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Abstract

This paper develops a methodology for analyzing and predicting the impact category of malicious code, particularly email
worms. The current paper develops two frameworks to classify email worms based on their detrimental impact. The first
framework, the Total Life Impact (TLI) framework is a descriptive model or classifier to categorize worms in terms of their impact,
after the worm has run its course. The second framework, the Short Term Impact (STI) framework, allows for prediction of the
impact of the worm utilizing the data available during the early stages in the life of a worm. Given the classification, this study
identifies the issue of how well the STI framework allows for prediction of the worm into its final impact category based on data
that are available in early stages as well as whether the predicted value from Short Term Impact framework valid statistically and
practically.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Email worms, avatars of malicious code, are self-
replicating programs that have often almost succeeded
in bringing down the whole Internet system.1 Worms
such as SoBig.f and MyDoom, have caused tremendous
loss of productivity, time, and sales resulting in costs
upwards of $1 billion and $250 million, respectively
[22,20]. Beyond the major damages stated above, email
worms also have influences on intangible assets of
companies, such as their prestige and customer loyalty.
⁎ Corresponding author. Management Science and Systems, SUNY
Buffalo, NY 14260, USA.
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The economic damage driven by email worms is a
part of recorded history, once the effective life of the
worm is over and the worm has run its course [21].
However, if the effect of the worm could be predicted
during the early stages of its life, a more effective and
rapid response can be developed. In reality, predicting
the impact of the worm in its early stages is beneficial
for economic reasons. For example, insurance compa-
nies that specialize in cyber policies are interested in
knowing the impact of a worm in order to process claims
and to determine the payout time based on the expected
impact. Payouts on insurance claims for damages are
usually made when the extent of the damage has been
fully assessed. Further being able to predict the impact
of the worm based on early data can become a guiding
yardstick in the planning of and monitoring of the
application of patches.
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Although email has become an indispensable com-
munication medium in our life, worms can be almost
impossible to eliminate until long after the targets are
removed from the internet [18]. For this reason, email
worms are increasingly attacking systems with intensity
and using more advanced social engineering tricks [27].
System managers and security officers can decide
whether immediate disruption of their business is
justifiable based on the potency of a worm in terms of
its risk or detrimental impact, such as loss of productiv-
ity, lost data, denial of systems, systems crashes and so
on. A low impact and low risk worm can perhaps be
handled on a bi-weekly or weekly basis as a part of the
regular maintenance routine. According to ICSA Labs
[7], 92% of all worms enter an enterprise via email so
studying impact of email worms is important. Thus, it is
crucial to categorize email worms based on their impact.
By doing so, companies would be able to take relevant
actions with the predicted information on the potential
damages of worms.

There are two main contributions of this paper. First,
the current paper develops a descriptive model to
categorize email worms based on their impact by using
two frameworks, the Total Life Impact (TLI) and Short
Term Impact (STI). The Total Life Impact (TLI)
framework is a descriptive model or classifier to
categorize worms in terms of their impact, after the
worm has run its course. Therefore in a sense the TLI
provides a standard reflecting ground truth. The second
framework, the Short Term Impact (STI) framework,
allows for prediction of the impact of the worm utilizing
the data available during the early stages in the life of a
worm. These two frameworks help us classify and
compare the life of each worm, as well as allow us to
determine whether early hit number of worms can
represent the total life of their hit and the accuracy of the
representation.

Second, the present study develops factors, such as
total hit number and hit density to characterize the
impact of email worms. The paper also develops an
adaptation of the concept of group similarity index
(GSI) to provide insights into the issue of categorization
of email worms.

We believe that the frameworks established in this
paper can be utilized to enable insurers to make
insurance payoffs as well as IT managers to cope with
worm damage as early as possible. This is clearly an
important need— to provide a way to do early triage of
Malware that will assist organizations in allocating
resources for response.

In exploring these issues, this paper furthers the
understanding of the impact of email worms. This paper
is structured as follows. In Section 2, we provide a
general introduction and background information about
worms. The methods of measuring impacts of worms
are developed in Section 3. Included in the section are
the definitions for factors and descriptions of terms
related to the two frameworks, and a detailed technical
discussion of these frameworks. Section 4 is devoted to
data collection. Independence tests for each factor are
presented in Section 5. Section 6 provides a comparison
with two frameworks first using two dimensions and
then using three dimensions. Validity and reliability tests
with group similarity index (GSI) are presented in
Section 7 along with the results. Finally Section 8 forms
the conclusion where we discuss the implications of this
research on practice as well as limitations of the work.

2. Background

A question often asked is: how vulnerable are the
processes, data and systems? To answer such question
we need to have a yardstick for measuring the vulner-
ability. The presumption here is that “if something can-
not be measured, it cannot be managed” [2]. While some
researchers have started to focus on metrics for vulner-
ability assessment, there are lacunae of research for eval-
uating, classifying, or categorizing damage by worms
[18].

In order to provide a more complete background, we
provide a brief introduction to worms. A worm is char-
acterized by its activity and independence [19,25] as
compared to a virus, which adds itself to other programs,
including operating systems. A worm is defined as a
piece of malicious code that propagates over a network
without human assistance. It can initiate attack inde-
pendently with the need for the execution of specific
programs [9] based on malicious code, network pro-
pagation, human intervention, and standalone or file
infecting. Worms are grouped into three categories
according to their propagation strategies [19]: windows
file-sharing worms, traditional worms and email worms.
Windows file-sharing worms place a copy of themselves
in a shared folder under a harmless name2 and sub-
sequently take on a more malicious role [10]. Such
worms take advantage of operating systems including
Microsoft Windows peer-to-peer service. Traditional
worms “attack across the Internet using direct connec-
tions over TCP/IP-based protocols, exploit vulnerabil-
ities in operating systems and applications, typically do
not require user intervention, and use other propagation
vectors besides email and Windows file sharing” [10].

http://virusall.com/worms.shtml
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In contrast to these two worms, email worms are
malicious codes that propagate through email. Accord-
ing to Zou et al. [27], an email worm can compromise a
user's computer and then find all email addresses stored
on the computer to send out worm email, when an email
user opens a worm program in the attachments of a
worm email. Email worms are currently the most com-
mon Malware type in the world [5].

