
. ,,. 

.. 

TECHNICAL REPORT No, 6 

THE INTERACTIVE VISUAL FORTRAN INTERPRETER 

DOUGLAS p, WITMER 

STUART C. SHAPIRO 

NOVEMBER 1., 1973 



, .... 

The Interactive Visual FORTRAN Interpreter 

Douglas P. Witmer 

Stuart C. Shapiro 

Computer Science Department 

Indiana University 

Introduction 

Learning to program in a higher level language such as 

FORTRAN can be a formidable task for the beginning student. He 

must not only memorize the key words and statement syntax asso­ 

ciated with the language., but must learn to assemble meaningful 

programs from these building blocks. In this regard., it is 

essential for the student to be able to visualize the step-by- 

, step operation of his programs. The Interactive Visual FORTRAN 

Interpreter (IVF) was designed as an aid to such a visualization. 

Basic Description 

The IVF accepts a FORTRAN program and graphically simulates 

its execution on an interactive time-sharing terminal with a 

cathode ray tube (CRT) screen. During the simulation the exe­ 

cutable statements are displayed on the screen. An arrow is caused 

to point at each statement in the order in which execution would 

normally take. place. Current values of variables are displayed 

in the unused space to the right of the program,. and are updated 

with each move of the arrow. Thus the immediate state 



-2- 

of the program is visually apparent at all times in terms of 

current values of variables and flow of control • 

. .. 

-> 

I = 0 
I • I + 1 
X =(I** 2) / 2 
IF(I .LT. 10) GO TO 4 
END 

I: 1 

X: 0.4999999999 
- . 

Figure 1 

Figure 1 shows a short program as it would appear, during 

simulation on the IVF. The arrow indicates that execution of 

the statement "X =(I** 2) / 2" is being simulated. The current 

values of "I" and "X" are displayed on the right side of the 

screen. In this example the arrow will next move to the "IF" 

statement. Simulation.of the "IF" statement succeeds and the 



. ,.. 

. ' 

-3- 

arrow moves to the statement whose label is "4". Now the value 

of "I" is incremented and the new value is displayed on the 

right. The simulation proceeds in this manner until execution 

of the "IF" statement is simulated with the current value of 

"I" equal to 10. At this time the arrow moves to the "END" 

statement and.the simulation is terminated. 

Upon termination of the execution phase, the IVF dis­ 

plays an appropriate message and the user is given the option 

to exit the IVF or attempt another simulation. The FORTRAN 

program just simulated is not lost in either case. The user 

may have it simulated again (as discussed later) or dispose of 

it in some other fashion. 

The !VF assumes a naive user, and is therefore self­ 

explanatory. Instructions may be received at the beginning 

of each session by responding appropriately to the program's 

inquiries. In addition, all portions of the program requiring 

a user response will recognize errors and prompt as necessary. 
I 

Although the IVF is primarily art aid to the visualization 

of FORTRAN program execution, it is also an interactive FORTRAN 

statement accepter with a number of error checking facilities. 

The IVF will accept FORTRAN lines and continuation lines until 

a complete statement has been entered. It then checks for 

syntax errors, errors in "DO" loop nesting, and multiply 

defined statement numbers. If the !VF detects an error, the 

statement is rejected and an appropriate error message is 



. , 

.. 

. . 
. . 

-4- 

displayed. The user is thus made aware of his mistake immediately 

and is given another opportunity to enter a correct statement. 

Additional Features 

A user may optionally bracket a portion of his FORTRAN 

program by placing a "+1
: in the continuation field of a non­ 

continuation line to turn the "STEPPED MODE" on. The "STEPPED 

MODE" is turned off in an analogous fashion with a"-". 

Within the bracketed section the user must press the "RETURN" 

key after the execution of each FORTRAN Jine has been simulated. 

This permits a slowing of the simulation over a portion of the 

user's program for more careful study. 

Th& IVF saves a copy of the FORTRAN program simulated, 

and makes it available on a file reserved for that purpose. 

The user may optionally submit complete programs to the IVF 

r:ather than enter them one line at a time. Error checking is 

performed on each statement as with on-line. entry. The complete 

program may have originated from any so'urce, including a session 

with the IVF. 

FORTRAN programs submitted to the IVF may be edited 

with an internal editing feature, and subsequently simulated. 

Transfer to the editor may be evoked during an IVF session when­ 

ever the user finds it necessary to correct errors in his 

programming logic . 



-5- 

Implementation 

The IVF is written in the SNOBOL41 programming language. 

Each FORTRAN statement accepted by the IVF is translated into a 

sequence of SNOBOL statements. Steps are taken to adjust operator .. 
precedence and make type conversions as necessary. This is 

bracketed by statements which move the arrow and update displayed 

information during the simulation. This block of SNOBOL state­ 

ments is concatenated into a string of such blocks for later 

compilation, utilizing the CODE function. 

Simulation of a FORTRAN program is accomplished by first 

displaying its executable statements on the CRT screen, and then 

executing the compiled SNOBOL statements discussed above. During 

simulation the IVF displays output from the FORTRAN program on 

the bottom line of the screen, and accepts input on the line 

above. The position of the executable FORTRAN statements on 

t:he CRT screen is never changed. The CRT' a. cursor (which undsr-­ 

lines the next printable position) is moved about as necessary 

to prevent erasure of valuable information and to facilitate 

input and output • 

. . 
1Gr1swold, R.E., Poage, J.F., Polonsky, I.P., The SNOBOL4 Programm­ 
!!!g Lan~uage, second edition, Prentice-Hall, Englewood Cliffs, 
N:J., 1 71. 



-6- 

.. 

Summarl 

Visualization of the execution of his programs is of 

utmost importance to the beginning programmer. It is hoped 

that the IVF will serve as an effective aid to such visualiza­ 

tion. It is further hoped that the IVF will be found flexible 

in its f~atures arid yet simple enough for use by a beginning 

programmer. 

The IVF currently runs under the KRONOS Time Sharing 

System on a CDC6600 computer using an Applied Digital Data 

Systems, Inc. ADDS Consul 880 terminal. 

It can readily be adapted to run on a number of com­ 

puting systems which support time-sharing terminals and provide 

interactive execution. The primary restrictions are the need 

for a CRT display at the time-sharing terminal and a sufficiently 

large character set to support control of the display. 

The !VF is written in a straightforward manner with 

numerous comments. An experienced programmer should, therefore, 

be able to expand the scope of the IVF to suit the needs of his 

local users. He might even cause the IVF to simulate some language 

other than FORTRAN • 

. . 


