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Abstract: Fault tolerance via redundancy or replication is contradictory to the notion of a 
limited trusted computing base. Thus, normal security techniques cannot be applied to fault-
tolerant systems. As a result, a multi-phased approach is employed that includes fault/threat 
avoidance/prevention, detection and recovery.  However, a determined adversary can still 
defeat system security by staging an attack on the recovery phase. This paper presents a 
hardware-based, proactive solution that can be built into any fault-tolerant, mission-critical 
system to secure the recovery phase. It also presents an evaluation that validates the 
feasibility and efficiency claims of this solution.  
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Introduction 
 
Research in the past several decades has seen significant maturity in the field of fault 
tolerance. But, fault-tolerant systems still require multi-phased security due to the lack of a 
limited and strong trusted computing base. The first phase in this regard is 
avoidance/prevention, which consists of proactive measures to reduce the probability of any 
faults or attacks. This can be achieved via advanced design methodologies like encryption. 
The second phase, viz. detection that primarily consists of an intrusion detection system, 
attempts to detect faults and malicious attacks that occur despite any preventive measures. 
The final is the recovery phase that focuses on recuperating the system after the occurrence of 
an attack or fault. Generally, fault-tolerant systems rely on replication and redundancy for 
fault-masking and system recovery. These three layers of security provide a strong defense 
for fault-tolerant mission critical systems. Yet, if a determined adversary stages an attack on 
the recovery phase of an application, it is quite possible that the mission will fail due to lack 
of any further countermeasures.  Therefore, these systems need the provisioning of another 
layer of defense to address attacks that may be brought on by malicious opponents during the 
recovery phase itself. 
   
The quiet invader is another serious threat that this paper considers. Attacking the mission in 
its critical phase not only leaves the defender with less time to respond, but cancelling the 
mission at this late a stage is far more expensive than cancelling it at some earlier stage. In 
case where the defender is not left with enough time to respond to the attack, it can lead to 
major economic loss and even fatalities. 
 



 

 
 

 

This paper proposes a framework for mission assured recovery using the concept of runtime 
node-to-node verification implementable at low-level hardware that is not accessible by the 
adversary. The rationale behind this approach is that if an adversary can compromise a node 
by gaining root privilege to user-space components, any solution developed in user space will 
not be effective (since such solutions may not remain secure and tamper-resistant). In the 
proposed scheme, entire verification process is carried out in a manner that is oblivious to the 
adversary, which gains the system an additional advantage. This paper also explores the 
potential of utilizing the test logic on processors (and hence the name ‘hardware-based 
mission assurance scheme’) for implementing secure proactive recovery paradigm. This 
choice makes the proposed solution extremely cost effective. In order to establish the proof-
of-concept for this proposal, the prototype used is a simplified mission critical system that 
uses majority consensus for diagnosis and recovery. Finally, the security, usability and 
performance overhead for this scheme are analyzed using a multi-step simulation approach. 

 
 

Related Work 
 
Solutions proposed in the existing literature to address faults/attacks in fault-tolerant systems 
are designed to employ redundancy, replication and consensus protocols. They are able to 
tolerate the failure of up to f replicas. However, given enough time and resources, an attacker 
can compromise more than f replicas and subvert the system. A combination of reactive and 
proactive recovery approaches can be used to keep the number of compromised replicas 
under f at all times (Sousa et al. 2007). But, as the attacks become more complex, it becomes 
harder to detect any faulty or malicious behavior (Wagner and Soto 2002). Moreover, if one 
replica is compromised, the adversary holds the key to other replicas too. To counter this 
problem, researchers have proposed spatial diversity in software. Spatial diversity can slow 
down an adversary but eventually the compromise of all diverse replicas is possible. 
Therefore, it was further proposed to introduce time diversity along with the spatial diversity. 
Time diversity modifies the state of the recovered system (OS access passwords, open ports, 
authentication methods, etc.). This is to assure that an attacker is unable to exploit the same 
vulnerabilities that he had exploited before (Bessani et al. 2008).  
 
Mission critical systems demand secure operation as well as mission survivability. This 
additional requirement calls for smart security solutions (Carvalho et al. 2011). 
 
