
A Deception Framework for Survivability Against Next Generation
Cyber Attacks

Ruchika Mehresh1, and Shambhu Upadhyaya2
1Department of Computer Science and Engineering, University at Buffalo, Buffalo, NY 14260, USA
2Department of Computer Science and Engineering, University at Buffalo, Buffalo, NY 14260, USA

Abstract— Over the years, malicious entities in cyber-space
have grown smarter and resourceful. For defenders to stay
abreast of the increasingly sophisticated attacks, the need
is to understand these attacks. In this paper, we study the
current trends in security attacks and present a threat model
that encapsulates their sophistication.

Survivability is difficult to achieve because of its contra-
dictory requirements. It requires that a critical system sur-
vives all attacks (including zero-day attacks), while still con-
serving the timeliness property of its mission. We recognize
deception as an important tool to resolve this conflict. The
proposed deception-based framework predicts an attacker’s
intent in order to design a stronger and more effective
recovery; hence strengthening system survivability. Each
design choice is supported by evidence and a detailed review
of existing literature. Finally, we discuss the challenges in
implementing such a framework and the directions that can
be taken to overcome them.

Keywords: Deception, mission critical systems, recovery, secu-
rity, survivability

1. Introduction
This is the era of cyber-warfare and it is no longer limited

to military domain. Knapp and Boulton [12] have reviewed
information warfare literature from 1990 to mid-2005 and
made a strong case for how cyber warfare has extended to
other domains outside military. Baskerville [3] has discussed
how the asymmetric warfare theory applies to information
warfare and how it has expanded to the electronic business
domain. According to the asymmetric warfare theory, attack-
ers have the advantage of time and stealth over defenders.
Thus, in order to counter this imbalance, defense needs to
be “agile and adaptive.”

Owing to this increasing hostility, critical systems in
cyber space need to be protected. This need for protection
extends beyond the routine fault tolerance and security
into the domain of survivability. Ellison et al. [8] describe
survivability as “the capability of a system to fulfill its
mission in a timely manner in the presence of attacks,
failures and accidents.” Survivability focuses on continuity
of a mission (set of essential services) without relying on the
guarantee that precautionary measures will always succeed.

It concentrates on the impact of an event rather than its
cause. There are four basic layers of protection in a surviv-
able system: Prevention or resistance against faults/attacks;
Detection of faults/attacks; Full recovery of the essential
services (mission) after the fault/attack and; Adaptation or
evolution to reduce the possibility or effectiveness of future
faults/attacks.

While the first two layers, prevention and detection al-
ready provide strong defense, recovery is the fallback option
should these layers fail to protect the system. However,
recovery being the last phase, needs protection (or a fall-
back). Mehresh et al. [20] discuss the possible attacks on
the recovery phase of a critical system. Because adapta-
tion/evolution mechanisms are generally activated during or
after recovery, they are rarely effective if recovery fails.
Therefore, recovery phase needs further protection to assure
mission survivability.

One of the major challenges of designing a survivable
system is to ensure that all the precedented or unprecedented
threats are dealt with, while conserving the timeliness prop-
erty of the mission. Since dealing with unprecedented attacks
(zero-day attacks) requires monitoring the entire traffic,
it becomes difficult to ensure timeliness property. Hence,
these two requirements of surviving all kinds of threats
and conserving the timeliness property are contradictory in
nature. We propose deception as a tool to handle this conflict
and even out the asymmetry in cyber warfare. Defensive
deception is an act of intentional misrepresentation of facts
to make an attacker take actions in defender’s favor [7]. In
this work, we make the following contributions:

• Study current trends in sophisticated attacks against
mission critical cyber systems and present a next gen-
eration threat analysis/model (Section 3).

• Derive formal set of requirements for a survivable
system to defend against such attacks (Section 4).

• Transform these requirements into a survivability
framework where each design choice is supported with
evidence and detailed reasoning (Section 5).

We review the related work in Section 2. In Section 3,
we present an assessment of next generation threats. Formal
requirements for the survivability framework are laid out in
Section 4 and Section 5 presents the framework in detail.
Section 6 concludes the paper by discussing the challenges

involved in implementing this framework.

