
Knowledge Representation and

Reasoning

Logics for Artificial Intelligence

Stuart C. Shapiro

Department of Computer Science and Engineering

and Center for Cognitive Science

University at Buffalo, The State University of New York

Buffalo, NY 14260-2000

shapiro@cse.buffalo.edu

copyright c©1995, 2004–2010 by Stuart C. Shapiro

Page 1

Contents

Part I

1. Introduction . 4

2. Propositional Logic . 19

3. Predicate Logic Over Finite Models . 173

4. Full First-Order Predicate Logic . 224

5. Summary of Part I .363

Part II

6. Prolog . 376

7. A Potpourri of Subdomains . 412

8. SNePS. 430

9. Belief Revision/Truth Maintenance . 512

10. The Situation Calculus . 570

11. Summary . 589

Part III

12. Production Systems. .602

13. Description Logic . 611

14. Abduction . 628

Page 3

3 Predicate Logic Over Finite Models

3.1 CarPool World . 174

3.2 The “Standard” Finite-Model Predicate Logic 175

3.3 Clause Form Finite-Model Predicate Logic 211

Page 173

3.1 CarPool World
Propositional Logic

Tom drives Betty Betty drives Tom

Tom is the driver Betty is the driver

Tom is the passenger Betty is the passenger

related only by the domain rules.

Predicate Logic

Drives(Tom,Betty) Drives(Betty ,Tom)

Driver(Tom) Driver(Betty)

Passenger(Tom) Passenger(Betty)

shows two properties, one relation, and two individuals.

Page 174

3.2 The “Standard”

Finite-Model Predicate Logic

1. Syntax . 176

2. Substitutions . 187

3. Semantics . 190

4. Model Checking in Finite-Model Predicate Logic 202

Page 175

3.2.1 Syntax of the “Standard”

Finite-Model Predicate Logic

Atomic Symbols

Individual Constants:

• Any letter of the alphabet (preferably early),

• any (such) letter with a numeric subscript,

• any character string not containing blanks nor other

punctuation marks.

For example: a, B12, T om, Tom’s mother-in-law.

Page 176

Atomic Symbols, Part 2

Variables:

• Any letter of the alphabet (preferably late),

• any (such) letter with a numeric subscript.

For example: u, v6.

Page 177

Atomic Symbols, Part 3

Predicate Symbols:

• Any letter of the alphabet (preferably late middle),

• any (such) letter with a numeric subscript,

• any character string not containing blanks.

For example: P,Q4,Drives.

Each Predicate Symbol must have a particular arity.

Use superscript for explicit arity.

For example: P1 ,Drives2 ,Q3
2

Page 178

Atomic Symbols, Part 4

In any specific predicate logic language

Individual Constants,

Variables,

Predicate Symbols

must be disjoint.

Set of individual constants and of predicate symbols must be finite.

Page 179

Terms

• Every individual constant and variable is a term.

• Nothing else is a term.

Page 180

Atomic Formulas

If Pn is a predicate symbol of arity n,

and t1, . . . , tn are terms,

then Pn(t1, . . . , tn) is an atomic formula.

E.g.: Passenger1 (Tom),Drives2 (Betty , y)

(The superscript may be omitted if no confusion results.)

Page 181

Well-Formed Formulas (wffs):

Every atomic formula is a wff.

If P is a wff, then so is (¬P).

If P and Q are wffs, then so are

(P ∧Q) (P ∨Q)

(P ⇒ Q) (P ⇔ Q)

If P is a wff and x is a variable,

then ∀x(P) and ∃x(P) are wffs.

Parentheses may be omitted or replaced by square brackets if no

confusion results.

We will allow (P1 ∧ · · · ∧ Pn) and (P1 ∨ · · · ∨ Pn).

∀x(∀y(P)) may be abbreviated as ∀x, y(P).

∃x(∃y(P)) may be abbreviated as ∃x, y(P).

Page 182

Quantifiers:

In ∀xP and ∃xP

∀ called the universal quantifier.

∃ called the existential quantifier.

P is called the scope of quantification.

Page 183

Free and Bound Variables

Every occurrence of x in P, not in the scope of some other

occurrence of ∀x or ∃x, is said to be free in P and bound in ∀xP
and ∃xP.

Every occurrence of every variable other than x that is free in P is

also free in ∀xP and ∃xP.