Threat model 
 
An extensive threat model is presented here to analyze security in a wide range of scenarios. 
Assume that there are n replicas in a fault-tolerant, mission-critical application. It can tolerate 
the failure of up to f replicas during the entire mission.  
 
Scenario 1: Attacks on Byzantine fault-tolerant protocols 
Assume that no design diversity is introduced in the replicated system. During the mission 
lifetime, an adversary can easily compromise f+1 identical replicas and bring the system 
down.  
 
Scenario 2: Attacks on proactive recovery protocols 
In proactive recovery, the whole system is rejuvenated periodically. However, the adversary 
becomes more and more knowledgeable and his attacks evolve with each succeeded/failed 
attempt. So, it is only a matter of time before he is able to compromise f+1 replicas between 



 

 
 

 

periodic rejuvenations. Furthermore, the compromised replicas can disrupt system’s normal 
functioning in many ways like creating extra traffic. This can help delay the next round of 
recovery which gains adversary more time to compromise f+1  replicas (Sousa et al. 2007). 
This is a classic case of attacking the recovery phase. 
 
Scenario 3: Attacks on proactive-reactive recovery protocols 
Proactive-reactive recovery solves several major problems, except that if the compromised 
node is recovered by restoring the same state that was previously attacked, the attacker 
already knows the vulnerabilities (Sousa et al. 2007). In this case, a persistent attacker may 
get faster with time, or may invoke many reactive recoveries exhausting system resources. 
Large number of recoveries also affects system’s availability adversely. This is also an 
instance of attacking the recovery phase. Furthermore, arbitrary faults are very difficult to 
detect (Haeberlen et al. 2006).  
 
Scenario 4: Attacks on proactive-reactive recovery with spatial diversity 
Spatial diversity in replicas is proposed to be a relatively stronger security solution. It can be 
difficult and more time-consuming for the adversary to compromise f+1 diverse replicas, but 
it is possible to compromise all of them eventually. This is especially true for long running 
applications. Also, most of the existing systems are not spatially diverse. Introducing spatial 
diversity into an existing system is expensive. 

 
Time diversity has been suggested to complement spatial diversity so as to make it almost 
impossible to predict the new state of the system (Bessani et al. 2008). The complexity 
involved in implementing time diversity as a workable solution is very high because it has to 
deal with on-the-fly compatibility issues and much more. Besides, updating replicas and other 
communication protocols after each recovery will consume considerable time and resources. 
A decent workable solution employing space diversity still needs a lot of work (Banatre et al. 
2007), so employing time diversity is a step planned too far into the future.  
 
Scenario 5: The quiet invader  
A quiet invader is an adversary who investigates a few selected nodes quietly and plays along 
with the system protocol to avoid getting caught. In this way he gains more time to 
understand the system. After gathering enough information, the adversary can design attacks 
for f+1 replicas and launch all the attacks at once when he is ready or when the mission 
enters a critical stage. If these attacks are not detected or dealt with in time, the system fails. 
This is an evasive attack strategy for subverting the detection and recovery phases. Similar 
threat models have been discussed in literature previously (Todd et al. 2007, Del Carlo 2003). 
    
Scenario 6: The physical access threat 
Sometimes system nodes are deployed in an environment where physical access to them is a 
highly probable threat. For instance, in case of wireless sensor network deployment, sensor 
nodes are highly susceptible to physical capture. To prevent such attacks, any changes in the 
physical environment of a node must be captured. A reasonable solution may involve 
attaching motion sensors to each node. Readings from these motion sensors can be used to 
detect threats. In this case, the scheme proposed in this paper can be used to assure the 
mission. 
 
 
 
 



 

 
 

 

 
System design 
 
Assumptions 
 
In this paper, a prototype (simplified and centralized fault-tolerant, mission-critical 
application) is used to describe and evaluate the proposed security scheme. No spatial or time 
diversity is assumed, though this scheme is expected to work with any kind of diversity.  
 
