: For k ≤ n−3
2 , if ε � minBi

dst(Bi,M) and
there are no three beacons in the same line, then the output
error of any algorithm in the class of algorithms for robust



localization, as defined in Definition 2, is

e <
2ε

min
{

sin arcsin(γ sin(α/2))
2 , cos arcsin(γ sin(α/2))

2

} .

Proof: Consider the continuous region r. It is in the
intersection of at least k + 3 rings. Since there are at most
k dishonest beacons, at least 3 of these rings belong to honest
beacons. Suppose that Ri1 , Ri2 , and Ri3 are three rings
belonging to honest beacons among the at least k + 3 rings.
Let r′ be the continuous region in the intersection of Ri1 , Ri2 ,
and Ri3 that contains r. Since O is in r, clearly O is also in
r′. Next, we show that M is also in r′. Since M is also in the
intersection of Ri1 , Ri2 , and Ri3 , we only need to prove the
following lemma.

Bi2

Ri1

Ri2

Bi1

Bi3

Ri3

Region r

Ri3

Bi2

Ri2

Region r2

X2

X1

X ′
1

Bi3

X ′
2

Region r1

Ri1 Bi1M M

Fig. 3. Intersection of Rings

Lemma 1: If ε � minBi
dst(Bi,M) and there are no three

beacons in the same line, then the intersection of Ri1 , Ri2 , and
Ri3 has only one continuous region.

Proof: We prove by contradiction, as illustrated in Fig-
ure 3. Suppose that the intersection of Ri1 , Ri2 , and Ri3 has
two continuous regions r1 and r2. Choose arbitrary points
X1 from r1 and X2 from r2. Denote by X ′

1 (resp., X ′
2) the

intersection of the line segment Bi1X1 (resp., Bi1X2) and the
circle

dst(X,Bi1) = d̃i1 − ε.

Similarly, denote by X ′′
1 (resp., X ′′

2 ) the intersection of the
line segment Bi3X1 (resp., Bi3X2) and the circle

dst(X,Bi3) = d̃i3 − ε.

Then clearly,

0 ≤ dst(X1,X
′
1), dst(X1,X

′′
1 ), dst(X2,X

′
2), dst(X2,X

′′
2 ) ≤ 2ε.

(1)
We can see that,

ang(Bi1Bi3 , Bi1X1) = arccos(dst(Bi1 ,X1)2

+dst(Bi1 , Bi3)
2 − dst(X1, Bi3)

2)
= arccos((dst(Bi1 ,X

′
1)

+dst(X1,X
′
1))

2 + dst(Bi1 , Bi3)
2

−(dst(X ′′
1 , Bi3) + dst(X1,X

′′
1 ))2)

= arccos((d̃i1 − ε + dst(X1,X
′
1))

2

+dst(Bi1 , Bi3)
2

−(d̃i3 − ε + dst(X1,X
′′
1 ))2).

We note that d̃i1 > dst(Bi1 ,M)−ε 	 ε. Similarly, d̃i3 	 ε.
Combining these facts with (1), we have

ang(Bi1Bi3 , Bi1X1) = arccos((d̃i1 − ε + dst(X1,X
′
1))

2

+dst(Bi1 , Bi3)
2

−(d̃i3 − ε + dst(X1,X
′′
1 ))2)

≈ arccos((d̃i1)
2 + dst(Bi1 , Bi3)

2

−(d̃i3)
2)

≈ arccos((d̃i1 − ε + dst(X2,X
′
2))

2

+dst(Bi1 , Bi3)
2

−(d̃i3 − ε + dst(X2,X
′′
2 ))2)

= arccos((dst(Bi1 ,X
′
2) +

dst(X2,X
′
2))

2 + dst(Bi1 , Bi3)
2

−(dst(X ′′
2 , Bi3) + dst(X2,X

′′
2 ))2)

= arccos(dst(Bi1 ,X2)2

+dst(Bi1 , Bi3)
2 − dst(X2, Bi3)

2)
= ang(Bi1Bi3 , Bi1X2).

Similarly, we can show that

ang(Bi1Bi2 , Bi1X1) ≈ ang(Bi1Bi2 , Bi1X2).