Weaver and Paxon [24] have attempted to assess the
damage caused by worms to provide a handle on the
spending for defense against worms. They combine
their estimate of the worst-case worm with a linear
damage model, based on lost productivity, repair time,
lost data, and damage to systems.

Typically, antivirus companies use three broad attri-
butes to categorize Malware3: wild (or wildness), damage
(or destructiveness), and distribution (or pervasiveness)
(e.g., CA, Zonelabs, Symantec). According to Symantec.
com4, category “wild” refers to the extent to which a virus
has already spread among computer users. Category
“damage” means the amount of damage that a given
infection could inflict. “Distribution” is concerned with
the matter of how quickly a program spreads itself. Sy-
mantec's method divides Malware into five severity
threat categories from “very low” to “very severe.” This
categorization is based on the current assessment of a
malicious code's severity where severity of Malware
changes as time goes on. Severity can be changed by
filtering, cleaning [26]. However, the different attributes
are considered independently and are not grounded statis-
tically. The next section identifies a new metric for clas-
sifying email worms to determine the impact category of
the worm during the course of its life, based on its
behavior in its early stage. Our results suggest that this
new measurement would serve to classify worms dis-
tinctly into several groups.

3. Technique of measuring impact of worms

Sobig, deemed in 2003 as one of the worst email
worms ever, sent over 300 million infected email
messages around the world5 resulting in unexpected
detrimental impact worldwide. As it began spreading
3 “Malware” is short for malicious software and is typically used as
a catch-all term to refer to any software designed to cause damage to a
single computer, server, or computer network, whether it's a virus,
spyware et al. (http://www.microsoft.com/technet/security/alerts/info/
malware.mspx).
4 http://www.symantec.com/enterprise/security_response/glossary.

jsp.
5 F-Secure Corporation's Data Security Summary for 2003, The

year of the worm, URL: http://www.f-secure.com/2003/.
through internet, email delivery was delayed by several
days, in some cases by weeks. Companies today rely on
email to deliver business critical information and the
financial implications are serious. This episode served
as a warning shot, signaling the importance of email as a
communications channel and the vulnerability of our IT-
dependant infrastructure.

‘SoBig.f’ and ‘MyDoom’ had peak infection dates in
the first month after their release. According to
Messagelabs, the proportion of the first month infection
to total infection for both worms was up to 87.6% and
89.25% respectively. In other words, ‘SoBig.f’ and
‘MyDoom’ worms had an early peak infection date and
most infections occurred at the beginning stage of their
life. W 32/Yaha.P @mm peaked in terms of the number
of hits after about 25 days after release (See Fig. 2).
From these cases, it is clear that it is important to
consider the rapidity of spread for the first month as a
crucial factor for evaluating the impact of worms on
organizations.

Clearly, the rapidity of spread and the amount of
infections increase the probability of an organization
being attacked by worms. A worm's damage potency
may also have a crucial impact on an organization.
Hence detrimental impact should not only include the
damage potency of worms but also rapidity of spread
and the amounts of infections.

We base the framework development on three
fundamental assumptions. The first assumption is that
given two active worms with the same type of payload,
the worm which has more numbers of hits in the same
period has a greater detrimental impact. Second, we
assume that when the time for peak number of hits of a
particular worm is earlier than for other worms, that worm
has more severe detrimental impact. This assumption is
completely consistent with the first assumption. The
reasoning here is that because there is a time lag for
organizations to get defenses into place, the early strikers
are likely to create more harm than late strikers (note this
assumption does not always hold, but this is a general
statement based on anecdotal information with Symantec
executives and has been seen to often hold true). Further,
although some worms contain code to stop propagating
after a certain date, we focus on worms with 1 year of
more life. Finally, our framework also assumes that a
worm can be active for a period greater than a month.
Incidentally, the data on the 93 worms that we have used
in this analysis have activity periods that spanmore than a
month. It is important to point out that the STI framework
(to be introduced in Section 3.1) is able to provide
guidance based on a week's worth of data. It can also be
used with 3 to 4 days of data with a lower accuracy level.

http://Symantec.com
http://Symantec.com
http://www.microsoft.com/technet/security/alerts/info/malware.mspx
http://www.microsoft.com/technet/security/alerts/info/malware.mspx
http://www.symantec.com/enterprise/security_response/glossary.jsp.
http://www.symantec.com/enterprise/security_response/glossary.jsp.
http://www.f-secure.com/2003/
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3.1. The classification process

In this subsection, we outline the classification
process which consists of 4 steps as shown in Fig. 1.
In the first step, we developed two frameworks: one
framework which serves to predict the impact of the
using early data and the second framework (considered
ground truth) which uses all of the data after the worm
has run its course (we consider this to be a year and a
half). Each framework has 3 dimensions.

In the second step, Chi-square and correlation analysis
are conducted to check independence between dimen-
sions of each framework, and relationship between two
frameworks. In third step, we try to find the “goodness” of
match, for exploring how the framework can be used to
predict real severity, by comparing two frameworks. In
step four, we check validity and reliability of the frame-
works using the group similarity index (GSI).

3.2. The frameworks for measuring the impact of
worms

In this subsection, we describe the development of two
new frameworks, namely, the Total Life Impact (TLI) and
Short Term Impact (STI) frameworks as a first step.

The TLI framework provides a comparison standard
as it relates to data after the worm has run its course. The
STI framework provides a classification based on data
available during the early stages in the life of an email
worm.

3.2.1. The dimensions of Total Life Impact (TLI)
framework

Framework TLI uses three dimensions for classifi-
cation: total hit number (LTH) — the logarithm of the
Fig. 1. The classification process.
cumulative number of hits over the entire lifespan, hit
density (HTν), and damage potency (DP). We now
describe each of these dimensions.