2. Related Work
The static nature of today’s networks presents a sitting and

vulnerable target. Patch development time for most exploits
is much higher than the exploit development time. Repik
[29] documents a summary of internal discussions held by
Air Force Cyber Command staff in 2008. His work makes
a strong argument in favor of using deception as a tool of
defense. He discusses why planned actions taken to mislead
hackers have merit as a strategy and should be pursued
further.

Deception itself in warfare is not new [33], [6]. However,
deception has several associated legal and moral issues
with its usage in today’s society. Cohen [6], the author of
deception toolkit [5] discusses moral issues associated with
the use of deception throughout his work. Lakhani [13]
discusses the possible legal issues involved in the use of
deception-based honeypots.

Deception aims to influence an adversary’s observables
by concealing or tampering with the information. Murphy
[21] discusses the techniques of deception like, fingerprint
scrubbing, obfuscation, etc. Her work is based on the
principle of holding back important information from the
attacker to render the attack weak. There is vast literature
and taxonomies [6], [30], [29] on the use of deception to
secure computer systems and information in general. Our
framework essentially builds on these principles to handle
sophisticated attacks.

3. Next generation threat assessment
In this section, we discuss the latest trends in sophisticated

attacks on critical systems. This analysis helps us derive the
attack patterns required to design a secure solution for the
next-generation of critical systems.

Today’s market forces and easy access to high-end tech-
nology have changed the cyber attack landscape consid-
erably. As reported by Washington Post [22], malicious
sleeper code is known to be left behind in the U.S. critical
infrastructure by state-sponsored attackers. This sleeper code
can be activated anytime to alter or destroy information.
Similar stealth methodologies are also employed during
multi-stage delivery of malware discussed in [28] and the
botnet’s stealthy command and control execution model
in [11]. We already see a rising trend of stealthy smart
malware all around [10]. Stuxnet, for instance, sniffs for
a specific configuration and remains inactive if it does not
find it. “Stuxnet is the new face of 21st-century warfare:
invisible, anonymous, and devastating” [9]. Another instance
of smart malware is ‘Operation Aurora’ that received wide
publicity in 2009-10. The most highlighted feature of Aurora
is its complexity, sophistication and stealth [16]. It includes
numerous steps to gain and maintain access to privileged

systems until the attacker’s goals are met. The installation
and working of this malware is completely hidden from the
user.

A recently published report by McAfee surveyed 200
IT executives from critical infrastructure enterprises in 14
countries [2]. The report documents cyber-security experts
expressing concerns about the surveillance of U.S. critical
infrastructure by other nation-states.

Considering these trends, we set our focus on addressing
attacks from a resourceful, adaptive and stealthy adversary.
Note that aggressive attackers are easier to spot and hence
the routine security measures generally take care of them.
However, multi-shot, stealthy attackers rely on techniques
that are difficult to detect and thus need innovative defense
[28].

An attacker can cause maximum damage to a mission
critical system during its crucial stage (like, the final stage).
Multi-shot attackers are stealthy. They sniff around the
system, install backdoors, place sleeper code, fragmented
malware, etc., while evading detection. Thus, these stealthy
attackers have a long time to infect the system. If discovered
at a late stage, sometimes the only way left to recover is a
system-wide sanitation which may disrupt the mission. Such
drastic measures can cause a huge financial loss due to the
heavy investments made during the course of a mission. At
other times, the defender may not even get an opportunity
to react. Thus, the need is to make these stealthy attackers
manifest an easily detectable pattern at as early a stage as
possible. Additionally, some stealth is required on defense
system’s part if it aims for a no-loss recovery from the attack.
Most smart attackers and malware come with a contingency
plan (to destroy or steal information on discovery). Thus,
spooking an attacker without being prepared for the conse-
quent contingency plan can be catastrophic. Thus, detection
needs to be stealthy too, until the defender comes up with a
plan to deal with a spooked attacker.