∀x[P (x, y)⇔ [(∃x∃zQ(x, y, z))⇒ R(x, y)]]

Page 184

Open, Closed, and Ground

A wff with a free variable is called open.

A wff with no free variables is called closed,

An expression with no variables is called ground.

Page 185

CarPool World Domain Rules
PropositionalLogic

Betty is the driver ⇔ ¬Betty is the passenger

Tom is the driver ⇔ ¬Tom is the passenger

Betty drives Tom ⇒ Betty is the driver ∧ Tom is the passenger

Tom drives Betty ⇒ Tom is the driver ∧ Betty is the passenger

Tom drives Betty ∨ Betty drives Tom

PredicateLogic

∀x (Driver(x)⇔ ¬Passenger(x))

∀x , y(Drives(x , y)⇒ (Driver(x) ∧ Passenger(y)))

Drives(Tom,Betty) ∨Drives(Betty ,Tom)

Page 186

3.2.2 Substitutions

Syntax

Pairs: t/v (Read : “t for v”)

• t is any term

• v is any variable

Substitutions: {t1/v1, . . . , tn/vn}
• i 6= j ⇒ vi 6= vj

Page 187

Terminology

σ = {t1/v1, . . . , tn/vn}

ti is a term in σ

vi is a variable of σ

Say ti/vi ∈ σ and vi ∈ σ,

but not ti ∈ σ

Note: x is not a variable of {x/y},
i.e. x/y ∈ {x/y}, y ∈ {x/y}, x 6∈ {x/y}

Page 188

Substitution Application

For expression A and substitution σ = {t1/v1, . . . , tn/vn}

Aσ: replace every free occurrence of each vi in A by ti

E.g.:

P (x, y){x/y, y/x} = P (y, x)

∀x[P (x, y)⇔ [(∃x∃zQ(x, y, z))⇒ R(x, y, z)]]{a/x, b/y, c/z}
= ∀x[P (x, b)⇔ [(∃x∃zQ(x, b, z))⇒ R(x, b, c)]]

Page 189

3.2.3 Semantics of

Finite-Model Predicate Logic

Assumes a Finite Domain, D, of

• individuals,

• sets of individuals,

• relations over individuals

Let I be the set of all individuals in D.

Page 190

Semantics of Individual Constants

[a] = [[a]] = some particular individual in I.

There is no anonymous individual.

I.e. for every individual, i in I, there is an individual constant c

such that [c] = [[c]] = i.

Page 191

Semantics of Predicate Symbols

Predicate Symbols:

• [P1] is some category/property of individuals of I.

• [Pn] is some n-ary relation over I.

• [[P1]] is some particular subset of I.

• [[Pn]] is some particular subset of the relation

I × · · · × I︸ ︷︷ ︸
n times

.

Page 192

Intensional Semantics

of Ground Atomic Formulas

• If P 1 is some unary predicate symbol,

and t is some individual constant,

then [P1 (t)] is the proposition that [t] is an instance of the

category [P1] (or has the property [P1]).

• If Pn is some n-ary predicate symbol,

and t1, . . . , tn are individual constants,

then [Pn(t1 , . . . , tn)] is the proposition that the relation [Pn]

holds among individuals [t1], and . . . , and [tn].

Page 193

Extensional Semantics

of Ground Atomic Formulas

• If P 1 is some unary predicate symbol,

and t is some individual constant,

then [[P1 (t)]] is True if [[t]] ∈ [[P1]],

and False otherwise.

• If Pn is some n-ary predicate symbol,

and t1, . . . , tn are individual constants,

then [[Pn(t1 , . . . , tn)]] is True

if 〈[[t1]], . . . , [[tn]]〉 ∈ [[Pn]],

and False otherwise.

Page 194

Semantics of WFFs, Part 1

[¬P], [P ∧Q], [P ∨Q], [P ⇒ Q], [P ⇔ Q]

[[¬P]], [[P ∧Q]], [[P ∨Q]], [[P ⇒ Q]], and [[P ⇔ Q]]

are as they are in Propositional Logic.

Page 195

Semantics of WFFs, Part 2

• [∀xP] is the proposition that every individual i in I, with

“name” ti, satisfies [P{ti/x}].

• [∃xP] is the proposition that some individual i in I, with

“name” ti, satisfies [P{ti/x}].