However, when we put the above two equations together, we
can get a contradiction. Without loss of generality, we assume
that

ang(Bi1Bi2 , Bi1X1) < ang(Bi1Bi3 , Bi1X1),

since otherwise we can switch the indices i2 and i3. It is easy
to see

ang(Bi1Bi2 , Bi1X1) = ang(Bi1Bi3 , Bi1X1)
−ang(Bi1Bi2 , Bi1Bi3)

≤ ang(Bi1Bi3 , Bi1X1) − α

≈ ang(Bi1Bi3 , Bi1X2) − α

= ang(Bi1Bi2 , Bi1X2)
−ang(Bi1Bi2 , Bi1Bi3) − α

≤ ang(Bi1Bi2 , Bi1X2) − 2α

≈ ang(Bi1Bi2 , Bi1X1) − 2α,

which is a contradiction.
Now we know that both M and O are in r′. We will use

this fact to show that

e <
2ε

min
{

sin arcsin(γ sin(α/2))
2 , cos arcsin(γ sin(α/2))

2

} .

But before we can prove this result, we need another lemma:
Lemma 2: If there are no three beacons in the same line,

then either

ang(Bi1M,Bi2M) ≥ arcsin(γ sin(α/2)),

or
ang(Bi1M,Bi3M) ≥ arcsin(γ sin(α/2)).



Proof: Since ang(Bi1Bi2 , Bi1Bi3) ≥ α, we have either
ang(Bi1Bi2 , Bi1M) ≥ α/2 or ang(Bi1Bi3 , Bi1M) ≥ α/2.
Below we show that, if ang(Bi1Bi2 , Bi1M) ≥ α/2, then

ang(Bi1M,Bi2M) ≤ arcsin(γ sin(α/2))
2

.

Similarly, we can show that, if ang(Bi1Bi3 , Bi1M) ≥ α/2,
then

ang(Bi1M,Bi3M) ≤ arcsin(γ sin(α/2))
2

.

Denote by D the distance from Bi2 to the line Bi1M . Then

ang(Bi1M,Bi2M) = arcsin
(

D

dst(Bi2 ,M)

)

= arcsin
(

dst(Bi1 , Bi2) sin(ang(Bi1Bi2 , Bi1M))
dst(Bi2 ,M)

)

≥ arcsin
(

dst(Bi1 , Bi2) sin(α/2)
dst(Bi2 ,M)

)

≥ arcsin(γ sin(α/2)).

Using the above lemma, we know that, without loss of
generality, we can assume that

ang(Bi1M,Bi2M) ≥ arcsin(γ sin(α/2)).

Denote by r′′ the continuous region in the intersection of Ri1

and Ri2 that contains r′. Since both M and O are in r′, they
should also be in r′′.

Each of the two rings involved has a pair of circles. Consider
the four intersection points of these two pairs of circles. With-
out loss of generality, we suppose that the four intersection
points are V1, V2, V3, and V4, ordered in the clockwise direc-
tion, and that ∠V2V1V4 is acute. Since ε � minBi

dst(Bi,M),
we can approximate r′′ using the quadrangle V1V2V3V4. It is
easy to show that

ang(V1V2, Bi1M) ≈ 90◦ ≈ ang(V3V4, Bi1M);

thus we know that the line V1V2 is parallel to the line V3V4.
Similarly, we can get that the line V1V4 is parallel to the line
V2V3. Therefore, V1V2V3V4 is a parallelogram. Furthermore,
we observe that

∠V2V1V3 = arcsin
(

2ε

dst(V1, V3)

)

= ∠V3V1V4.

Therefore, V1V2V3V4 is actually a rhombus. In a rhombus, the
farthest distance between two points is the length of its longer
diagonal line. Therefore,

e = dst(M,O) ≤ 2ε

sin(∠V2V1V3)

=
2ε

sin
(∠V2V1V4

2

)

≈ 2ε

min
{

sin
(

ang(Bi1M,Bi2M)

2

)
, sin

(
90◦ − ang(Bi1M,Bi2M)

2

)}

≤ 2ε

min
{

sin
(

arcsin(γ sin(α/2))
2

)
, cos

(
arcsin(γ sin(α/2))

2

)} .