Based on the discussion above, we design a perceived
smart attack flow. It is an extension of the basic one
presented by Repik [29]. The attack flow is described in
Algo. 1. Let φ be the set of exploitable vulnerabilities for a
system with state s(t), where t is time. For each vulnerability
ν in φ, the amount of resources required to exploit it is
represented by r[ν]. Total resources available to an attacker
is r̂. Risk associated with exploiting each vulnerability ν is
ρ[ν]. Maximum risk that the attacker can afford is ρ̂.

A sophisticated attack usually starts with intelligence gath-
ering and initial planning. Based on the available resources,
an attacker decides either to exploit a currently known
vulnerability or keep searching for more. Attack occurs in
multiple stages involving installing backdoors, rootkits, etc.,
until a crucial stage is reached. An attack during crucial stage
has the maximum pay-off for the attacker. If discovered,
most attackers have a contingency plan that may involve
deleting or destroying information.

Algorithm 1 Attack pattern for sophisticated attacks
1: while TRUE do
2: while φ = NULL AND ∀ν,ρ[ν]≥ ρ̂ do
3: Gather intelligence
4: Develop exploits
5: Perform network reconnaissance
6: Update vulnerability set φ
7: end while
8: if ∃ν, (r[ν]≤ r̂ AND ρ[ν]≤ ρ̂) then
9: Install backdoors; Update r̂

10: while s(t) 6= ATTACK_DISCOVERED do
11: if s(t) 6= CRUCIAL_STAGE then
12: WAIT
13: else if ∃ν, (r[ν]≤ r̂ AND ρ[ν]≤ ρ̂) then
14: Attack and exploit ν; Update r̂; Assess dam-

age
15: if s(t)=COMPROMISED then
16: Operation successful and Exit
17: end if
18: else
19: Terminate operation
20: end if
21: end while
22: if Contingency plan exists then
23: Execute contingency plan
24: else
25: Terminate operation
26: end if
27: else
28: Terminate operation
29: end if
30: end while

4. Formal requirements
In light of the threat assessment presented in the previous

section, we now list down requirements for a state-of-the-art
deception-based security framework for mission survivabil-
ity.

1) Prevention: It is generally the first step towards de-
veloping any effective solution in dealing with security
threats. Prevention not only attempts to stop the attacks
from succeeding, but also dissuades attackers with
limited resources.

2) Detecting the smart adversary: We identify two main
challenges for developing a security solution. First,
it should force or manipulate a stealthy attacker into
leaving a discernible and traceable pattern. Second,
detection of such a pattern should be hidden lest the
attacker should get spooked and execute a contin-
gency plan for which the defender is not likely to
be prepared. In addition to that, the solution should
provide basic prevention, detection and recovery while

conserving the timeliness property of the mission.
For a given system state s1(t), there is a set φ1 of suspi-
cious actions (for instance, a possible exploit attempt).
A user that chooses an action from this set is malicious
with a probability p. However, he could be benign with
a probability 1-p. Let system states s1(t), s2(t),....,sn(t)
(where, n is the total number of system configurations)
have φ1, φ2,....,φn as their respective sets of suspicious
actions. For some system states, this set of actions can
be more clearly categorized as malicious with higher
probabilities pi where, 1≤i≤n. Choosing such states
more frequently helps the defender to come up with
a clear user profile in a shorter time. In honeypots,
a defender can choose states with higher pi’s, which
means that if an attacker keeps choosing the actions
from the set φ, his probability of being malicious
(p1.p2.p3....pn) will cross the threshold in a shorter
time. Thus, choosing and controlling these states is
crucial in determining if an attacker is malicious with
a higher probability in a shorter time.

3) Effective recovery with adaptation: If the attacker
has penetrated the system via existing vulnerabilities,
recovering the system to the same old state does not
remove these vulnerabilities. Therefore, the need is
to ensure that during each recovery, vulnerabilities
that are being exploited are patched. In this paper,
we assume proactive recoveries that are periodically
scheduled. It is much easier to predict the timing
impact of proactive recoveries and hence conserve the
timeliness property of a survivable system. Reactive
recoveries, if evoked excessively, can harm system’s
performance and mission’s survivability.

