Finding Hypothetical Answers with a Resolution Theorem Prover

Debra T. Burhans and Stuart C. Shapiro
Department of Computer Science and Engineering
and Center for Cognitive Science
State University of New York at Buffalo
226 Bell Hall
Buffalo, NY 14206-2000
burhans@cse.buffalo.edu, shapiro@cse.buffalo.edu

Abstract

Resolution refutation is a powerful reasoning technique
employed in many automated theorem provers. Var-
ious enhancements to resolution have enabled it to
be used as a general question answering mechanism.
Question answering systems employing resolution as
the basic reasoning technique have been used to pro-
vide both ”intensional” and ”extensional” answers to
questions by considering a theorem to be proven as a
question. An intensional answer is a rule, such as ”for
all x and for all y if x is a cat and y is a dog then x
detests y”, and an extensional answer is a fact, such as
”Rachel detests Fido”. The notion of what constitutes
an answer can be expanded so that, as resolution pro-
ceeds, the intermediate results generated on the way
to finding an intensional or extensional answer may be
regarded as answers. This view of resolution as answer
generation, and resolvants as answers, requires an ex-
panded notion of what constitutes an answer. A class
of “hypothetical” answers is proposed, having the gen-
eral form X = Y, where X can not be proven based on
the information in the knowledge base. When there is
not enough information in a knowledge base to provide
an intensional or extensional answer, a hypothetical
answer can be useful.

Introduction

Resolution refutation is a powerful reasoning technique
employed in many automated theorem provers. Vari-
ous enhancements to resolution have expanded its ca-
pabilities as a general question answering mechanism.
In particular, question answering systems employing
resolution as the basic reasoning technique go beyond
simply answering the question of whether a partic-
ular theorem is consistent with a rule base, which
would correspond to providing a yes or no answer to
a question. Such systems provide two additional types
of answers, often described as intensional and exten-
sional. Intensional answers are rules, containing un-
bound variables. They frequently correspond to cat-
egories. Extensional answers are often termed facts,

Lcopyright 1999 American Association for Artificial In-
telligence (http://www.aaai.org)

they contain no variables, and correspond to individu-
als. For example, if a student is consulting an electronic
course advisement system, and asks which courses she
needs to complete a computer science degree, an exten-
sional answer would comprise a list of courses, such as
CSE 596, CSE 421, and an intensional answer might
have the form one theory course and one hardware
course. Answers combining both extensional and in-
tensional components are termed mized (Motro 1989;
1994; 1996).

This paper considers intermediate results that are
generated on the way to discovering intensional and ex-
tensional answers, as resolution proceeds. A category
of hypothetical answers is proposed to describe some
of these intermediate results. Hypothetical answers
have the general form of an implication, where the an-
tecedent can not be proved based on the current state
of the knowledge base. The relationship between ex-
tensional, intensional, and hypothetical answers is dis-
cussed, as are search strategies for question answering,
and future directions for this research.

Background

A traditional resolution refutation proof provides the
answer to the question, “is this theorem consistent with
a given rule base?”. The negation of the theorem to be
proven is added to the rule base, and if two clauses can
be resolved to produce the empty clause then a con-
tradiction is established, and the question is answered
affirmatively. Otherwise the question may be answered
negatively (closed world assumption) or not at all. If
the theorem is a query, the production of the empty
clause indicates the existence of an answer, but does
not provide information about the answer.

The role of resolution as a question answering system
was expanded by Cordell Green with the introduction of
an answer literal (Green 1969b; 1969a). An answer lit-
eral is added to the clause created by negating a query,
enabling a theorem prover to go beyond a simple “yes”
answer by providing information about variable bind-
ings used to complete a proof. The types of answers
provided using this approach are often referred to as ex-
tensional. Consider the question Who does Mary like?
An extensional answer to this question might be the

fact Mary likes John. Prolog employs resolution in this
manner, answering questions with facts, and failing to
answer questions when no relevant facts are contained
in the rule base being searched.