3.2.1.1. Total hit number (LTH). In this study, ‘total
hit number’ is defined as the total number of hits, or
total number of machines infected by the worm (as
determined Messagelabs and Symantec) for the life of
an email worm. Hit number is captured by the fre-
quency of emails which contained email worms,
stopped after the outbreak, by Message Labs6 (www.
messagelabs.com). For the purposes of this study, we
utilize the log of total hit number (LTH) as one of the
dimensions.

3.2.1.2. Hit density (HT). To measure hit density for
the first month, we adapt the concept of ‘hit density’
from [11,12] and ‘density index’ [13]. For our purpose
we define, hit density as the ratio of the hit number of an
email worm for the first month to the total hit number
during its lifespan. This indicates the extent to which
first month hits have an impact on the total impact in
terms of the total hit number during email worms'
lifespan. For example, the hit density of ‘JS/Flea.A’
worm, which accumulated 2340 hits in the first month
out of 3213 (total hits), is 0.72. This value suggests
the relative ratio of occurrence of the total hits (refer to
Fig. 2 which shows a plot of hit number versus time in
days for the ‘JS/Flea.A’ and ‘w32/Yaha.P@mm’worms).
Although most email worms show a distinct lifespan that
is different from the first month, they fall into the fol-
lowing characteristics with regard to hit density:

● The typical range is 0bHT≤1

3.2.1.3. Damage potency (DP). Damage potency
(DP) measures the intrinsic attributes of a worm to
cause detrimental impact. Damage potency captures the
impact of payload and the rapidity of spread. It is also
known as “Virulence”which means the degree of spread
rapidity of worms that affect resources such as network
bandwidth, router CPU/memory, or email server
availability [23]. The damage potency reflects the
magnitude of the damage, which can potentially occur,
resulting from an infection. A worm's damage potency
may be rated high, medium, or low based on its inherent
capacity to cause both direct and indirect damage to
systems or networks. Certain worms are designed
specifically to delete or corrupt files, causing direct
6 Message labs had installed servers on the internet to collect the
data we are using.

http://www.messagelabs.com
http://www.messagelabs.com
mailto:JS/Flea.A
mailto:w32/Yaha.P@mm


Fig. 2. The first month hit number of worms. (A) Short Term Impact (STI) framework. (B) Total Life Impact (TLI) framework. Source: http://www.
messagelabs.com/viruseye/threats/.
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damage. Trendmicro.com7, classifies damage potency
into three categories as worm in Table 1.

Damage potency may result from the payload carried
by attack vectors [15], i.e., a path or means that a hacker
can use to gain access to a computer or network server to
deliver payloads or malicious codes8. The damages due
to payloads are classified in to five types9 by McAfee (a
major antivirus vendor). The first type referred to as,
Unforeseeable Damage has the most harmful impact
on the systems. This type includes activities like re-
distributing confidential data to third parties or destroy-
ing an entire network. The second type known as Very
Serious Damage includes activities, such as manipulat-
ing data silently. Serious Damage is the third type. Its
payload includes activities such as deleting files,
formatting hard drives, and deleting Flash BIOS. The
fourth type is Medium Damage. Deleting individual
files and rendering the computer temporarily unavail-
able are the main activities for the type Medium Dam-
age. Finally, the fifth type of payload, Little Damage
includes activities such as generating bogus text or
sounds and is the least virulent.

It is important to note that damage potency reflects
the ability to cause damage and not the actual damages.
This is because the actual damage can differ from firm to
firm based on quality and speed of response in patch and
or antivirus deployment. In order to measure the
magnitude of worms' damage potency, we use the
scale from McAfee and Computer Associates10. For the
purposes of this analysis, the scale was converted to a
scale where “high” ranged from 3 to 5 points and “low”
ranged from 0 to 2 points in the scale.
7 http://www.trendmicro.com/en/security/general/glossary/overview.
htm#Damage potential.
8 http://searchsecurity.techtarget.com/sDefinition/0,290660,

sid14_gci1005812,00.html.
9 Source: http://us.mcafee.com/VirusInfo/VIL/risk_assessment.asp.

10 Source: http://www3.ca.com/securityadvisor/newsinfo/collateral.
aspx?cid=59094.
3.2.2. The dimensions of Short Term Impact (STI)
framework

STI framework is a classification based on the data
available during the early stages in the life of an email
worm. STI framework also has three dimensions: the
first dimension captures how early the worm has peaked
and is a variant of the concept of skewness; the second
dimension is the logarithmic measure of the number of
hits in the time period from the release date up to the
measurement day (3 days, 1st week, 2nd week, 3rd
week, and 1st month); and the third dimension is
Damage Potency (DP). Both the TLI and STI frame-
works use this dimension.

The STI framework can be used at any time for
example a few days after the release of the worm, a week
later, etc. However, for illustrative purposes in this
section we describe the STI framework using the first
month of data, with no loss of generality. The remainder
of this section is devoted to describing the dimensions of
this third framework.

ICSA Labs11 reported that the rapidity of spread is
the primary cause for managerial costs driven by worms
[6]. To minimize damage arising from rapid spread,
organizations often deploy defensive measures within a
few hours of the release of worms. Worms vary
considerably in terms of their diffusion rate. For
example, macro worms, such as Melissa, take at least
a few days to diffuse, whereas Code Red took about 12 h
to diffuse. These examples indicate that it is crucial to
focus on analyzing information about worms within the
early days after worm outbreaks.