4) Zero-day attacks: Any good survivability solution
must deal with zero-day attacks. Several anomaly-
based detection systems have been proposed in order
to detect such attacks [4]. However, Liu et al. [15] de-
scribe the big challenge, “how to make correct proac-
tive (especially predictive) real-time defense decisions
during an earlier stage of the attack in such a way that
much less harm will be caused without consuming a
lot of resources?” Schemes that attempt to recognize
a zero-day stealth attack usually take two approaches:
predictive and reactive. Under the predictive approach,
all the suspected policy violations are taken as a sign
of intrusion. This results in higher rate of false alarms
and hence service degradation. Under the reactive
approach, defender takes an action only when he is
somewhat sure of a foul play. Generally, it is difficult
to know when to react. If the system waits unless a
complete attack profile emerges, it may be too late to
react. A good trade-off is offered by honeypots (a form
of deception). The defender redirects all the suspicious
traffic through honeypots which is responsible for
blacklisting/whitelisting the traffic flows [25], [24].

Authors in [14], [13] introduced methodologies for
employing honeynet in a production-based environ-
ment.

5) Conserving timeliness property: Timeliness property
describes the capability of a mission survivable system
to stick to its originally planned schedule. This being
said, a schedule can account for periodic recoveries
and some unexpected delays due to miscellaneous
factors. In order to conserve this property, it is es-
sential that all the indeterministically time-consuming
operations be moved out of the mission’s critical path.
Thus, it is essential to redirect the suspicious traffic to
a separate entity for further examination.

6) Non-verifiable deception: A good deception should
be non-verifiable [23]. Deception is difficult to create
but easier to verify. For instance, an attacker attempts
to delete a file. Even if a deceptive interface gives a
positive confirmation, the attacker can always verify if
the file exits.
For a state s(t), an action χ is expected to have
an effect ω. Generally, deception (like in honeypots)
involves confirming that χ has been performed but the
effect ω is never reflected in the system. If the attacker
has a feedback loop to verify ω, a deception can be
easily identified. Therefore, either the feedback loop
needs to be controlled so as to give the impression
that ω exists, or the feedback loop should be blocked
for all regular users. An open and honest feedback
loop will help attacker in figuring out ways around
deception by trial-and-error.

5. The Framework
5.1 Basics

Preventive deception is the first step in mission sur-
vivability. Traditionally, measures like firewall, encryption
techniques, access control, etc. have been used as preventive
measures. These measures have proved to be very successful
in deterring weak adversaries. However, strong and deter-
mined adversaries are always known to find their way around
these. McGill [17] suggests that the appearance of a system
being an easy or a hard target determines the probability
of attacks on it. Based on similar literature, we categorize
deception-based prevention methodologies under following
four headings:

• Hiding: Hiding is the most basic form of deception. One
could use schemes like fingerprint scrubbing, protocol
scrubbing, etc. to hide information from an attacker
[34], [31]. Similarly, these schemes could also be used
to feed false information to the attacker. Yuill et al. [35]
have developed a model for understanding, comparing,
and developing methods of deceptive hiding.

• Distraction: McGill [17] demonstrates that given two
targets of equal value, an attacker is more likely to

attack the target with lesser protection. However, San-
dler and Harvey analytically prove that this tendency
continues only till a threshold. If more vulnerabilities
are introduced to a system, an attacker’s preference for
attacking that system does not increase beyond a certain
threshold.
System observables that attackers rely on can be manip-
ulated to feed misinformation or hide information from
attackers. Thus, strategies can be devised to affect an
attacker’s perception about the system. Studies like [18]
model threat scenarios based on target’s susceptibility
and attacker’s tendencies. Such models can be used
to assess the attractiveness of a target to an attacker
if its apparent susceptibility is manipulated via its
observables.

Axiom 1: Adding more vulnerabilities to one of the two
equal-value systems increases the likeliness (till a threshold)
of an attack on the one with more vulnerabilities.