Cholvy and Demolombe (Cholvy & Demolombe 1986;
Cholvy 1990) expanded upon Green’s work, using a res-
olution theorem prover to find intensional answers. An
example of an intensional answer to the above ques-
tion is Mary likes boys. The reason this is considered
a rule is that “boys” is a category rather than an indi-
vidual. Thus, the answer given above might be repre-
sented as the rule, for all X, if X is a boy then Mary
likes X. Cholvy and Demolombe recognized that inten-
sional answers are often generated and discarded as the
search of a rule base for extensional answers proceeds.
In their work they use rules bases containing no facts,
all answers produced are intensional.

Other Knowledge Representation and Reasoning
(KR&R) systems, for example, Description Logics, em-
ploy a variation of resolution as a reasoning mechanism.
Some, such as CLASSIC (Borgida & McGuinness 1996),
are capable of providing both both extensional and in-
tensional answers. ANALOG (Ali & Shapiro 1993) is a
KR&R system designed to represent and reason about
intensional information. It is capable of providing both
intensional and extensional answers in response to ques-
tions.

Database researchers have also investigated the pro-
duction of intensional answers. Motro has done con-
siderable work on intensional answering in the context
of relational databases (Motro 1989; 1994; 1996). He
characterizes an intensional answer as “a description
that implies part or all of the specific answer” (Motro
1989). Motro also recognizes “mixed” answers as those
involving both extensional and intensional information.
The intensional component of a database comprises the
definitions of the data structures for the database, re-
ferred to as the schema, as well as integrity constraints
(rules that describe relationships that must be satisfied
by the facts in the database), and other definitions such
as views and inference rules. An intensional answer is
one that describes the data rather than presenting it
directly: it is a component of the intensional portion of
the database.

Imielinski has worked on intensional answering in
the context of logic and databases (Imielinski 1987;
Imielinski & Mannila 1996). In his system, intensional
answers are viewed as intermediate steps along the way
to extensional answers. Each of his intensional answers
provides a complete specification of the extensional an-
swers. One of the issues in intensional answering with
respect to databases is that the intensional information
is often based on a particular state of the data: when
new data is added, rules that were formulated bottom
up may no longer be complete or correct.

Considerable research has gone into intensional
querying, and intensional query optimization, which is
related to queries involving intensional predicates, or
those predicates defined by more than one rule in Dat-

alog (Godfrey & Gryz 1996). Intensional queries do
not necessarily have intensional answers, and the work
is not as directly relevant as that cited above.

The work described herein continues the tradition of
using a resolution theorem prover as a reasoning mech-
anism and a rule base specified using first order predi-
cate calculus as a knowledge representation to explore
issues in question answering. This work expands on the
current notion of answer by introducing hypothetical an-
swers.

Types of Answers Produced using
Resolution

Three types of answers have been described using reso-
lution as a reasoning mechanism: yes/no answers (pro-
viding information that an answer exists, but no de-
scription of the answer), extensional answers (facts:
ground answer descriptions), and intensional answers
(rules: descriptions containing unbound variables). If
the purpose of an answer is to provide the most useful
information in response to a question, it is clear that
in many cases simply knowing that an answer exists
(yes/no answer) is not very useful. This led to the orig-
inal enhancement of resolution by Green, and the in-
troduction of the answer predicate and the extensional
answer.

Considering an extensional answer as the answer to a
question has remained the dominant paradigm for ques-
tion answering, both in Artificial Intelligence and in
the field of databases. A problem with this approach is
that, in the absence of an extensional answer, no answer
will be provided even though other useful information
may be available. Neither Prolog nor Otter (McCune
1994) will provide an answer in the absence of exten-
sional information.