3.2.2.1. Tskewness (TSKI). We adapt the term, ‘Tskew-
ness’, from statistics as a way to identify the impact of a
worm regarding time. Statistically, skewness refers to the
degree of asymmetry of a distribution, or more precisely,
the lack of symmetry. A distribution is symmetric when it
is placed the same to the left or right of the center point
11 http://www.icsalabs.com/icsa/icsahome.php.

http://Trendmicro.com
http://www.messagelabs.com/viruseye/threats/
http://www.messagelabs.com/viruseye/threats/
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http://searchsecurity.techtarget.com/sDefinition/0,290660,sid14_gci1005812,00.html
http://searchsecurity.techtarget.com/sDefinition/0,290660,sid14_gci1005812,00.html
http://us.mcafee.com/VirusInfo/VIL/risk_assessment.asp
http://www3.ca.com/securityadvisor/newsinfo/collateral.aspx?cid=59094
http://www3.ca.com/securityadvisor/newsinfo/collateral.aspx?cid=59094


Table 1
Damage potency rating

Level Contents Examples

High (unforeseeable and
very serious damage)⁎

▪ System becomes unusable Flash bios, format HDD
▪ System data or files are unrecoverable Encryption of data
▪ System cannot be automatically
recovered using tools

Packet flooders, mass-mailers

▪ Recovery requires restoring from backup Backdoor capabilities
▪ Causes large amounts of network traffic (Silent manipulation of data, redistribution of

confidential data to third parties)⁎⁎▪ Data/files are compromised and sent
to a third party

Medium (serious and
medium damage)

▪ System/Files can be recovered using
Trend Micro products or cleaning tools

File infectors

▪ Minor data/file modification Slow mailers
▪ Malware that write minimal amount
of data to the disk

Antivirus, firewall

▪ Malware that kill applications in memory (Deletion of single files, machine temporarily
not available and deletion of many files, formatting
of hard drives, deletion of Flash BIOS, …)

▪ Causes medium amount of network traffic
▪ Automatically executes unknown programs
▪ Deletes security-related applications

Low (little damage) ▪ No system changes File deletion (output of text or sound)
▪ Deletion of less significant files in the system
▪ Changes can be recovered by users
without using any tools
▪ Damage can be reversed just by restarting the system

⁎Parenthesis represents damage from McAfee.com; ⁎⁎ Parenthesis represents examples from McAfee.com.
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[17]. The skewness for a normal distribution is zero and
all symmetric data should have near zero values for their
skewness. Negative values for the skewness imply that
data are skewed left, whereas positive values for the
skewness indicate that data are skewed to the right. In this
paper, we define skewness with a slightly different mean-
ing. Tskewness (TSKI) refers to the degree of inclination
toward earlier time periods.

Fig. 2 shows the number of hits during the first 28 days
after the release of the two worms. The data show that
some email worms peak earlier while others peak a later.
This affects the Tskewness based on when it is measured.

We now illustrate how Tskewness is computed. At
the outset, we develop an index by using the frequency
over a specific number of days. In the example shown
below, we demonstrate the computation using 28 days (a
month). As a result, we use the equation for the skew-
ness index as,

TskewPindex Vmð Þ ¼ 3ðȲ m � PeakmÞ
Sym

ð1Þ
In Eq. (1),

Vm Index value of date from 1st to 28th for each m
Ȳm Mean from 1st to 28th, the mean value is fixed

with 14.5 point
Peakm Specific date of Peak hit from 1st to 28th date
Sym Standard deviation from 1st to 28th
To make TSKI's minimum value zero, we added the
absolute minimum value of skewness index.

TSKI Vmð Þ ¼ 3ð14:5� PeakmÞ
Sym

þ jTskewPindexminimumj ð2Þ

| Tskew_indexminimum | = absolute minimum value
which was computed from Eq. (1). This absolute
minimum value means that the peak hit occurs at the last
day (28th day) so that TSKI is greater than or equal to 0.

The mean and median for 28 days are 14.5, and
standard deviation (S) is 8.23. Therefore, the range of
TSKI is calculated as follow:

TskewPindexminimum ¼ 3ð14:5� 28Þ
8:23

¼ �4:92; then

the range of Tskewness index is

3ð14:5� 28Þ
8:23

þ j � 4:92j
� �

VTSKIV
3ð14:5� 1Þ

8:23
þ j � 4:92j

� �

¼ 0VTSKIV 9:8468

The closer TSKI is to 9.8468, the larger impact of
spread speed the worm has. This is important in that
TSKI makes it possible to compare speed of spread,

http://McAfee.com
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significant to measure the impact among worms. For
instance, each TSKI for two worms in Fig. 2 is

TSKI JS = fleaAð Þ ¼ 3ð14:5� 4Þ
8:23

þ j4:9234j ¼ 8:7527
TSKI W32 = Yaha:P @ mmð Þ ¼ 3ð14:5� 25Þ
8:23

þj4:9234j ¼ 1:0941

‘7.66’ (8.7527–1.0941), the value difference between
‘JS/FleaA’ and ‘w32/yaha.P@mm’, implies that JS/Flea
A has a greater detrimental impact than w32/Yaha.
P@mm.

3.2.2.2. Early time period hit number (LMH). Early
time period number of hits is defined as the number of
hits of an email worm from the release date up to the
date of measurement which in this illustration is the first
month after the worm was released. Since the number of
hits varies considerably across the various worms, we
use the log value for our computations and for graphing
purposes. For the number of hits in first month, we use
the acronym Log of Month Hit (LMH).

3.2.2.3. Damage potency (DP). The common dimen-
sion, “damage potency” also acts as a dimension for STI
framework. It is used as common criteria across both
frameworks and in Section 7 we demonstrate how it is
used in computing the GSI (explained later). The
dimensions for two frameworks are summarized in
Table 2.

4. Data collection

The data used in this paper are based on the records
of email worms from January 2003 to May 2004
captured by Symantec and Messagelabs on their
website12. The email worms for which data were avail-
able had an active life of at least 1 month to a year and a
half. This includes all of the significant worms during
that period. All worms that Messagelabs and Symantec
deal with were related to email. These data are a relevant
sample for this study as the focus of this study is to be
able to categorize email worms.