Network can lose, duplicate or reorder messages but is immune to partitioning. The 
coordinator (central authority and trusted computing base) is responsible for periodic 
checkpointing in order to maintain a consistent global state. A stable storage at the 
coordinator holds recovery data through all the tolerated failures and their corresponding 
recoveries. Sequential and equidistant checkpointing is assumed (Elnozahy et al. 2002).  
 
The replicas are assumed to be running on identical hardware platforms. Each node has 
advanced CPU (Central Processing Unit) and memory subsystems along with the test logic 
(in the form of design for testability (DFT) and built-in self-test (BIST)) that is generally used 
for manufacture test. Refer to Figure 1(a). All the chips comply with the IEEE 1149.1 JTAG 
(Joint Test Action Group) standard (Abramovici and Stroud 2001). Figure 1(b) elaborates the 
test logic and boundary scan cells corresponding to the assumed hardware. 
 
 
 
 
 
 
 

 Figure 1(a): Replicated Hardware 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 1(b): Capturing Signature 
 
A software tripwire used to detect a variety of anomalies at the host is assumed to be running 
on each replica. By instrumenting the openly available tripwire source code (Hrivnak 2002), 
an ‘intrusion alert/alarm’ can be directed to a set of system registers (using low level 
coding).The triggered and latched hardware signature is read out by taking a snapshot of 
system registers using the ‘scan-out’ mode of the observation logic associated with DFT 
hardware. The bit pattern is brought out to the CPU ports using the IEEE 1149.1 JTAG 
instruction set in a tamper-resistant manner. Once it is brought out of the chip, it is securely 



 

 
 

 

sent to the coordinator for verification and further action. This way, the system is able to 
surreptitiously diagnose all the adversary’s actions. 
 
Conceptual basics 
 
This paper presents a simple and practical alternative to spatial/time diversity solutions in 
order to increase the resilience of a fault-tolerant system against benign faults and malicious 
attacks. In particular, this is to address the threat of a quiet invader (Scenario 5 in Section 3). 
An adversary needs to compromise f+1 replicas out of the n correctly working replicas in 
order to affect the result of a majority consensus protocol and disrupt the mission. The key 
idea is to detect a system compromise by an adversary, who has taken over some replicas (or 
has gained sufficient information about them) but is playing along in order to gain more time. 
From the defender’s point of view, if the system knows which of the n replicas have become 
untrustworthy, the mission can still succeed with the help of surviving healthy replicas. 
Aggressive attackers can be clearly and easily detected and thus their attacks can be 
recovered from at an earlier stage. Smart attackers try to minimize the risk of getting caught 
by compromising only the minimum number of replicas required in order to subvert the entire 
system. Thus, a smart defender should be able to detect attacks surreptitiously so as not to 
make the smart attacker aggressive. This especially holds true for the cases when a smart 
attacker has been hiding for long and the mission is nearing completion. At this stage, the 
priority is not to identify the attacker but to complete the mission securely. 

 
The proposed scheme offers a passive detection and recovery in order to assure the smart 
adversary of its apparent success and to prevent him from becoming aggressive. At some 
later stage, when the adversary  launches an attack to fail  f+1 replicas at once, the attack fails 
because those replicas have already been identified and ousted from the voting process 
without the knowledge of the attacker. In this solution, it is required that there should at least 
be two correctly working replicas to provide a duplex system for the mission to succeed. The 
advantage of this approach is that in the worst case when all replicas are compromised, the 
system will not deliver a result, rather than delivering a wrong one. This is a necessary 
condition for many safety-critical applications. 
 
If an adversary compromises a replica by gaining root privilege to user-space components, 
one should note that any solution developed in user space cannot be expected to remain 
secure and tamper-resistant. Therefore, this paradigm achieves detection of node compromise 
through a verification scheme implementable in low-level hardware. Software or hardware-
driven tripwires are used to help detect any ongoing suspicious activity and trigger a 
hardware signature that indicates the integrity status of a replica. This signature is generated 
without affecting the application layer, and hence the attacker remains oblivious of this 
activity. Also, a smart attacker is not likely to monitor the system thoroughly as that may lead 
to his own detection. This signature is then securely collected and sent to the coordinator that 
performs the necessary action.  
 