In addition to the problem of ignoring useful infor-
mation, it is clear that sometimes intensional answers
are simply better than extensional answers. Given the
question, What barks?, the intensional answer dogs bark
is much more informative than a litany of individual dog
names. Intensional answers are more general than ex-
tensional answers and are often more succinct. It is this
feature of intensional answers that has propelled the in-
terest in intensional answers from database researchers.
From taxonomies of concepts to database views, inten-
sional information is an important part of knowledge
representation.

What happens when a piece of information necessary
to infer an intensional or extensional answer is miss-
ing? The missing information could be the result of
an oversight on the part of a rule base creator, or it
could be due to a questioner providing a very under-
specified question. For example, consider again the
question, Who does Mary like? If information about
Mary is lacking, but there is information about some
types of entities liking other entities, hypothetical an-
swers such as the following can be provided: if Mary
is a girl, then Mary likes boys, and if Mary is a girl,

then Mary likes John. The first of these is termed an
intensional, hypothetical answer, and the second an ex-
tensional, hypothetical answer. They are hypotheti-
cal because it is not known whether Mary is a boy or
girl, or possibly what Mary is at all. Such answers can
help a questioner focus, by prompting her to provide
greater constraints in a question, and they can alert
a knowledge base designer that an important piece of
information may be missing. Sometimes a question is
deliberately underspecified when a questioner isn’t sure
herself what sort of answer she desires. For example,
in an electronic course advising system, it may be de-
sirable to leave your major underspecified when asking
what courses you need to graduate. In some computer
science departments there are both BA and BS tracks,
in addition to computer engineering. It might be inter-
esting to hear about different possible outcomes before
constraining a question.

The form of answers can be described as follows. An
extensional answer in its simplest form (that is, not in-
cluding conjunctions and disjunctions) can be written
R(a,b,c,...,n), where R is an n-place predicate and
a,b,c,...,n are constants. An intensional answer in its
simplest form can be written P(X) = Q(Y), where
X and Y contain unbound variables. An hypotheti-
cal answer in its simplest form can be written either
H(Z) = R(a,b,c,...,n) or H(Z) = (P(X) = Q(Y)),
where H(Z) is an hypothesis relevant to the question
that can not be proven given the current state of knowl-
edge. In general, an answer can be viewed as having the
following form, where, depending on the type of answer,
at least one of these three components is present:
(H(Z) = (P(X) = Q(Y)) = R(a,...,n))

The three components of the answer being referred to
as the hypothetical, the intensional, and the extensional
component.

Generating Answers with a Modified
Resolution Theorem Prover

This exploration of answer generation has been done
using a modified resolution theorem prover as a rea-
soning mechanism and a rule base specified using first
order predicate calculus as a knowledge representation.
In the examples provided, it is shown that as resolu-
tion proceeds, if the rule base being searched contains
rules that are relevant to a question, hypothetical and
intensional answers will be produced. If an hypothe-
sis is later proven, the hypothetical “answer” generated
earlier will be subsumed by an intensional or exten-
sional answer later in the resolution process. If there
are facts relevant to a question, extensional answers will
be found. Consider the following simple rule base used
as an illustration. (The example was originally based
on (Rich & Knight 1991, p.192).)

e cats would like to eat fish

e tuna are fish

dogs would like to eat bones
e pete is a tuna

charlie is a tuna

rachel is a cat

Given this simple rule base, and the question What
would rachel like to eat?, the following answers are pro-
duced (each answer is preceded by a gloss):

1. if rachel is a dog, then rachel would like
to eat bomnes

((DOG RACHEL)) =>
((BONE x0)) =>
((WOULDLIKETOEAT RACHEL x0))

2. if rachel is a cat, then rachel would like
to eat fish

((CAT RACHEL)) =>
((FISH x0)) =>
((WOULDLIKETOEAT RACHEL x0))

3. rachel would like to eat fish

((FISH x0)) =>
((WOULDLIKETOEAT RACHEL x0))