These data include a variety of variants that refer to
the modified version of an email worm. These variants
are usually developed purposely by a worm author or by
12 Source: http://www.Messagelabs.com.
someone who modifies the original worm13. In case of
variants of a worm, it can be argued that organizations
may be able to benefit from the experience of having
dealt with the original worm through learning effects.
However, it is important to note that the evidence of
learning effect per se cannot be easily identified for a
variety of reasons. First, variants usually spread roughly
at the same speed as their parent worms [14] or may
even have more critical effects than parent worms. For
example, the Sober.Y variant of the Sober worm has
resulted in the worst and largest email worm outbreak in
2005 [8]. Second, variants have become a major stream
of creating malicious code. A major trend in the past
years has been the seemingly endless number of variants
of particular viruses [16]. Also, variants show different
payloads that result in different damage potency from
the original worm. According to antivirus experts [4],
initial infections from original worm may be only the tip
of the iceberg. A payload could for example, include a
function to download a modified threat that cannot be
detected by current patches. For illustrative purposes, in
Table 3, we show the difference with regard to payload
[1], between Mydoom.A worm and Mydoom.B.

Table 3 also shows worm variants may have different
mechanisms to facilitate propagation from system to
system.

5. Independence test of the STI and TLI frameworks

In this section, we perform a Chi-square test to
identify statistically whether the three dimensions are
independent each other in two frameworks.

5.1. • Independence test among dimensions of STI and
TLI framework

To establish that the dimensions of the STI
framework are independent, a Chi-square test was
performed. A similar process is followed to establish
that the dimensions of the TLI framework are
independent. Tables 4–6 show the results of the Chi-
square test based on the fact that each dimension is
divide into two (or three) attributes namely high and low
which is determined based on whether the values are
lower or higher than the average values. There was no
evidence to reject (H0) the hypothesis that Tskewness
has no relationship with log value of monthly hit
number (LMH) in STI framework and hit density has no
relationship with total hit number (LTH) in TLI
13 Inforsec glossary, http://www.infosec.gov.hk/english/general/
glossary_uw.htm#Variant.

mailto:JS/FleaA
mailto:w32/yaha.P@mm
mailto:w32/Yaha.P@mm
mailto:w32/Yaha.P@mm
http://www.Messagelabs.com
http://www.infosec.gov.hk/english/general/glossary_uw.htm#Variant
http://www.infosec.gov.hk/english/general/glossary_uw.htm#Variant


Table 2
The factors for the frameworks

Factors Initial Explanation

Total number of hits LTH The total number of machines infected by email worms for the life of the worms
Hit density HT The ratio of the number of hits of an email worm for the first month to the total number of hits during its lifespan
Early time period number of
hits

LMH The number of hits of an email worm for the first month after the worm was released

Tskewness TSKI The degree of inclination toward early time periods for the first time period
Damage potency of worms DP A rating used to calculate vulnerability, based on the relative damage incurred if a threat should exploit

vulnerability a

a Source : Symantec.com.

Table 3
The different payloads between parent worm and a variant

Worm Payloads

Mydoom.
Aworm

• Sends emails to users in the infected computer's address
book
• Leaves a backdoor that can allow the computer to be
accessed by a remote attacker
• The backdoor runs on TCP port 3127
• Sends continuous page requests to SCO.com as part of a
distributed denial of service
• Attack (DDoS)

Mydoom.
B Variant

• Overwrites the local host file to prevent the infected
computer from accessing. Microsoft and anti-virus vendor
update sites
• Opens TCP ports 1080, 3128, 80, 8080, and 10080 for
future backdoor access. The backdoor program has the
ability to relay TCP packets, which provides IP spoofing
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framework, respectively. In other words, Tskewness and
LMH, hit density and LTH have no relationship with
one another. Table 4 shows that LMH is not related with
TSKI (χ2 =1.879, pN0.1) and that LTH is also not
related with hit density (χ2 =2.423, pN0.1) as shown in
Table 5. Finally, Table 6 shows that damage potency
does not have a relationship with the other dimensions.

5.2. Relationship between the two frameworks

If the STI framework is to be utilized as a
categorization mechanism, the dimensions of the
framework (Tskewness and LMH) should show a
relationship with the corresponding dimensions of the
TLI Framework (hit density and LTH respectively).
Table 7 describes that correlation between each
dimension. The table shows that Tskewness is positively
related to hit density (β=0.412, pb0.001), and LMH is
positively related to LTH (β= 0.952, pb0.001)
(Table 7).

6. Results of comparing frameworks

We test correctness and explanatory possibility of the
STI framework by comparing it to the TLI Framework
by using a matching ratio14. It stands to reason that if
they are well matched, STI can be assumed to be a
proper method for the classification of email worms. It is
important to note that the classification using the TLI
framework is considered ground truth because the anal-
ysis is done after the worm has run its course.

6.1. Two-dimensional categorization

In this subsection we first present the results of the
classification based on two dimensions since the third
14 Matching ratio: the ratio between the number of viruses in a cell of
STI framework and the number of viruses in corresponding cell of the
TLI framework.
dimension is the same or forms the common criteria.
The STI framework analysis was done using the first
month of data. The STI framework can be used with
early data in the sense that the analysis could have been
done using 3 days of data, a week of data, etc. The
process remains the same. Fig. 3(A) shows the STI
framework using Tskewness and the LMH dimensions.
The data for 93 email worms were used in this analysis.
Cell 4 (STI4), to the top right corner is a cell
characterized by high number of hits in the first month
as well has a high extent of Tskewness. The opposite is
true for cell 1 (STI1). Clearly, email worms in cell 4
(STI4) would be considered to have the highest
detrimental impact based on high TSKI and high
LMH. In contrast, email worms in cell 1 (STI1) would
have the lowest impact.

The second picture on the right in Fig. 3(B) describes
the result using hit density and LTH. Cell 4 (TLI4), to the
top right corner is a cell with properties of having high
capabilities and can facilitate future distribution of Spam
emails
• Sends continuous page requests to microsoft.com as part
of a distributed denial of service attack (DDoS)

http://Symantec.com


Table 4
Result of Chi-squared test for STI framework

LMH (log value of
monthly hit number)

Total

High Low

Tskewness High Count (Exp.) 20 (16.8) 14 (17.2) 34
Low Count (Exp.) 26 (29.2) 33 (29.8) 59

Total Count 46 47 93

Pearson χ2=1.879(b), df=1, Significance (2-sided)=0.170.