• [[∀xP]] is True if [[P{t/x}]] is True for every individual constant,

t. Otherwise, it is False.

• [[∃xP]] is True if there is some individual constant, t such that

[[P{t/x}]] is True. Otherwise, it is False.

Page 196

Intensional Semantics

of Individual Constants

In CarPool World

[Tom] = Someone named Tom.

[Betty] = Someone named Betty.

Page 197

Intensional Semantics

of Individual Constants

In 4-Person CarPool World

(Call it 4pCarPool World)

[Tom] = Someone named Tom.

[Betty] = Someone named Betty.

[John] = Someone named John.

[Mary] = Someone named Mary.

Page 198

Intensional Semantics

of Ground Atomic Wffs

In Both CarPool Worlds

Predicate Symbols:

[Driver1 (x)] = [x] is the driver of the/a car.

[Passenger1 (x)] = [x] is the passenger of the/a car.

[Drives2 (x , y)] = [x] drives [y] to work.

Page 199

Extensional Semantics of

One CarPool World Situation

[[Tom]] = Tom.

[[Betty]] = Betty.

[[Driver]] = {Betty}.
[[Passenger]] = {Tom}.
[[Drives]] = {〈 Betty, Tom〉}.

Page 200

Extensional Semantics of

One 4pCarPool World Situation

[[Tom]] = Tom.

[[Betty]] = Betty.

[[John]] = John.

[[Mary]] = Mary.

[[Driver]] = {Betty, John}.
[[Passenger]] = {Mary, Tom}.
[[Drives]] = {〈 Betty, Tom〉, 〈 John, Mary〉}.

Page 201

3.2.4 Model Checking

in Finite-Model Predicate Logic

• n Individual Constants.

• Predicate P j yields nj ground atomic propositions.

• kj predicates of arity j yields
∑

j(kj × nj) ground atomic

propositions.

• So 2
∑

j(kj×nj) situations (columns of truth table).

• CarPool World has 2(2×21+1×22) = 28 = 256 situations.

• 4pCarPool World has 2(2×41+1×42) = 224 = 16, 777, 216

situations.

Page 202

Some CarPool World Situations
Driver(Tom) T T F

Driver(Betty) T F T

Passenger(Tom) T F T

Passenger(Betty) T T F

Drives(Tom,Tom) T F F

Drives(Tom,Betty) T T F

Drives(Betty ,Tom) T F T

Drives(Betty ,Betty) T F F

∀x (Driver(x)⇔ ¬Passenger(x)) F T T

∀x∀y(Drives(x , y)⇒ (Driver(x)⇔ Passenger(y))) T T T

Page 203

Turning

Predicate Logic Over Finite Domains

Into Ground Predicate Logic

If c1, . . . , cn are the individual constants,

• Turn ∀xP (x) into P (c1) ∧ · · · ∧ P (cn)

• and ∃xP (x) into P (c1) ∨ · · · ∨ P (cn)

• E.g.:

∀x∃y(Drives(x , y))

⇔ ∃yDrives(Tom, y) ∧ ∃yDrives(Betty , y)

⇔(Drives(Tom,Tom) ∨Drives(Tom,Betty))

∧(Drives(Betty ,Tom) ∨Drives(Betty ,Betty))

Page 204

Sorted Logic: A Digression

Introduce a hierarchy of sorts, s1, . . . , sn.

(A sort in logic is similar to a data type in programming.)

Assign each individual constant a sort.

Assign each variable a sort.

Declare the sort of each argument position of each predicate

symbol.

An atomic formula, Pn(t1, . . . , tn) is only syntactically valid if the

sort of ti, for each i, is the sort, or a subsort of the sort, declared

for the ith argument position of Pn.

Page 205

Predicate 2-Car CarPool World

in Decreasoner

sort commuter

commuter Tom, Betty

sort car

car TomsCar, BettysCar

;;; [DrivesIn(x,y,c)] = [x] drives [y] to work in car [c].

predicate DrivesIn(commuter,commuter,car)

;;; [DriverOf(x,c)] = [x] is the driver of car [c].

predicate DriverOf(commuter,car)

;;; [PassengerIn(x,c)] = [x] is a passenger in car [c].

predicate PassengerIn(commuter,car)

Page 206

Number of Ground Atomic Propositions

Unsorted vs. Sorted

Atomic Proposition Unsorted Sorted

DrivesIn(commuter,commuter,car) 43 = 64 23 = 8

DriverOf(commuter,car) 42 = 16 22 = 4

PassengerIn(commuter,car) 42 = 16 22 = 4

Total 96 16

Page 207

Domain Rules of 2-Car CarPool World
/projects/shapiro/CSE563/decreasoner/examples/ShapiroCSE563/4cCPWPRedRules.e

;;; If someone’s a driver of one car, they’re not a passenger in any car.