4, if rachel is a cat, then rachel would like
to eat tuna

((CAT RACHEL)) =>
((TUNA x0)) =>
((WOULDLIKETOEAT RACHEL x0))

5. rachel would like to eat tuna

((TUNA x0)) =>
((WOULDLIKETOEAT RACHEL x0))

6. rachel would like to eat charlie
((WOULDLIKETOEAT RACHEL CHARLIE))
7. rachel would like to eat pete

((WOULDLIKETOEAT RACHEL PETE))

Answers 1, 2, and 4 are hypothetical. Answers 2 and
4 should not ultimately be provided as answers because
their (common) hypothesis can in fact be proven: the
rule base indicates that rachel is indeed a cat, which
is why 2 is subsumed by 3, and 4 is subsumed by 5.
There is nothing in the rule base that says cats are not
dogs, so 1 stands as a hypothetical answer that is not
subsumed by any other answer. Answers 3 and 5 are
intensional, their structure demonstrates that they are
rules, and answers 6 and 7 are traditional, extensional
answers.

The example is perhaps better motivated by show-
ing what happens when the fact that rachel is a cat is
removed from the list of rules. The resulting answers
are:

1. if rachel is a dog, then rachel would like
to eat bones

((DOG RACHEL)) =>
((BONE x0)) =>
((WOULDLIKETOEAT RACHEL x0))

2. if rachel is a cat, then rachel would like
to eat fish

((CAT RACHEL)) =>
((FISH x0)) =>
((WOULDLIKETOEAT RACHEL x0))

3. if rachel is a cat, then rachel would like
to eat tuna

((CAT RACHEL)) =>
((TUNA x0)) =>
((WOULDLIKETOEAT RACHEL x0))

4. if rachel is a cat, then rachel would like
to eat charlie

((CAT RACHEL)) =>
((WOULDLIKETOEAT RACHEL CHARLIE))

5. if rachel is a cat, then rachel would like
to eat pete

((CAT RACHEL)) =>
((WOULDLIKETOEAT RACHEL PETE))

All answers are hypothetical because nothing about
the identity of rachel is known. If a question answer-
ing system consideres answers that are intensional, ex-
tensional, or mixed, no answer would be returned as a
result of this question, yet there is clearly some informa-
tion that is relevant to the question that these hypothet-
ical answers provide: in short, it may be the best infor-
mation that is available. All possibilities that share the
predicates of the question, namely, WOULDLIKETOEAT,
are offered up as possible answers. Answer 1, 2, and 3
are hypothetical, intensional answers, and 4 and 5 are
hypothetical, extensional answers.

Complete and Relevant Answers

A complete answer to a particular question is generally
defined to be an answer that implies all answers to that
question. Intertwined with the discussion of what con-
stitutes a complete answer is the notion that an answer
must be relevant to the question. Relevance for answers
in most cases has been defined as sharing the predicates
presented by the question.

In a rule base consisting solely of facts (no intensional
information), the conjunction of all facts relevant to a
question would be considered a complete answer. When
rules are added, the picture becomes more complicated.
When taxonomic relationships are represented in a rule
base, a complete answer can be defined as the conjunc-
tion of all of the relevant answers that occur at the
highest taxonomic level. Thus, in the first example in
the above section, rachel would like to eat fish and if
rachel is a dog then rachel would like to eat bones would
be considered a complete answer.

Providing information about tuna, and specific tunas,
is redundant and may be misleading when a category
that includes all of those (fish) has already been given
as an answer. This issue relates to the problem of pro-
viding an answer at the right level of detail, which is
another important area of research in question answer-
ing. In this research this problem has been considered,
but thus far it has taken the form of observations rather
than formal theories. This represents an area of further
research interest.