Table 6
Result of Chi-squared test for DP and other dimensions

Results of DP and ∼ χ2 df Significance (2-sided)

TSKI 0.414 1 0.642
LMH 0.171 1 0.824
HD 1.310 1 0.179
LTH 0.025 1 0.874

835I. Park et al. / Decision Support Systems 43 (2007) 827–841
number of total hits as well has a high hit density. The
contrary is true for cell 1 (TLI1). The matching email
worms in each cell of the respective cells in Fig. 3(A)
and 3(b) are 13, 7, 9, and 23. The total matched worms
for all cells are 52 out of a possible 93. The overall
accuracy (matching ratio) is 56% (52/93). The accuracy
of each cell is 48.2% (13/27), 36.8% (7/19), 45% (9/20),
and 85.2% (23/27), respectively. These values are
substantially above similar ratios found in literature
[3]. However, these results are far from desirable so that
in the next section we discuss the results using three
dimensions instead of two.

6.2. Three-dimensional categorization with damage
potency

In order to compare two frameworks with three
dimensions, we categorized the data in the 8 cells into
four clusters or levels according to the number of high
levels that each group includes. We followed the
categorization scale of McAfee and Computer Associ-
ates to measure damage potency consistently. For
example, if an area has high values in all three
dimensions, the area will correspond to level or category
4 as the highest level. On the other hand, if the area has
high values in only two or one of the three dimensions, it
will correspond to levels 3 and 2 respectively. Accord-
ing to this categorization, the highest level (level 4) and
lowest level (level 1) include one cell among the 8 cells
in the Fig. 4, whereas levels 2 and 3 include 3 cells. It is
clearly an easy way to classify email worms in the three-
dimensional frameworks because the ranking among
Table 5
Result of Chi-squared test for TLI framework

LTH (total hit number) Total

High Low

HT High Count (Exp.) 27 (23.2) 19 (22.8) 47
Low Count (Exp.) 20 (23.8) 27 (23.2) 46

Total Count 46 47 93

Pearson χ2=2.423(b), df=1, Significance (2-sided)=0.148.
combinations with three dimensions is determined
explicitly. Therefore, a comparison among those cells
can make clear the strength of each level, in contrast to
two-dimensional comparisons. Fig. 4(A) and (B) shows
that result of categorization. The result shows that the
number of worms in each level in STI framework is 23
(15), 33 (36), 27 (35), and 5 (7) categorized by
dimensions in levels 4, 3, 2, and 1 respectively. The
numbers in parenthesis indicate the number of each level
4, 3, 2, and 1 in TLI framework. The matching ratio of
each level indicates the number of worms that the STI
framework predicts, divided by the number of true
worms that are included in each level. According to the
results, the matching number in the TLI framework is
13, 19, 20, and 3. The number of true worms for each
level in the TLI framework from Fig. 4(B) is 15, 36, 35,
and 7. Therefore, the matching ratio is 86.7% (13/15) for
level 4, 52.8% (19/36) for level 3, 57.1% (20/35) for
level 2, and 42.9% (3/7) for level 1 respectively. Finally,
total matching ratio was (55/93) 59.2% and higher value
than the result from two-dimensional categorization.
The results show a dramatic improvement when all the
three dimensions are considered.

7. Validity and reliability test

To identify the explanatory power for our frame-
works, we first used the STI framework and the classi-
fication scheme to classify the email worms based on
weekly data using 93 email worms. We then compared
this with the classification based on complete impact
information (TLI framework). We assumed that the TLI
Table 7
Correlation matrix among the 4 dimensions

Dimensions Tskewness Hit density LMH LTH

Tskewness 1
Hit density 0.412 a 1
LMHb −0.074 0.198 1
LTHc −0.207 0.136 0.952a 1
DP −0.030 −0.019 0.140 0.142
a Correlation is significant at the 0.01 level (2-tailed).
b LMH: log value of 1st month hit number.
c LTH: log value of total hit number.



Fig. 3. Two-dimensional frameworks for categorization. (A) Short
Term Impact (STI) framework. (B) Total Life Impact (TLI) framework.

15 In equation, sa Gð Þ ¼
Pm

j¼1

PPj

K¼1

P
ieG ;

P
xijkzrjjGjsijk

jGj ;where, j=attribute
domain, k=number of entity, Pj=mutual exclusive possible value, so
for each attribute aj, an entity can attain exactly one of Pj domain
values.
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framework is the comparison standard reflecting ground
truth as it considers data after the worm has run its
course (we have assumed this is 1 and 1/2 years). The
results of the comparisons are presented using an
adaptation of the Group Similarity Index (GSI) as
remain of the section.

7.1. Similarity index

In order to validate our framework for cluster
analysis, we adapt a Group Similarity Index (GSI)
from Erlich et al. in 2002 [3]. This index provides a
simple and easy way of calculating how well the clusters
are categorized. According to Erlich et al. [3], the GSI is
defined as “the ratio between the number of similar
attribute values, i.e., the number of attributes that
entities in a group commonly have and the total number
of attribute values for all the entities in the group.” The
expression for computing the group similarity index is
shown as follows:

GSI ¼ saðGÞ
m

ð3Þ

where,

sa The number of similar attribute values of a
group

G A group of k entities which is [i1, i2,…, ik]
sa(G) The number of commonly shared attribute

values in group G15

m The number of attributes, which indicates the
product of number of attributes and number of
entities

GSI has an assumption that all attributes included in
the analysis should have a property of mutual exclusiv-
ity, i.e., an entity must obtain exactly one of the possible
values for each attribute [3], since this study has the
same property as previous work, we adapt and the sim-
plified form for the group similarity index is given by
the expression:

GSIct ¼ sa
A� G

; and sa ¼
X6
i¼1

Di; ð4Þ

where,

c Cell level and t=time
sa The number of commonly shared attribute in a

level
D The number of commonly shared attribute in

ith dimensions
A The number of attributes, and
G The number of email worms in each level on

TLI framework

The number of commonly shared attribute Di, which
was coded by binary number, is based on the number that
email worms in each level are coded identically, an email
worm in each cell is checked against 6 factors (see
Table 1) in two frameworks. For example, Table 8 shows
that the number of email wormsmatchedwith 6 factors for
cell 4 in a month. The number 1 in the table indicates a
binary representation matrix value, which means that an



Fig. 4. Three-dimensional frameworks for categorization.
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email worm has a factor value, and the number 0 indicates
the email worm does not have that factor value. For
example, if an email worm has high TSKI, the worm has
the attribute “TSKI” and then is coded 1 and zero
otherwise. Thus, commonly shared attribute means that
email worms in a group have same number (1 or 0) on an
attribute. Accordingly, Eq. (4) has basically the same
structure as Eq. (3) in estimating GSI for worms in that
two equations have same logic and property except that
Eq. (4) has fixed six attributes. In the summary in Table 8,
16 email worms have matched values of 13, 16, 16, 16,
16, and 16 on each factor respectively. Therefore, the
number of commonly shared attribute in a cell ‘sa' is 93
(13+16+16+16+16+16).

Table 9 shows the number of commonly shared
attribute of each dimension of classification for each
week on a cumulative basis from the first to the fourth
week. In Table 5, we show the GSI values that have been
computed using Eq. (4). The table shows that the
accuracy of the classification improves with time.

The range for group similarity index is between 0 and1.
A GSI value of 1 implies maximum similarity and a
value of 0 indicates minimum similarity between email
worms.

Based on the adjusted equation, we compute
the GSI for all the clusters 4 weeks after the release
of the worm using Eq. (4) as shown in expression
Eq. (5).

GSIlevel;time

¼ TSKIþ LMHþ PDinitial þ HTþ LTHþ DPfinal
Number of Attribute� Ground Truth

ð5Þ

GSI1;4 ¼ ð2þ 6þ 6þ 6þ 6þ 6Þ ¼ 88:9%;

6� 6

GSI2;4 ¼ ð17þ 16þ 25þ 28þ 41þ 41Þ
6� 42

¼ 66:7%;

GSI3;4 ¼ ð19þ 16þ 15þ 23þ 29þ 29Þ
6� 29

¼ 75:3%;

and

GSI4;4 ¼ ð13þ 16þ 16þ 16þ 16þ 16Þ
6� 16

¼ 96:9%

These results suggest that the classification method
applying two frameworks which was developed in this
study is valid and reliable method to cluster email
worms.

Fig. 5 indicates the GSI trends of the STI frame-
work during the period from 1 to 4 weeks. The figure
shows that the prediction rate increases for all of the
categories (cells) except for cell 2 for which we see
slightly reduced values. For example, for 6 worms in
cell 1, GSI of week 1 reveals that STI framework with
1 week data can predict 88.9% of true worms which
are based on TLI framework. The decrease of GSI in
cell 2 is caused by the migration of the placement of
worms into other cells in some particular dimensions.
As seen in Table 9, the GSI changes as the number of
one of six dimensions is changed. In the case of cell
2, the GSI decreased, as the number of LMH and
DPinitial are reduced over time. That is, several worms
which were placed in cell 2 moved into a higher level
such as cell 3 or cell 4 due to increase of hit number
over a certain period of time (i.e., weekly base in this
case). As a result, the GSI of cell 2 was decreased,
while the GSI of other cell to which the cell moved
increased correspondingly.



Table 8
The number of email worms which have same factor in Cell 4 in Third week

Attribute

Email worms STI framework TLI framework

TSKI LMH DPinitial HT TLI DPfinal

w32/beagle.a@mm 1 1 1 1 1 1
w32/beagle.b@mm 1 1 1 1 1 1
w32/beagle.j@mm 1 1 1 1 1 1
w32/beagle.n@mm 0 1 1 1 1 1
w32/lirva.a@mm 1 1 1 1 1 1
w32/mimail.c@mm 1 1 1 1 1 1
w32/mimail.e@mm 1 1 1 1 1 1
w32/mimail.f@mm 0 1 1 1 1 1
w32/mimail.g@mm 1 1 1 1 1 1
w32/mimail.h-mm 1 1 1 1 1 1
w32/mimail.j@mm 1 1 1 1 1 1
w32/mimail.q@ 1 1 1 1 1 1
w32/mimail.s@mm 0 1 1 1 1 1
w32/mydoom.a@mm 1 1 1 1 1 1
w32/mydoom.f@mm 1 1 1 1 1 1
w32/yaha.l-mm 1 1 1 1 1 1
Matched # 13 16 16 16 16 16
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The GSI method further gives support to the
categorization that we have employed. Table 10 shows
the overall GSI results for a month unit.

8. Discussion and conclusion

The purpose of this paper was to develop a new
method to classify email worms and to provide a me-
Table 9
Weekly GSI

Week Cell # Ground truth (from TLI) STI dimen

TSKI

First Cell1 6 2
Cell2 42 17
Cell3 29 15
Cell4 16 11

Second Cell1 6 2
Cell2 42 17
Cell3 29 16
Cell4 16 14

Third Cell1 6 2
Cell2 42 17
Cell3 29 18
Cell4 16 14

A month Cell1 6 2
Cell2 42 17
Cell3 29 19
Cell4 16 13
chanism to compare email worms by employing a visual
framework. To this end, we have developed a statis-
tically refined clustering measurement scheme. Our
analysis is a first step in clustering email worms accor-
ding to their detrimental impact. More elaborate efforts
are needed to refine the framework in the future. This
study contributes to enhancing managerial practice.
First, this study identifies factors, which are necessary to
sions TLI dimensions GSI
(%)