Checkpointing 
 
In the prototype application used here, the checkpointing module that affiliates to the 
coordinator establishes a consistent global checkpoint. It also carries out voting procedures 
that lead to anomaly detection due to faults, attacks or both.  
 



 

 
 

 

Coordinator starts the checkpointing/voting process by broadcasting a request message to all 
the replicas, asking them to take checkpoints. It also initiates a local timer that runs out if it 
does not receive expected number of replies within a specified time frame. On receiving the 
request message, all replicas pause their respective executions and take a checkpoint. These 
checkpoints are then sent to the coordinator (over the network) through a secured channel 
using encryption. On receiving the expected number of checkpoints, coordinator compares 
them for consistency. If all checkpoints are consistent, it broadcasts a commit message that 
completes the two-phase checkpoint protocol. After receiving the commit message, all the 
replicas resume their respective executions. This is how the replicas run in lockstep. In case 
the timer runs out before the expected number of checkpoints are received at the coordinator, 
it sends out another request message. All replicas send their last locally stored checkpoints as 
a reply to this repeated request message. In this application, the allowed number of repeated 
request messages caused by a non-replying replica is limited to a maximum of three. If a 
replica causes three consecutive repeat transmissions of the request message and still does not 
reply, it is considered dead. A commit message is then sent by the coordinator to the rest of 
the replicas if their checkpoints are consistent. In case that the checkpoints are not consistent, 
the coordinator replies with a rollback message to all the replicas. This rollback message 
includes the last consistent checkpoint that was stored in the coordinator’s stable storage. All 
replicas then return to the previous state of execution as defined by the rollback message. If a 
certain replica fails to deliver consistent checkpoint and causes more than three (or a 
threshold count) consecutive rollbacks, the fault is considered permanent and the replica is 
excluded from the system.  
 
A hardware signature is generated at each replica and piggybacked on the periodic 
checkpoint being sent to the coordinator. This signature quantifies the integrity status of a 
replica since its last successful checkpoint. For simplicity, the values used are – all-0s (for an 
uncompromised replica) and all-1s (for a compromised replica). All replicas are equipped 
with a host-based intrusion detection sensor that is responsible for generating these 
signatures. If the coordinator finds any hardware signature to be all-1s, then the 
corresponding replica is blacklisted and any of its future results/checkpoints are ignored at 
the coordinator. However, the coordinator continues normal communication with the 
blacklisted replica in order to keep the attacker unaware of this discovery. 
 
Finally, all results from each of the non-blacklisted replicas are voted upon by the coordinator 
for generating the final result.  

 
Using built-in test logic for hardware signature generation and propagation 
  
As described under assumptions, the system uses a software-driven trip-wire that monitors it 
continuously for a specified range of anomalies. Tripwire raises an alarm on anomaly 
detection by setting the value of a designated system register to all-1s (all-0s by default). This 
value then becomes the integrity status of the replica and is read out using scan-out mode of 
the test logic. It is then securely sent to the coordinator for verification. 
  
 
Performance analysis 
 
Most of the mission critical military applications that employ checkpointing or proactive 
security tend to be long running ones. For instance, a rocket launch countdown running for 
hours/days. Therefore, this performance analysis will focus on long running applications. 



 

 
 

 

 
This scheme employs built-in hardware for implementing security. Also, the security-related 
notifications piggyback the checkpointing messages. Thus, security comes nearly free for 
systems that already use checkpointing for fault tolerance. However, many legacy systems 
that do not use any checkpointing will need to employ checkpointing before they can benefit 
from this scheme. In such cases, cost of checkpointing is also included in the cost of 
employing the security scheme. To cover all these possibilities, the following three cases are 
considered. 

 
Case 1: This case includes all the mission critical legacy systems that do not employ any 
checkpointing or security protocols.  

  
Case 2: This case examines mission critical systems that already employ checkpointing. We 
assume the absence of any failures or attacks in this case. Note that this is the worst case 
scenario for a system that shifts from Case 1 to Case 2. Such a system will employ 
checkpointing in absence of any faults/attacks. Hence, they end up paying the price without 
any benefit. However, if a system is already a Case2, the proposed security scheme comes 
nearly free for it, if they choose to employ it. 