Earlier versions of the system used for the above ex-
amples included complicated definitions of what con-
stituted the most relevant, or even the best, answers.
Negative feedback on this approach led to the determi-
nation that relevance is best defined by a user, who is
perhaps better acquainted with what is most important
in an answer. The way a user can specify criteria for
relevance is to provide the system with selection criteria
to either direct the search for answers or to order the
answers once they are all generated. This is discussed in
the next section. The only built-in strategy employed
at this point in the system is to use the negation of the
query (containing the answer literal) as the initial set
of support, which imposes the restriction that answers
share predicates with the question.

Search and Ordering Strategies for
Question Answering

Numerous search strategies have been developed for res-
olution theorem provers, all of which have the goal of
generating the empty clause as quickly and efficiently as
possible. When resolution is used primarily as a ques-
tion answering mechanism, different search strategies
and measures of success are needed.

A particular type of answer may be preferred over
another, and other attributes, such as length of an an-
swer, or the number of negative or positive literals, may
be used to preferentially order answers. Some proper-
ties of answers, such as their categories (extensional,
intensional, hypothetical), may be used as criteria to
order sets of answers that have been generated. Other
properties of clauses, such as choosing which clauses to
resolve based on when they were generated, can be used
to direct the search and thus the order in which answers
are generated.

To aid in the exploration of search and ordering
strategies for answers, our system associates the fol-

lowing attributes with clauses:

e the line number (lines are numbered as they are cre-
ated)

e the clause

e the justification (assumption, from query, or the pair
of line number for the lines resolved to produce this
clause)

e number of negative literals

e number of positive literals

e list of clauses that subsume the clause

o list of clauses subsumed by this clause

e answer type (extensional, intensional, hypothetical).

Experiments that allow a user to choose to organize
clauses in order of generation (or reverse order of gener-
ation) have been performed. Sorting by order of gener-
ation leads to either a breadth first or depth first search
strategy. A user can also select an option for clauses to
be sorted by number of positive or negative literals, in
ascending or descending order. Negative literals cor-
respond to positive properties, and might be preferred
in terms of cognitive simplicity. Clauses may also be
ordered by total length. Ordering clauses shortest to
longest amounts to unit preference with a weighting
factor of clause length.

Once answers are generated, a user may select an or-
dering criterion based on the type of the answer. Since
different types of answers are encountered in an inter-
leaved fashion, selecting for particular types of answers
seems better suited to a post generation sort rather than
a search strategy.

Here are several examples that illustrate preliminary
work on search strategies. The first example employs
set of support, weighting of clauses to favor the shortest
clauses, and unit preference. The rule base is shown,
then the query, followed by the original clauses.

rachel is a cat

charlie is a tuna

rambo is a rat

rachel likes to eat her catnip toy

tuna are fish

rats are rodents

rachel likes to eat birds

cats like to eat fish

cats like to eat rats

cats like to eat tasty expensive catfood

What does rachel like to eat?

((CAT RACHEL))

((TUNA CHARLIE))

((RAT RAMBO))

((LIKESTOEAT RACHEL HERCATNIPTQY))
((~ (TUNA 727)) (FISH 727))

((~ (RAT 731)) (RODENT 731))

((~ (BIRD 735))

~NOo U WN -

(LIKESTOEAT RACHEL 735))

8 ((~ (CAT 75)) (= (FISH 77))
(LIKESTOEAT ?5 ?7))

9 ((~ (CAT 713)) (= (RAT 715))
(LIKESTOEAT 713 715))

10 ((~ (CAT 721)) (= (TASTY 723))
(~ (EXPENSIVE 723)) (~ (CATFOOD ?723))
(LIKESTOEAT 721 723))

11 ((~ (LIKESTOEAT RACHEL ?107))
(ANSWER (LIKESTOEAT RACHEL ?7107)))

Answers were produced in the following order (only
glosses are given):

rachel likes to eat her catnip toy
rachel likes to eat birds

rachel likes to eat rats

rachel likes to eat Rambo (the rat)
rachel likes to eat fish

rachel likes to eat tuna

rachel likes to eat Charlie (the tuna)

rachel likes to eat expensive, tasty, cat food

® NS ok W=

This strategy clearly favors succinct answers, which
may be extensional (her catnip toy) or intensional
(birds).