;;; (And if someone’s a passenger in one car, they’re not driver of any car.)

[commuter][car1][car2](DriverOf(commuter,car1) -> !PassengerIn(commuter,car2)).

;;; If A drives B in car C, then A is the driver of and B is a passenger in C.

[commuter1][commuter2][car](DrivesIn(commuter1,commuter2,car)

-> DriverOf(commuter1,car)

& PassengerIn(commuter2,car)).

;;; Either Tom drives Betty in Tom’s car or Betty drives Tom in Betty’s car.

DrivesIn(Tom,Betty,TomsCar) | DrivesIn(Betty,Tom,BettysCar).

;;; Tom doesn’t drive Betty’s car, and Betty doesn’t drive Tom’s car.

!DriverOf(Tom,BettysCar) & !DriverOf(Betty,TomsCar).

;;; Neither Tom nor Betty is a passenger in their own car.

!PassengerIn(Tom,TomsCar) & !PassengerIn(Betty,BettysCar).

Page 208

Decreasoner Produces Two Models

The True propositions:

model 1: model 2:

DriverOf(Betty, BettysCar). DriverOf(Tom, TomsCar).

DrivesIn(Betty, Tom, BettysCar). DrivesIn(Tom, Betty, TomsCar).

PassengerIn(Tom, BettysCar). PassengerIn(Betty, TomsCar).

Page 209

Use of Predicate-Wang

cl-user(12): (wang:predicate-entails

’((forall (x y)

(if (Drives x y)

(and (Driver x) (Passenger y))))

(Drives Betty Tom))

’(and (Driver Betty) (Passenger Tom))

’(Betty Tom))

t

Page 210

3.3 Clause Form

Finite-Model Predicate Logic

1. Syntax . 212

2. Semantics . 213

3. Model Finding . 215

Page 211

3.3.1 Syntax of Clause Form

Finite-Model Predicate Logic

Individual constants, predicate symbols, terms, and ground atomic

formulas as in standard finite-model predicate logic.

(Variables are not needed.)

Literals, clauses and sets of clauses as in propositional clause form

logic.

Page 212

3.3.2 Semantics of Clause Form

Finite-Model Predicate Logic

• Individual constants, predicate symbols, terms, and ground

atomic formulas as in standard finite-model predicate logic.

• Ground literals, ground clauses, and sets of ground clauses as

in propositional clause form logic.

Page 213

Translation of Standard Form

to Clause Form

Finite-Model Predicate Calculus

1. Eliminate quantifiers as when using model checking.

2. Translate into clause form as for propositional logic.

Page 214

3.3.3 Model Finding: GSAT
procedure GSAT(C, tries, flips)

input: a set of clauses C, and positive integers tries and flips

output: a model satisfying C, or failure

for i := 1 to tries do

M := a randomly generated truth assignment

for j := 1 to flips do

if M |= C then returnM
p := an atom such that a change in its truth

assignment gives the largest increase in the total

number of clauses in C that are satisfied by M
M := M with the truth assignment of p reversed

end for end for

return “no satisfying interpretation found”

[Brachman & Levesque, p. 82–83, based on Bart Selman, Hector J. Levesque and David Mitchell,

A New Method for Solving Hard Satisfiability Problems, AAAI-92.]

Page 215

A Pedagogical Implementation of GSAT

/projects/shapiro/CSE563/gsat.cl

Uses wang:expand to eliminate quantifiers,

and prover:clauseForm to translate to clause form.