 
Case 3: The systems considered under Case 3 employ checkpointing and the proposed 
security scheme (hardware signature verification), both. This case considers the occurrence of 
failures and security-related attacks. 

 
These three cases allow us to study the cost of adopting this security scheme in all possible 
scenarios. 

  
Since the proposed system is composed of hardware and software subsystems, one standard 
simulation engine could not be used to simulate the entire application accurately. Therefore, 
results obtained from individually simulating the software and hardware components are 
combined using the multi-step simulation approach (Mehresh et al. 2010).  

 
Simplified system prototype development 
 
Figure 2 presents a modular design of the mission-critical prototype application with n 
replicas. The coordinator is the core of this centralized, replicated system. It is responsible for 
performing voting operations on intermediate results, integrity signatures and checkpoints 
obtained from the replicas. Heartbeat manager broadcasts periodic ping messages to 
determine if the nodes are alive. Replicas are identical copies of the workload executing in 
parallel in lockstep.  

 
Multi-step simulation approach 
 
This paper uses multi-step simulation approach to evaluate system performance for the three 
cases defined above. This approach is required because there are currently no benchmarks for 
evaluating such complex systems. Multi-step simulation provides a combination of pilot 
system implementation and simulation to deliver more realistic and statistically accurate 
results.  

 



 

 
 

 

 
 

Figure 2: Overall system design 
 
 
Researchers generally choose from a set of three methods to evaluate their systems. This 
choice depends on the system’s current state of development. The first method, CMTC or 
(Continuous time Markov chains) is used when the system architecture has not been 
established yet (Geist and Trivedi 1990).  When system design is available, the second 
method viz. simulation is generally used to model system’s functional behavior. The third 
method is the most realistic one and involves conducting experimentation on a real-world 
system prototype. Relying solely on each of these methods has some associated advantages 
and disadvantages. Based on the system and its current state, choosing a wrong tool may 
increase the complexity and cost of evaluation with a possible decrease in result accuracy. 
For instance, if implementation is chosen as the evaluation tool, results will be more accurate 
and representative of the real world conditions (like hardware faults, network conditions, etc.) 
However, not only implementation is expensive to scale, but sometimes it may not even be 
possible or affordable to develop a prototype. In such cases, simulation is preferred because it 
is easier to develop and it scales rapidly at low cost. Simulation enables the study of 
feasibility, behavior and performance without the need of an actual system. It can also run at 
any speed compared to the real world and thus can be used to test a wide range of scenarios 
in lesser time than with a real system. However, accuracy is a major issue with simulation 
models. Designing a highly accurate and valid simulation model is not only difficult but 
sometimes costly in terms of time and resources. 
 
Multi-step approach (Mehresh et al. 2010), involves a combination of theoretical analysis, 
pilot system implementation and simulation. This mix of analytical techniques can be 
optimized to obtain an evaluation procedure that minimizes its development effort and cost 
(resources and time), and maximizes its accuracy and efficiency. 

 
This approach is a combination of three concepts: Modular decomposition, modular 
composability and parameterization (Meyer 1988). Modular decomposition consists of 
breaking down a problem into smaller elements. Modular composition involves production of 
elements that can be freely combined with each other to provide new functionality. 
Parameterization is the process of defining the necessary parameters for the problem.  

 
The end result of employing this approach is the modular functional model of the system. 



 

 
 

 

This model is hierarchical in terms of the level of detail/granularity. The analysis starts with 
the most abstract form of the model and works downwards toward a more detailed level/finer 
granularity. Each module is recursively decomposed if the candidate set of sub-modules 
satisfy the composability property. When the maximum level of decomposition is reached 
and the complexity of any further decomposition is high, then the current level is replaced 
with a black-box. This black-boxed level of detail is complex to model for simulation 
purposes but it is simple when described using stochastic variables (fault rate, bandwidth, 
etc.) statistically derived from experimentation. It can also be defined via theoretical analysis, 
like the use of queuing theory in case of scheduling. 
 