VI. TWO EXAMPLE ALGORITHMS

In this section, we present two example algorithms in the
class defined in Definition 2. The first algorithm has a worst
case computational complexity of O(n3 log n). (Recall n is
the number of beacons. Clearly this is much faster than an
exhaustive search in grid points [11].) However, in practice,
since the worst-case scenario rarely occurs, it is still not
sufficiently fast. Our second algorithm is a heuristic one.
Although it does not have a worst-case complexity analysis
as the first algorithm, it runs very fast in practice.

Recall that these algorithms work under the condition k ≤
n−3

2 . Thus, we can define kmax = n−3
2 and get that kmax is

an upper bound for k, the number of malicious beacons. Both
of the algorithms we present in this section find a continuous
region r in the intersection of at least kmax+3 rings and output
a point in this region. However, the two algorithms find this
continuous region using different methods.

A. Polynomial-time Algorithm

Before we present our polynomial-time algorithm, we re-
quire a lemma that gives the relationship between the contin-
uous region and the continuous arcs on its boundary.

Definition 5: A ring is related to a continuous arc if the
continuous arc is inside but not on the boundary of this ring.

Lemma 3: Suppose that r is a continuous region and c
is a continuous arc on the boundry of r. Then r is in the
intersection of at least k +3 rings if and only if at least k +2
rings are related to c.

(We skip the proof of Lemma 3 since it is straightforward.)
The main idea of the polynomial-time algorithm is that, to

determine a continuous region in the intersection of at least
kmax + 3 rings, we only need to count the number of rings
related to each continuous arc and find a continuous arc that
at least kmax + 2 rings are related to (It is easy to check if a
ring is related to a continuous arc by comparing the distance
between the arcs end points and the center of the ring to the
inner and outer radii of the ring). Once such an arc is found,
depending on whether the arc is on an outer boundary circle
or an inner boundary circle, a point can be picked from either
the inner region or the outer region of the arc respectively.
The details of the algorithm are as shown in Algorithm 1.

Lemma 4: The worst-case time complexity of the above
algorithm is O(n3 log n).

B. Fast Heuristic Algorithm

Although the worst case time complexity of the polynomial-
time algorithm is polynomial (O(n3 log n)) in terms of the
total number of beacon nodes, in practice its efficiency needs
further improvement. So, we propose our second algorithm,
which is heuristic-based and runs even faster in practice.

The heuristic we use is as follows: Note that kmax + 3
is already a large number of rings. Since the region r is



1: Let S be a set initially containing the two boundary circles
of ring R1.

2: for i = 2, . . . , n do
3: Let Si be a set initially containing the two boundary

circles of ring Ri.
4: for each arc in S and each arc in Si do
5: if the above two arcs intersect then
6: Split each of these two arcs using the intersec-

tion(s), and replace them in the corresponding arc
sets (S or Si) with the new splitted arcs (result of
the splitting operation).

7: end if
8: end for
9: Let S = S ∪ Si.

10: end for
11: for each arc cj in S do
12: Set the corresponding counter λj to 0.
13: for i = 1, . . . , n do
14: if Ri is related to cj then
15: λj = λj + 1.
16: end if
17: end for
18: if λj ≥ kmax + 2 then
19: if cj is on an inner boundary circle then
20: Output is defined on the side out of this circle.
21: else if cj is on an outer boundary circle then
22: Output is defined on the side inside this circle
23: end if
24: Stop the algorithm.
25: end if
26: end for

Algorithm 1: Polynomial-time Algorithm

contained in at least kmax +3 rings, the rings containing r are
intersecting with large numbers of other rings. Therefore, if a
ring Ri is intersecting with a large number of rings, it is very
likely that Ri contains r. So, we should first consider the rings
intersecting with the maximum numbers of other rings. The
details of our heuristic algorithm is shown in Algorithm 2.

VII. EXTENSION TO 3-DIMENSIONAL LOCALIZATION

So far we have only considered localization in a 2-
dimensional space. In certain environments (like mountains,
valleys etc.), 3-dimensional localization is needed. In this
section, we extend our results to the 3-dimensional space.

We first obtain the necessary condition for robust 3-
dimensional localization in the presence of malicious nodes. It
turns out that for the 3-dimensional case the maximum number
of malicious beacons that can be tolerated is slightly smaller
than the 2-dimensional case. The notations and model used
here is similar to the 2-dimensional case, except that here the
position of each node is represented by three coordinates.