• Dissuasion: Dissuasion describes the steps taken by a
defender to influence an attacker’s behavior in his favor.
It involves manipulating system observables to make
it look like it has stronger security than it actually
does. This may discourage attackers from attacking it.
As shown in Algo. 1, if the estimated resources for
exploiting the system go over r̂ or the estimated risk
goes over ρ̂, the attacker will be dissuaded from attack-
ing the system. Dissuasion is generally implemented as
deterrence or devaluation. Deterrence involves a false
display of greater strength. Devaluation, on the other
hand, involves manipulating observables to lessen the
perceived value that comes out of compromising a
system. McGill [17] develops a probabilistic framework
around the use of defensive dissuasion as a defensive
measure.

Deception techniques are complementary to conventional
prevention techniques rather than a replacement.

Axiom 2: False display of strength dissuades an attacker
from attacking the system.

Axiom 3: Increasing or decreasing the perceived value of
a system affects the attacker’s preference of attacking the
system favorably or adversely, respectively.

Honeypot is a tool of deception. It generally comes across
as a system capable of a low-resource compromise with
high perceived gains. Honeypot not only distracts an attacker
from attacking the main system, but also logs attacker’s
activity heavily. Studying these logs can help the defender
to gauge an attacker’s capability and come up with a good
strategy to ward off any future attacks. Spitzner describes
honeypot as “a security deception resource whose value lies
in being probed, attacked, or compromised” [32]. Honeypots
are generally classified into two categories: Physical and
Virtual. Physical honeypots are when real computer systems
are used to create each honeypot. Virtual honeypots use

Fig. 1: Smart-Box

software to the workings of a real honeypot and the connect-
ing network. They are cheaper to create and maintain and
hence are used in the production environments more often.
Virtual honeypots are further divided into high interactive
and low interactive honeypots. Qasswawi et al. [27] provide
a good overview of the deception techniques used in virtual
honeypots.

High interactive honeypots provide an emulation for a real
operating system. Thus, the attacker can interact with the
operating system and completely compromise the system.
Some examples are User Mode Linux (UML), VMware, Ar-
gos, etc. Low-interaction honeypots simulate limited network
services and vulnerabilities. They can not be completely
exploited. Examples are LaBrea, Honeyd, Nepenthes, etc.
[26], [27].

Cohen’s Deception Toolkit (DTK) laid the groundwork
for low-interaction honeypots [5]. It led to the development
of advanced products like Honeyd. Honeyd [32] simulates
services at TCP/IP level in order to deceive tools like Nmap
and Xprobe. Though it does not emulate the entire operating
system, its observables are modified to give the impression
that it does.

Honeypot farm is a cluster comprised of honeypots of
the same or different kinds. Hybrid honeypot farms consist
of a mixture of low and high interactive honeypots.

Smart-box is a module that we proposed to help figure
out the best deception for a specific suspicious traffic flow.
Conceptually, a smart-box works as shown in Fig. 1. It takes
input from the IDS about the suspected traffic flow. The logic
in smart-box then decides Attackers Intent, Objectives and
Strategies (AIOS) based on this information [15]. Then it
maps the AIOS to deception scripts. These scripts are stored
in the script repository.

5.2 Design
Building up from the concepts discussed in the previous

subsection, we extend the model presented in [13] to design
our deception-based survivability framework.

As shown in Fig. 2, the mission survivable (production)
system runs behind several layers of protection including
firewalls, deception, etc. The first layer of proxy servers uses
Axioms 1, 2 and 3 to mislead attackers into choosing systems
that will re-route their traffic to honeypot farm via the
smart-box. Rest of the unsuspected traffic goes through the
main server, the firewall and the intrusion detection system.
Intrusion detection system is another layer of defense which
re-routes any suspicious traffic to the honeypot farm for
further analysis.

Suspicious traffic is generally sieved out based on two
criteria: either the intrusion detection system identifies an
attack pattern in the traffic flow or the traffic originates
to/from dark address space. Dark address space is the set
of Internet’s routable address reserved for future network
expansion. These two criteria worked just fine until cloud
computing came along. Now attackers can launch their
attacks from behind the cloud using valid IP addresses
and evade detection. Therefore, in addition to employing
the above-mentioned two methods, we introduce a layer
of distraction proxy servers. This layer contains a main
server which is widely publicized to legitimate clients. This
main server is extremely secure and its observed security
is further enhanced (deception/deterrence). Thus, amateur
attackers are dissuaded from attacking it. Other proxy servers
expose a specific set of non-essential, vulnerable services.
For instance, one server can keep the ssh port open to
accept the traffic, while the other can mislead the attacker
into thinking that it is running a vulnerable version of
Windows operating system. These servers not only distract
the malicious traffic away from the main server but, also
inform the smart-box about attackers’ intentions (based on
their preference of proxy servers and vulnerabilities that they
try to exploit).