Page 216

Example GSAT Run

cl-user(1): :ld /projects/shapiro/CSE563/gsat

...

cl-user(2): :pa gsat

gsat(3): (gsat ’((forall x (iff (Driver x) (not (Passenger x))))

(forall (x y) (if (Drives x y) (and (Driver x) (Passenger y))))

(or (Drives Tom Betty) (Drives Betty Tom))

(Driver Betty))

30 6)

A satisfying model (found on try 17) is

(((Driver Tom) nil) ((Passenger Tom) t)

((Drives Betty Betty) nil) ((Drives Tom Tom) nil)

((Drives Betty Tom) t) ((Drives Tom Betty) nil)

((Driver Betty) t) ((Passenger Betty) nil))

#<equal hash-table with 8 entries @ #x4a64dca>

Page 217

Using GSAT to Find

The Value of a Wff in a KB
gsat(19): (ask ’(and (Drives Betty Tom) (Passenger Tom))

’((forall x (iff (Driver x) (not (Passenger x))))

(forall (x y) (if (Drives x y) (and (Driver x) (Passenger y))))

(or (Drives Tom Betty) (Drives Betty Tom))

(Driver Betty))

30 6)

A satisfying model (found on try 19) is

(((Drives Tom Tom) nil) ((Drives Betty Tom) t)

((Driver Betty) t) ((Passenger Tom) t)

((Drives Tom Betty) nil) ((Driver Tom) nil)

((Drives Betty Betty) nil) ((Passenger Betty) nil))

(and (Drives Betty Tom) (Passenger Tom)) is True in a model of the KB.

nil

Page 218

Model Finding: Walksat

A More Efficient Version of GSAT

DIMACS FORMAT:

Code each atomic formula as a positive integer:

c 1 Drives(Tom, Betty) Tom drives Betty to work.

c 2 Drives(Betty, Tom) Betty drives Tom to work.

c 3 Driver(Tom) Tom is the driver of the car.

c 4 Driver(Betty) Betty is the driver of the car.

c 5 Passenger(Tom) Tom is the passenger of the car.

c 6 Passenger(Betty) Betty is the passenger of the car.

Page 219

DIMACS cont’d

Code each clause as a set ± integers, terminated by 0:

c ((~ (Driver Tom)) (~ (Passenger Tom)))

-3 -5 0

c ((~ (Driver Betty)) (~ (Passenger Betty)))

-4 -6 0

c ((Passenger Tom) (Driver Tom))

5 3 0

c ((Passenger Betty) (Driver Betty))

6 4 0

c ((~ (Drives Tom Betty)) (Driver Tom))

-1 3 0

c ((~ (Drives Betty Tom)) (Driver Betty))

-2 4 0

c ((~ (Drives Tom Betty)) (Passenger Betty))

-1 6 0

c ((~ (Drives Betty Tom)) (Passenger Tom))

-2 5 0

c ((Drives Tom Betty) (Drives Betty Tom))

1 2 0

c ((Driver Betty))

4 0

Page 220

Running Walksat

% /projects/shapiro/CSE563/WalkSAT/Walksat_v46/walksat -solcnf

< /projects/shapiro/CSE563/WalkSAT/cpw.cnf

...

ASSIGNMENT FOUND

v -1

v 2

v -3

v 4

v 5

v -6

Page 221

Model Finding: Decreasoner

Decreasoner translates sorted finite-model predicate logic wffs

into DIMACS clause form.

Decreasoner gives set of clauses to Relsat.

Relsat systematically searches all models. It either:

reports that there are no satisfying models;

returns up to MAXMODELS (currently 100) satisfying models;

or gives up.

If Relsat gives up, Decreasoner gives set of clauses to Walksat.

It either:

returns some satisfying models;

or returns some “near misses”;

or gives up.

Page 222

Decreasoner, Walksat, and “Near Misses”

“Let’s say that an ”N-near miss model of a SAT problem” is a truth

assignment that satisfies all but N clauses of the problem. Walksat provides the

command-line option:

-target N = succeed if N or fewer clauses unsatisfied

If relsat produces no models, the Discrete Event Calculus Reasoner invokes

walksat with -target 1. If this fails, it invokes walksat with -target 2. If this

fails, it gives up. One or two unsatisfied clauses may be helpful for debugging.

In my experience, three or more unsatisfied clauses are less useful.

If you get a near miss model, it’s often useful to rerun the Discrete Event

Calculus Reasoner. Because walksat is stochastic, you may get back a different

near miss model, and that near miss model may be more informative than the

previous one.”

[Erik Mueller, email to scs, 1/12/2007]

Page 223