Since the upper (coarsely granular) levels of any functional model are logically simpler, they 
are less prone to design errors. Hence, simulation model starts its construction from the very 
top. It then develops downwards to finer levels of granularity, adding more complexity and 
detail to the design. However, for system prototype development or theoretical analysis, the 
lower level of detail is easier to handle. For instance, a prototype can deliver data about the 
network traffic without much work, but consider designing the various factors that affect the 
flow of traffic for a simulation model. Hence, the prototype development moves upwards 
towards a coarser level of granularity. Adding more functionality to a prototype (in moving 
upwards) increases the cost of evaluation. A designer can make these two progressions to 
meet in the middle where the accuracy, simplicity and efficiency of the evaluation can be 
maximized. Refer to Figure 3.  

 
Figure 3: Development process of simulation model using multi-step approach  

 
Three main tools are primarily used in the multi-step evaluation of this prototype: Java 
implementation based on Chameleon (Kalbarczyk et al. 1999), Arena simulation (Rockwell 
Automation 2000) and Cadence simulation. Arena simulation is discrete event and is used at 
the highest level of abstraction. This choice is also beneficial in working with long running 
mission critical applications. Conducting real-time experiments for long-running applications 
is not efficient and is extremely time consuming. The lower levels of abstraction that become 
too complex to model are black-boxed and parameterized using the Java implementation. 
Please note that Java implementation does not implement all the functionalities. It only 
implements those functionalities that generate data required to parameterize the black boxes.  
This java implementation consists of socket programming across a network of 100 Mbps 
bandwidth. The experiments are conducted on Windows platform with an Intel Core Duo 2 
GHz processor and 2 GB RAM.  Cadence simulation is primarily used for the feasibility 



 

 
 

 

study of the proposed hardware scheme. To verify the precision of the employed simulators, 
test cases were developed and deployed for the known cases of operation. 

 
This prototype (Java implementation) accepts workloads from a user and executes them in a 
fault-tolerant environment. Java SciMark 2.0 workloads used in these experiments are: Fast 
Fourier Transform (FFT), Jacobi Successive Over-relaxation (SOR), Sparse Matrix 
multiplication (Sparse) and Dense LU matrix Factorization (LU). The standard large data sets 
(Miller and Pozo 2004) are used. 

 
Data generated by the experiments with Java implementation is collected and fitted 
probability distributions are obtained using Arena’s input data analyzer. These distributions 
define the stochastic parameters for the black-boxes of the model. Once the model is 
complete, it is simulated in Arena. 

 
Feasibility of the hardware component of this system (as described under assumptions) is 
examined as follows. The integrity signature of a replica is stored in the flip flops of the 
boundary scan chain around a processor. This part of our simulation is centered on a 
boundary scan inserted DLX processor (Patterson and Hennessy 1994). Verilog code for the 
boundary scan inserted DLX processor is elaborated in cadence RTL compiler. To load the 
signature into these scan cells a multiplexer is inserted before each cell, which has one of the 
inputs as test data input (TDI) and the other from the 32-bit signature vector. Depending on 
the select line either the test data or the signature is latched into the flip flops of the scan 
cells. To read the signature out, bits are serially shifted from the flip flops onto the output 
bus. 
 
Rationale for using multi-step simulation 
 
Simulation can only approximate the behavior of a real system. In a real system, the 
components (memory, processor speed, network bandwidth, etc.) have complex inputs, 
interconnections and dependencies that are not always easy to model. In addition to this, two 
similar components, such as two processors, can have different behaviors even if they are 
modeled the same for the purpose of simulation. These factors introduce disparity between the 
results obtained from simulation and the results from experimentation. To reduce this 
disparity, there exist many general-purpose simulation tools that allow the designing of 
stochastic system models. Stochastic parameters/variables can take into account a lot of 
unpredictable real-world factors. However, this approach presents the challenge of specifying 
the stochastic system parameters and variables, like probability distributions, seeds, etc. 
Mostly, values for defining system parameters and variables are taken from prior projects, 
sometimes without proper justification or verification, or are simply assumed.  
 