LMH DPinitial HT LTH DPfinal

6 6 6 6 6 88.9
20 28 25 41 41 68.3
16 10 15 29 29 65.5
10 7 7 16 16 69.8
6 6 6 6 6 88.9
17 26 28 41 41 67.5
16 12 21 29 29 70.7
15 10 15 16 16 89.6
6 6 6 6 6 88.9
17 26 26 41 41 66.7
16 16 22 29 29 75.3
15 13 15 16 16 96.9
6 6 6 6 6 88.9
16 25 28 41 41 66.7
16 15 23 29 29 75.3
16 16 16 16 16 96.9
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Fig. 5. Weekly trend of GSI.
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categorize email worms into three dimensions of STI
framework: Tskewness (TSKI), Monthly Hit number
(LMH), and Damage Potency (DP). The STI framework
uses early data (3 days, week, 2 weeks, month, etc.) to
classify email worms. We have shown that as we get
more data the results become much stronger. The accu-
racy is quite significant validating the methodology. The
methodology uses statistical techniques to establish that
independence of the dimensions and also the positive
correlation between the two frameworks.

Second, this study applies GSI to our framework for
clustering of email worms to enhance validation and
Table 10
Clustering using a month of GSI

Level N GSI
(%)

Members

1 6 88.9 S/Flea.B; JS/Forten.B-m; W32/Dumaru.F-mm; W3
2 42 66.7 2JS/Flea_A; JS/Forten.E-m; VBS/Redlof.E-m; VB

W32/Mapson.A-mm; w32/Mimail.M@mm; w32/
Ethan.B; VBS/Lovelorn.dr; w32/Ganda.A@mm;
Mimail.A@mm; w32/Sober.C@mm; w32/Yaha.P
Dumaru.E-mm; W32/Dumaru.G-mm; w32/Duma
Worm; W32/Mimail.C; W32/Mimail.K-mm; w3
Tenrobot.B; w32/Yaha.AA@mm; W32/Yaha.P!1
W32/Yaha.Y-mm

3 29 75.3 W32/Beagle.K@mm; w32/Bugbear.B@mm; W32
I@mm; w32/Sobig.A@mm; w32/Swen.A@mm;W
mm; w32/Beagle.F@mm; W32/Lovgate.L-m; w32/
D@mm; w32/Beagle.C@mm; w32/Beagle.E@mm
w32/Netsky.C@mm; w32/Scold@mm; w32/Sobig.

4 16 96.9 Jw32/Beagle.A@mm; w32/Beagle.B@mm; w32/B
C@mm; w32/Mimail.E@mm; w32/Mimail.F@m
w32/Mimail.Q@mm; w32/Mimail.S@mm; w32/M

GSI
average

93 81.9
reliability. The study has identified an important need that
is related to provide a way to do early triage of Malware
that will assist organizations to allocate resources for
response.

This study also has several limitations. First, we did
not consider the prevalence patterns of distribution,
frequency, and seasonality, because this study was
performed under the assumption that worms included in
this study are in the equal conditions. As aforemen-
tioned, these constraints make it difficult for the frame-
works to adapt in exploring changes of worms as time
goes on. This could perhaps be overcome in future
2/Dumaru.I-mm; W32/Kindal-mm; W97M/Ethan.d095
S/Soraci; w32/Gibe.C@mm; w32/Israz@mm; W32/Lovelorn.B-mm;
Mimail.P@mm; w32/Netsky.F@mm; w32/Nicehello@mm; W97M/
w32/Gibe.B@mm; W32/Lirva.B-mm; W32/Lovelorn.A-mm; w32/
@mm; JS/Netdex-m; VBS/Lubus.A; w32/Dumaru.B@mm; W32/
ru.M@mm; W32/Kriz.3863; w32/Kwbot.E.Worm; w32/Mapson.D.
2/Mydoom.B@mm; W32/Nofear.A-mm; W32/Nofear.B-mm; W32/
5bb-mm; w32/Yaha.S@mm; w32/Yaha.T@mm; W32/Yaha.X-mm;

/Holar.L-mm; W32/Lovgate.F-m; W32/Lovgate.G-m; w32/Mimail.
32/Swen.B-mm;W32/Torvil.D-mm; w32/Yaha.Q@mm;W32/Yaha.R-
Mimail.L@mm; w32/Mimail.T@mm; w32/Sober.B@mm; w32/Sobig.
; w32/Dumaru.Y@mm; w32/Dumaru.Z@mm; w32/Netsky.B@mm;
B@mm; w32/Sobig.C@mm; w32/Sobig.E@mm; w32/Sobig.F@mm
eagle.J@mm; w32/Beagle.N@mm; w32/Lirva.A@mm; w32/Mimail.
m; w32/Mimail.G@mm; W32/Mimail.H-mm; w32/Mimail.J@mm;
ydoom.A@mm; w32/Mydoom.F@mm; W32/Yaha.L-mm
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research with more specific experimental conditions.
Second, we used the log value of hit numbers because of
the difference (variance) of hit number unit between the
email worms. It is possible that ‘log value’ shrinks the
difference between two email worms which have a huge
disparity in the size. We also assumed that the data at the
end of 1 and 1/2 years represent the entire life of an
email worm in terms of hits.

The study could be expanded by considering a
larger data set. However, an achievable observation is
that if we collect more information on email worms as a
community; a more accurate prediction may be
possible. In this study, we divided the factors into
four categories based on high and low values. On the
one extreme, we have the option of creating one or two
categories. This would not have provided sufficient
discrimination for action. The other extreme is the
creation of 93 classes, one for each email worm which
is clearly unreasonable. We chose to create four
categories as these are most actionable from the point
of view of the insurance companies and system
managers. However, it is possible to draw other
tradeoffs in terms of the number of clusters that could
conceivably be created. Research in terms of develop-
ing an economics analysis taking into account the
detrimental impact of an email worm and the cost
relating office disruption, etc. is a potential area for
future exploration. A major limitation in the area of
viruses and worms is the availability of data.
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