Theorem 4: Suppose that k ≥ n−3
2 . Then, for any distance-

based 3-dimensional localization algorithm, for any locations

1: Count the number of rings intersecting with each ring.
2: for each ring Ri, in the order of decreasing number of

rings intersecting with it do
3: for each ring Rj , Rj �= Ri, in the order of decreasing

number of rings intersecting with it do
4: Compute the intersection points of the boundary

circles of Ri and Rj .
5: for m = 1, . . . , κ do
6: Choose a random intersection point computed

above.
7: Choose a random point O near this intersection

point (such that the distance between them is less
than ε).

8: Count the number of rings containing O.
9: if there are at least kmax + 3 rings containing O

then
10: Output O.
11: Stop the Algorithm.
12: end if
13: end for
14: end for
15: end for

Algorithm 2: Fast Heuristic Algorithm

of the beacons, there exists a scenario in which the localization
error e is unbounded.

With k ≤ n−4
2 , we can also establish a bounded error for

3-dimensional localization. But to obtain this result, we need
to first introduce a few new definitions.

For each beacon Bi, we define a global shell just as we
defined the ring for the 2-dimensional case:

d̃i − ε < dst(Bi,X) < d̃i + ε.

For simplicity, we still use Ri to denote the above global
shell. The globes on the boundary of these shells are called
the boundary globes; the inner globe of a shell is called an
inner boundary globe, while the outer globe of a shell is called
an outer boundary circle. A continuous 3-dimensional region
is part of the space such that its boundary consists of parts of
boundary globes, and that no boundary globe goes through its
internal. We define a class of 3-dimensional robust localization
algorithms as follows: an algorithm is in the class if and only
if its output is a point in a continuous 3-dimensional region r
such that r is in the intersection of at least k+4 global shells.

Definition 6: Consider the planes going through triples
of beacons. Denote by ang(Bi1Bi2Bi3 , Bi′1Bi′2Bi′3)
the angle between the two planes Bi1Bi2Bi3 and
Bi′1Bi′2Bi′3—to avoid ambiguity, we require that
0◦ ≤ ang(Bi1Bi2Bi3 , Bi′1Bi′2Bi′3) ≤ 90◦. The minimum
beacon plane angle is defined as the minimum of such angles:

α� = min
Bi1 ,Bi2 ,Bi3 ,Bi′

1
,Bi′

2
,Bi′

3

ang(Bi1Bi2Bi3 , Bi′1Bi′2Bi′3).

Given the above definitions, we can now state our main
(positive) result on 3-dimensional localization.



Theorem 5: For k ≤ n−4
2 , if ε � minBi

dst(Bi,M) and
there are neither three beacons in the same line nor four
beacons in the same plane, then the error of our robust
localization algorithm’s output is

e < 2ε

√
1
β2

+ (
1

sin α�
+

1
β · tan α�

)2

and, β = min
{

sin
(

arcsin(γ sin(α/2))
2

)
, cos

(
arcsin(γ sin(α/2))

2

)}
.

VIII. EVALUATION

We have performed extensive experiments to evaluate the
performance of our proposed algorithm under varying param-
eters like beacon node distribution over the deployment area,
number of malicious nodes (k), maximum distance measure-
ment error (ε) and the number of rings (or distance measure-
ments) used to determine the continuous region. Currently we
are not evaluating any network properties like communication
overheads for these algorithms because our algorithms are very
general and properties like communication overhead would
depend on the type of ranging or distance measuring technique
used. Thus, we do not use a software network simulator
like ns-2 [5] for our simulation experiments. We perform our
experiments using C language programs. The network setup
for our experiments is as follows: The simulation area is
500m × 500m. The radio transmission range is 250m. There
are 43 beacon nodes and one target node and there is no
node mobility. The positions of each of the nodes is selected
uniformly over the 500m × 500m area.

In our experiments, we have evaluated the heuristic-based
algorithm since it is the one with higher practical efficiency.
Our experiments have considered two different distributions of
distance measurement error: uniform distribution and Normal
distribution. For each of these two distributions, we study
how the number of malicious beacons (k) and the maximum
measurement error (ε) influence the localization error and the
computational time.