Differences between results from simulation and experimentation can be ignored if only 
approximate comparisons are required (like observing a linear or exponential relationship 
between the input and output quantities). However, if the objective is to obtain values as close 
to the real-world experimentation as possible (as required in this case because there are no 
existing results to compare), then the need is to realistically parameterize the simulation 
model. 
 
Mostly researchers validate their simulation design by comparing their simulation results with 
the results obtained from the system implementation. In many cases, the actual system may 
not exist and hence it is not possible to validate a simulation model. Hence, the need is to 



 

 
 

 

simplify the simulation model, so it can be easily verified for the logic. Adding excessive 
details to a model makes it more complex to understand and also makes it prone to design 
errors. For instance, in a network application, an attempt to design the various time-variant 
factors that affect its performance will not only be impossible to precisely model, but will also 
increase the probability of design errors. So, simulation model designers generally make 
simplifying assumptions like the availability of a 100Mbps network bandwidth at all times. 
However, any application rarely gets to use the entire bandwidth. Hence, the execution time 
obtained from a simulation of a network application is much more optimistic than in a real 
world implementation. Designers generally go to a specific level of granularity in the 
simulation design and then start making assumptions beyond that level. Multi-step approach 
tries to realistically estimate these ‘assumed’ values. This provides statistically accurate results 
along with a much simpler simulation model that is less prone to design errors.  
 
Another reason for proposing multi-step approach is to avoid long or unbounded execution 
times of real-world experimentations. Sometimes there is a system prototype available but the 
runtime is directly proportional to some parameter/variable, for instance, the workload size. In 
this case, if large workloads are fed and one application run takes days, it becomes very 
inefficient to experiment with a large number of design alternatives. So, simulation is a better 
solution for this problem. However, as stated before, simulation has to be realistic. 
 
Modeling system using the multi-step approach 
 
Java is chosen for the prototype implementation because of its easy-to-use API for 
programming socket communication and the level of author’s familiarity with it. For 
simulation purposes, discrete event simulation is chosen. Discrete event simulation is 
generally of three types: event-oriented, activity-oriented and process-oriented. The system is 
such that process-oriented approach turns out to be the most convenient and accurate one. 
Workload can be defined as an entity with attributes like size, arrival time, checkpoint rate, 
etc. The various stages of processing like network, replica execution, heartbeat management, 
etc. are modeled as separate processes. There are a variety of tools like CSIM, JavaSim, and 
ARENA that can be used to execute this simulation model. However, Arena is chosen for this 
demonstration since it has a user friendly drag-and-drop interface (Rockwell Automation 
2000). 
 
At highest level of abstraction, three main modules are considered- Network, Coordinator and 
Replica. Refer to Figure 4. Now each module is inspected to see if it can be further 
decomposed into sub-modules. To verify if a new level of hierarchy can be defined, the 
potential sub-modules are investigated for the following two properties: 
 
i) Composability: The functionalities of the candidate set of sub-modules can be composed to 
provide the functionalities of its parent module. 
 
ii) Sufficiency: The functionalities of the candidate set of sub-modules collectively describe 
the entire set of functionalities of its parent module. 
 
The first module ‘Coordinator’ has three sub-modules by design. These three sub-modules 
collectively describe the entire set of functionalities provided by the coordinator. Therefore, 
these three sub-modules are composedly sufficient to describe the coordinator.  Hence, one 
additional level of the hierarchy is added for the coordinator module. The second module 
represents network that is unpredictable and is complicated to decompose further. 



 

 
 

 

 
Figure 4: System model hierarchy of height 4 using the multi-step approach 

 
Parameterization 
 
Data recorded from several prototype runs is converted into probability distributions with the 
help of data analysis tools such as Minitab, Arena Input Analyzer, etc. Arena’s input analyzer 
is used for data analysis and Arena student version for simulation of this prototype. Arena 
input analyzer fits the best possible probability distribution to the data. Various tests (like 
Chi-square test) can be conducted using these tools to find out how well the selected 
distribution fits the data. 
 