In this design, we use smart-box to optimize resource
allocation in hybrid honeypot farms. These honeypots should
be assigned to the traffic flows based on the assessment about
each flow’s AIOS. This is because low-interaction honeypots
can be easily verified if attacker suspects deception and
tries to go in deeper. Use of high-interactive honeypots for
deception is more fool-proof but consumes more computing
and memory resources. Thus, smart-box helps in smart
allocation of these honeypot resources by assessing the
nature of an attack and re-routing the traffic to appropriate
honeypots (similar to loading the deception scripts).

Logging tools and analyzer in the honeypot farm recog-
nize an attack and create a complete attack profile. Based
on this attack profile, the flow is whitelisted and forwarded
to the production server or blacklisted. If blacklisted, either
automated patches, if available, are executed in the next
recovery cycle, or a system administrator is alerted. This
is the step where the attack profile helps the defender to
develop an effective patch for the next recovery cycle, while
the unsuspected malicious actor stays busy playing with the
honeypot. Thus, deception buys defender the time to design
an effective recovery.

Since a system is “as secure as its weakest point”, we
need to make sure that this framework not only provides
good security but is tamper-proof at all times. Since all
the modules in this design like, proxy servers, the traffic
redirection module, intrusion detection systems, etc. are
connected to the same network, they are always susceptible
to intrusions. Therefore, these modules need to be tamper-
proof in order for the entire design to be tamper-proof.

Fig. 2: Deception framework for mission survivability

We can use techniques like lightweight cyclic monitoring
in order to make sure that IDS on all these modules (like
proxy servers, IDS, etc.) stay tamper-proof [19]. Then using
the scheme described by Mehresh et. al in [20], the integrity
signature of each module is surreptitiously detected and
sent to the production system for verification. The detection
is secret so the attacker is not spooked. This arrangement
introduces a cyclic integrity-check. All modules make sure
that production system works tamper-free at all times, while
the production server takes care of the integrity-check for
all modules.

Anagnostakis et al. [1] proposed shadow honeypots as an
effective solution to deploy honeypots in a production envi-
ronment. Shadow honeypots use a combination of anomaly
intrusion detection systems and shadow honeypots. A variety
of anomaly detectors monitor traffic in the network and the
suspected traffic is forwarded to a shadow honeypot. Shadow
honeypot is an identical copy of the production server
but instrumented to detect potential attacks. Misclassified
traffic is verified by the shadow and transparently handled
correctly. We see many challenges in this approach. First,
predictive anomaly detectors (higher sensitivity) will have
more false positives and will direct more misclassified traffic
to the shadow honeypot, creating unnecessary delays and
overhead. Reactive anomaly detectors (lower sensitivity) will
take more time to create a complete profile and may miss a
lot of malicious traffic before identifying a problem with
the flow. Moreover, identifying zero-day attacks ask for
a higher sensitivity intrusion detection. Additionally, each
suspected traffic flow may need separate copies of shadow
honeypot (else an attacker can verify deception by initiating
two parallel malicious flows). This further increases the
overhead.

6. Discussion and Conclusion
The most important factor to consider while designing

any aspect of this deception framework is to remember
that nothing will remain a secret if it is widely deployed.
Hence, an effective deception must assume that an attacker
knows about its existence with some probability. That’s why
all deceptions should be non-verifiable. In this case, when
an attacker sees several proxy servers with vulnerabilities,
he sends traffic flows to all the servers. The flow that
gets through the fastest is the main server (under the safe
assumption that going through honeypot farm adds to the
delay). That’s why, any feedback loop for the attacker must
also be controlled with deception. Discussing deception in
feedback loop is beyond the scope of this paper.