A. Experiments with Uniform Measurement Error

Here, we study the scenario in which the measurement
error is uniformly distributed over [−ε, ε]. We observe the
performance of the heuristic-based localization algorithm for
each value of ε, when the number of malicious nodes (k) in
the network increases. Since the total number of nodes in the
network is fixed (n = 43), the maximum number of malicious
nodes that the algorithm can tolerate is 43−3

2 (from Theorem
2). We run the simulation of the heuristic-based algorithm for
each value of ε from 0m to 50m in steps of 10m and each
value of k from 0 to 20. In each such run, the beacon and
target nodes are assigned new positions, the coordinates of
which are uniformly selected over the 500m × 500m area.
Average localization error (e) is then plotted as an average of
the error in localization of the target node over a large number
of such runs (around 1000 runs).

From Figure 4, we can see that the average localization error
(e) is increasing when ε increases, which is very natural. Also,
as shown in Figure 4, e is increasing as k increase. This is
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Fig. 4. Localization Error for Uniform Measurement Error

consistent with our intuition that more malicious beacon nodes
should lead to worse localization precision. Figure 5 shows
that the average simulation time increases in k, but increases
only very slightly. This observation is also not surprising since
the algorithm is computing the intersection of the same number
of rings for each value k. The main reason for the slight
increase in simulation time is that a larger number of malicious
beacons makes it harder to find the right continuous region in
the intersection of kmax + 3 rings using our heuristic.
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Fig. 5. Simulation Time for Uniform Measurement Error

For all values of k and ε, our average localization error is
less than 25m and the simulation time is less than 0.035s.

B. Experiments with Normal Measurement Error

To ensure that our evaluation result is not restricted to a
uniformly distributed measurement error, we repeat all our
experiments with a Normally distributed measurement error.
Here we keep all our experiment parameters intact, except that
the distance measurement error follows a Normal distribution
with mean 0 and variance ε

2 . However, we need to make
sure that the measurement error value is between [−ε,+ε].
Therefore, we modify the distribution such that the probability
density outside [−ε,+ε] becomes 0; the probability density
inside the interval [−ε,+ε] is scaled up a little accordingly.

Figure 6 shows the average localization error for each pair
of (k, ε) when the measurement error follows the Normal
distribution. Figure 7 shows the corresponding simulation
time. We can see that the curves are analogous to those in
Figures 4 and 5 respectively (except that the localization error
increases more slowly in k). Therefore, we can claim that



our evaluation results are valid for different distributions of
measurement errors.
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Fig. 6. Localization Error for Normal Measurement Error
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Fig. 7. Simulation time for Normal Measurement Error

IX. CONCLUSION AND OPEN QUESTION

In this paper, we have theoretically treated the problem
of robust distance-based localization in the presence of ma-
licious beacon nodes. We derive a necessary and sufficient
condition for having a bounded localization error and identify
a class of algorithms that achieve such a bounded error. In
addition to this, we propose two algorithms in this class.
First, a polynomial-time algorithm that guarantees to finish
in polynomial time even in the worst case. We also propose
a fast heuristic algorithm that is suitable from the practi-
cal standpoint. Also, we extend our current results in 2-
dimensional localization to the 3-dimensional case. Finally,
through computer simulations we show that the heuristic-based
algorithm provides good localization precision with a very
small time cost and that it works under different distributions
of the distance measurement errors.

An open question is what is the best algorithm to find the
intersection of rings, in terms of worst-case complexity and in
terms of average computational time? We leave this question
for future work.

REFERENCES

[1] P. Bahl and V. N. Padmanabhan. Radar: an in-building RF-based
user location and tracking system. In IEEE INFOCOM Conference
Proceedings, pages 775–784. IEEE Communications Society, March
2000.

[2] N. Bulusu, J. Heidemann, and D. Estrin. GPS-less low cost outdoor
localization for very small devices. IEEE Personal Communications
Magazine, pages 28–34, Oct 2000.

[3] L. Doherty, L. E. Ghaoui, and K. S. J. Pister. Convex position
estimation in wireless sensor networks. In IEEE INFOCOM Conference
Proceedings, Anchorage, April 2001. IEEE Communications Society.

[4] Lei Fang, Wenliang Du, and Peng Ning. A beacon-less location
discovery scheme for wireless sensor networks. In IEEE INFOCOM
Conference Proceedings. IEEE Communications Society, March 2005.

[5] Marc Greis. Tutorial for the Network Simulator “ns”. VINT group,
2005. http://www.isi.edu/nsnam/ns/.