 
Results 
 
The prototype is analyzed for the three cases described earlier. In order to evaluate its 
performance in the worst case, checkpointing overhead should be maximum. Hence, 
sequential checkpointing is chosen (Elnozahy et al. 2002). 
 
For the following analysis (unless mentioned), checkpoint interval is assumed to be 1 hour. 
Table 1 presents the execution times for the four Scimark workloads. The values from Table 
1 are plotted in Figure 5 on a logarithmic scale.  It can be seen that the execution time 
overhead increases a little when the system shifts from Case 1 to Case 2 (that is, employing 
the proposed scheme as a preventive measure). However, the execution time overhead 
increases rapidly when the system moves from Case 2 and Case 3. The execution overhead 
will only increase substantially if there are too many faults/attacks present, in which case it 
would be worth the fault tolerance and security that comes along. As can be seen from the 
values in Table 1, an application that runs for 13.6562 hours for Case 1 will incur an 
execution time overhead of only 13.49 minutes in moving to Case 2.  
 
Figure 6 shows the percentage increase in execution times of various workloads when the 
system upgrades from a lower case to a higher one. It is assumed that these executions do not 
have any interactions (inputs/outputs) with the external environment. The percentage increase 
in execution time is only around 1.6% for all the workloads when system upgrades from Case 



 

 
 

 

1 to Case 2. The overhead for an upgrade from Case 1 to Case 3 (with mean time to fault, M 
=10) is around 9%. These percentages indicate acceptable overheads. 
 

 
Figure 5: Execution times for Scimark workloads across three cases, on a logarithmic scale 
 
Table 1: Execution Times (in hours) for the Scimark workloads across three cases 
 

 FFT LU SOR Sparse 
Case 1 3421.09 222.69 13.6562 23.9479 
Case 2 3477.46 226.36 13.8811 24.3426 
Case 3 (M=10) 3824.63 249.08 15.2026 26.7313 
Case 3 (M=25) 3593.39 233.83 13.8811 24.3426 

 
 

 
Figure 6: Percentage execution time overheads incurred by the Scimark workloads while 
shifting between cases 
 
As Table 1 shows, for a checkpoint interval of 1 hour and M =10, the workload LU executes 
for approximately 10 days. Figure 7 shows the effect of increasing checkpoint interval for 
workload LU for different values of M ranging from 5 to 25. The optimal checkpoint interval 
values (and the corresponding execution times) for the graph plots in Figure 7 are provided in 
Table 2. 
 



 

 
 

 

Please note that the multi-step simulation is used here and parameters for its model are 
derived from experimentation. Therefore, these results do not just represent the data trends 
but are also close to the statistically expected real-world values. 
 
 

 
 
Figure 7: Effect of checkpoint interval on workload execution times at different values of M 
 
Table 2: Approximate optimal checkpoint interval values and their corresponding workload 
execution times for LU (Case 3) at different values of M 
 

 M=5 M=10 M=15 M=25 
Optimal Checkpoint Interval (hours) 0.3 0.5 0.65 0.95 
Execution Times(hours) 248.97 241.57 238.16 235.06 

 
 
Conclusion 
 
This paper proposes a hardware-based proactive solution to secure the recovery phase of 
fault-tolerant, mission-critical applications. A detailed threat model is developed to analyze 
the security provided by this solution. The most significant aspect of this research is its ability 
to deal with smart adversaries, give priority to mission assurance, and use redundant 
hardware for capturing integrity status of a replica outside the user space. Since this scheme 
is simple and has no visible application specific dependencies, its implementation has the 
potential to be application transparent. 

 
For performance evaluation, a simplified mission critical application prototype is investigated 
using a multi-step simulation approach. The plan is to enhance the present centralized 
architecture into a distributed one for future research work.  
 
The cost analysis defines various cases of application of the proposed security scheme 
(including its application to legacy systems with no fault tolerance).  The performance 
evaluation showed promising results. Execution time overheads are observed to be small 
when faults are absent. As the fault rate increases, the overhead increases too. However, this 
additional overhead comes with strong fault tolerance and security. Overall, this solution is 
believed to provide strong security at low cost for mission critical applications.  
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