Another major challenge is the design of the smart-box. A
smart-box performs two major functions: assess the nature
of the traffic flow and, map the AIOS to a honeypot.
Designing an implementation of both these functions is a
major challenge and will benefit excessively from the use of
machine learning algorithms. Deceptions in honeypots can
also be made customizable based on the parameters provided
by the smart-box. Other challenges like designing proxy
servers, re-routing, choosing the IDS, etc. depends on the
system that the framework is used for and the designer.

In this paper, we focus on designing survivable mission
critical systems. We began with analyzing the current cyber
security attacks to derive the next generation threat assess-
ment. Multi-shot, stealthy attacks came out as a major threat
in this assessment. We then defined a set of requirements
around this threat for a survivability framework. Based on
evidence and existing literature, we identified deception
as an important tool of defense and designed a deception
framework for survivable systems. This framework deals
with zero-day attacks while still conserving the timeliness

property of a mission. It uses concepts of deception to
introduce a preventive layer of proxy servers that helps
system to further narrow down the suspicious traffic. This
traffic then gets rerouted to a smart-box that selects the
honeypot this traffic is forwarded to. Honeypots provide an
important functionality of uncovering the stealthy patterns in
these traffic flows with a higher probability in a shorter time.
This way, the framework helps in identifying and rooting out
the stealth attacks at an early stage.

A major advantage of this framework is the strong recov-
ery that it provides. It buys defender more time to analyze
the suspected traffic flow without spooking the adversary.
The analyzer and log modules help in designing a secure
and more effective recovery patch. Hence, this framework
ensures system survivability equipped with a strong recovery
phase.

In future, we plan to address the challenges we discussed
above and work towards implementing a prototype of this
framework.

7. Acknowledgments
This research is supported in part by DoD Grant No.

H98230-11-1-0463. Usual disclaimers apply.

References
[1] K. G. Anagnostakis, S. Sidiroglou, P. Akritidis, K. Xinidis,

E. Markatos, and A. D. Keromytis. Detecting Targeted Attacks Using
Shadow Honeypots. Proceedings of the 14th conference on USENIX
Security Symposium, page 9, 2005.

[2] S. Bake, N. Filipiak, and K. Timli. In the Dark: Crucial Industries
Confront Cyberattacks. McAfee second annual critical infrastructure
protection report, 2011.

[3] R. Baskerville. Information Warfare Action Plans for e-Business. 3rd
European Conference on Information Warfare and Security, pages 15–
20, 2004.

[4] V. Chandola, A. Banerjee, and V. Kumar. Anomaly detection: A
survey. ACM Computing Surveys (CSUR), 41:15:1–15:58, 2009.

[5] F. Cohen. Deception Toolkit, 2001.
[6] F. Cohen, D. Lambert, C. Preston, N. Berry, C. Stewart, and

E. Thomas. A Framework for Deception. IFIP-TC11, Computers
and Security, 2001.

[7] D. C. Daniel and K. L. Herbig. Strategic Military Deception.
Pergamon Press, 1982.

[8] R. J. Ellison, D. A. Fisher, R. C. Linger, H. F. Lipson, T. A. Longstaff,
and N. R. Mead. Survivability: protecting your critical systems. IEEE
Internet Computing, 3:55–63, 1999.

[9] M. J. Gross. A Declaration of Cyber-War, April 2011.
[10] A. Kapoor and R. Mathur. Predicting the future of stealth attacks.

Virus Bulletin Conference, 2011.
[11] E. J. Kartaltepe, J. A. Morales, S. Xu, and R. Sandhu. Social

network-based botnet command-and-control: emerging threats and
countermeasures. Proceedings of the 8th international conference on
Applied cryptography and network security (ACNS), pages 511–528,
2010.

[12] K. J. Knappa and W. R. Boulton. Cyber-Warfare Threatens Corpora-
tions: Expansion into Commercial Environments. Information Systems
Management, 23:76–87, 2006.

[13] A. D. Lakhani. Deception techniques using Honeypots. MSc Thesis,
ISG, Royal Holloway, University of London, 2003.