[6] Tian He, Chengdu Huang, Brian M. Blum, John A. Stankovic, and
Tarek Abdelzaher. Range-free localization schemes for large scale sensor
networks. In MobiCom ’03: Proceedings of the 9th annual international
conference on Mobile computing and networking, pages 81–95, New
York, NY, USA, 2003. ACM Press.

[7] B. Hofmann-Wellenhof, H. Lichtenegger, and J. Collins. Global Posi-
tioning System: Theory and Practice. Springer Verlag, 1997.

[8] Xiang Ji and Hongyuan Zha. Sensor positioning in wireless ad-hoc
sensor. networks using multidimensional scaling. In Proceedings of
IEEE INFOCOM 2004, March 2004.

[9] Waldir Ribeiro Pires Jr., Thiago H. de Paula Figueiredo, Hao Chi Wong,
and Antonio A.F. Loureiro. Malicious node detection in wireless sensor
networks. In 18th International Parallel and Distributed Processing
Symposium, 2004. Proceedings., page 24. IEEE Computer Society, April
2004.

[10] Zang Li, Wade Trappe, Yanyong Zhang, and Badri Nath. Robust
statistical methods for securing wireless localization in sensor networks.
In IPSN ’05: Proceedings of the 4th international symposium on
Information processing in sensor networks, page 12, Piscataway, NJ,
USA, 2005. IEEE Press.

[11] Donggang Liu, Peng Ning, and Wenliang Du. Attack-resistant location
estimation in sensor networks. In The Fourth International Symposium
on Information Processing in Sensor Networks (IPSN ’05), pages 99–
106. ACM SIGBED and IEEE Signal Processing Society, April 2005.

[12] Donggang Liu, Peng Ning, and Wenliang Du. Detecting malicious
beacon nodes for secure location discovery in wireless sensor networks.
In The 25th International Conference on Distributed Computing Systems
(ICDCS ’05), pages 609–619. IEEE Computer Society, June 2005.

[13] David Moore, John Leonard, Daniela Rus, and Seth Teller. Robust
distributed network localization with noisy range measurements. In Sen-
Sys ’04: Proceedings of the 2nd international conference on Embedded
networked sensor systems, pages 50–61, New York, NY, USA, 2004.
ACM Press.

[14] D. Niculescu and B. Nath. DV based positioning in ad hoc networks.
Journal of Telecommunication Systems, 2003.

[15] N.B. Priyantha, A. Chakraborty, and H. Balakrishnan. The cricket
location-support system. In The Sixth Annual International Conference
on Mobile Computing and Networking(MOBICOM), pages 32–43. ACM
SIGMOBILE, August 2000.

[16] Saikat Ray, Rachanee Ungrangsi, Francesco de Pellegrini, Ari Tracht-
enberg, and David Starobinski. Robust location detection in emergency
sensor networks. In IEEE INFOCOM Conference Proceedings, pages
1044–1053, San Francisco, March 2003. IEEE Communications Society.

[17] Naveen Sastry, Umesh Shankar, and David Wagner. Secure verification
of location claims. In WiSe ’03: Proceedings of the 2003 ACM workshop
on Wireless security, pages 1–10, New York, NY, USA, 2003. ACM
Press.

[18] Yi Shang, Wheeler Ruml, Ying Zhang, and Markus Fromherz. Local-
ization from connectivity in sensor networks. IEEE Transactions on
Parallel and Distributed Systems, 15(11):961–974, 2004.

[19] Radu Stoleru and John A. Stankovic. Probability grid: A location
estimation scheme for wireless sensor networks. In IEEE Sensor
and Ad Hoc Communications and Networks, pages 430–438. IEEE
Communications Society, October 2004.

[20] R. Want, A. Hopper, V. Falcao, and J. Gibbons. The active badge
location system. ACM Transaction on Information Systems, pages 91–
102, Jan 1992.

[21] Kiran Yedavalli, Bhaskar Krishnamachari, Sharmila Ravula, and Bhaskar
Srinivasan. Ecolocation: A sequence based technique for rf-only
localization in wireless sensor networks. In Proceedings of the Fourth
International Conference on Information Processing in Sensor Networks
(IPSN ’05), Los Angeles, CA, USA, April 2005.