[14] J. G. Levine, J. B. Grizzard, and H. L. Owen. Using honeynets to
protect large enterprise networks. IEEE Security and Privacy, 2:73–
75, 2004.

[15] P. Liu, W. Zang, and M. Yu. Incentive-based modeling and inference
of attacker intent, objectives, and strategies. ACM Transactions on
Information and System Security (TISSEC), 8, 2005.

[16] McAfee Labs and McAfee Foundstone Professional Services. Pro-
tecting your critical assets, lessons learned from "Operation Aurora".
Technical report, 2010.

[17] W. L. McGill. Defensive dissuasion in security risk management.
In IEEE International Conference on Systems, Man and Cybernetics
(SMC), 2009.

[18] W. L. McGill, B. M. Ayyub, and M. Kaminskiy. Risk Analysis for
Critical Asset Protection. Blackwell Publishing Inc, 27:1265–1281,
2007.

[19] R. Mehresh, J. J. Rao, S. J. Upadhyaya, S. Natarajan, and K. Kwiat.
Tamper-resistant Monitoring for Securing Multi-core Environments.
International Conference on Security and Management (SAM), 2011.

[20] R. Mehresh, S. J. Upadhyaya, and K. Kwiat. Secure Proactive
Recovery - A Hardware Based Mission Assurance Scheme. Journal
of Network Forensics, 3:32–48, 2011.

[21] B. S. Murphy. Deceiving Adversary Network Scanning Efforts
Using Host-Based Deception. Technical report, Air Force Institute
of Technology, Wright-Patterson Air Force Base, 2009.

[22] E. Nakashima and J. Pomfret. China proves to be an aggressive foe
in cyberspace, November 2009.

[23] V. Neagoe and M. Bishop. Inconsistency in deception for defense. In
Proceedings of the 2006 workshop on New security paradigms, 2007.

[24] R. R. Patel and C. S. Thaker. Zero-Day Attack Signatures Detection
Using Honeypot. International Conference on Computer Communi-
cation and Networks (CSI- COMNET), 2011.

[25] G. Portokalidis and H. Bos. SweetBait: Zero-Hour Worm Detection
and Containment Using Low- and High-Interaction Honeypots. Sci-
ence Direct, 51:1256–1274, 2007.

[26] N. Provos and T. Holz. Virtual Honeypots: From Botnet Tracking to
Intrusion Detection. Addison-Wesley, 2008.

[27] M. T. Qassrawi and H. Zhang. Deception Methodology in Virtual
Honeypots. Second International Conference on Networks Security
Wireless Communications and Trusted Computing (NSWCTC), 2:462–
467, 24–25, 2010.

[28] M. Ramilli and M. Bishop. Multi-Stage Delivery of Malware.
5th International Conference on Malicious and Unwanted Software
(MALWARE), 2010.

[29] K. A. Repik. Defeating adversary network intelligence efforts with
active cyber defense techniques. Master’s thesis, Graduate School
of Engineering and Management, Air Force Institute of Technology,
2008.

[30] N. C. Rowe and H. S. Rothstein. Two Taxononmies of Deception
for Attacks on Information Systems. Journal of Information Warfare,
3:27–39, 2004.

[31] M. Smart, G. R. Malan, and F. Jahanian. Defeating TCP/IP stack
fingerprinting. Proceedings of the 9th conference on USENIX Security
Symposium, 9:17–17, 2000.

[32] L. Spitzner. Honeynet Project, Know Your Enemy: Defining Virtual
Honey-nets, 2008.

[33] S. Tzu. The Art of War (Translated by James Clavell). Dell Publishing,
New York, NY, 1983.

[34] D. Watson, M. Smart, G. R. Malan, and F. Jahanian. Protocol
Scrubbing: Network Security Through Transparent Flow Modification.
IEEE/ACM Transactions on Networking, 12:261–273, 2004.

[35] J. Yuill, D. Denning, and F. Feer. Using Deception to Hide Things
from Hackers: Processes, Principles, and Techniques. Journal of
Information Warfare, 5:26–40, 2006.