The second example employs set of support and
places new resolvants at the end of the list (in the order
in which they are produced). The initial clause order-
ing is the same as for the first example. Answers were
produced in the following order:

rachel likes to eat birds

rachel likes to eat her catnip toy

rachel likes to eat fish

rachel likes to eat rats

rachel likes to eat expensive, tasty, cat food
rachel likes to eat tuna

rachel likes to eat Rambo (the rat)

rachel likes to eat Charlie (the tuna)

This clearly corresponds to a breadth-first ordering
of the answers in terms of the taxonomic structure of
the rule base. This technique begins by producing the
components of the complete answer, that is, those facts
and rules that occur at the top of the taxonomy. The
complete answer would be represented (showing only
the categories) as birds and her catnip toy and fish
and rats and expensive, tasty, cat food. This answer
implies all extensional and intensional answers.

The third example again has the same initial clauses,
employs set of support, but pushes new resolvants onto
the front of the list as soon as they are produced. An-
swers were produced in the following order:

el A o e

1. rachel likes to eat her catnip toy
2. rachel likes to eat birds

rachel likes to eat expensive, tasty, cat food
rachel likes to eat rats

rachel likes to eat Rambo (the rat)

rachel likes to eat fish

rachel likes to eat tuna

rachel likes to eat Charlie (the tuna)

This corresponds to a depth-first ordering of the an-
swers in terms of the taxonomic structure of the rule
base. If the desire is to reach a specific answer as
quickly as possible, or to describe a group of objects
that are taxonomically related, this is an appropriate
search strategy to employ.

There are two important questions regarding order-
ing of answers. First, how can the control strategy be
altered to produce answers in a desirable order, and
second, how can answers be ordered once they have
all been produced. It may not be known until late in
the resolution process whether or not an answer will be
subsumed. If answers are returned to a user as they
are produced, and later subsumed, it will be confusing.
Most of the work in this area has focused on the lat-
ter question: how should answers be ordered once they
have been produced. It is the former question that is
more interesting, and that will be the focus of ongoing
work.

® N ot w

Resolution is Useful for studying
Question Answering

Using a modified version of resolution provides a good
mechanism for studying question answering. The
breadth of this approach can be seen by looking at
a simple blocksworld problem. As equality is not yet
part of the system, some simple assumptions, such as
one that specifies that no more than one block can be
on top of another, can not be given as rules. This leads
to some spurious answers, but also some interesting re-
sults.

As simple rule base describing a set of blocks is given
as follows:

e A is a block
e B is a block
e Cis a block
e Aisred

o C is green

B is either red or green
a block can not be on itself
Aison B
e Bison C
The question posed is Is there a red thing on a green
thing?
A typical resolution theorem prover using an answer

literal will come up with two answers, that either B is
green and A on B is an answer, or that B is red and

B on C is an answer. The modified theorem prover
employed here generated over 70 clauses in answering
this question, many of which were ultimately subsumed
by other clauses. Some of the 19 answers produced
(given with their numbers in order of generation, the
type of answer, and a gloss) are shown below:

1. (hypothetical, extensional - will be
subsumed because C is green is a fact)

if C is green and B is red,

then B on C is an answer

((GREEN C) & (RED B)) =>
(C(RED B) & ((GREEN C) & (ON B C))))

3. (extensional)
if a red something is on C, then
that thing on C is an answer

((ON x0 C) & (RED x0)) =>
(((RED x0) & ((GREEN C) & (ON x0 C))))

4. (intensional)
if A is on a green something,
then A on that thing is an answer

((ON A x0) & (GREEN x0)) =>
(((RED A) & ((GREEN x0) & (ON A x0))))

5. (hypothetical/intensional)

if B is not green (this implies B is red),
then if B is on a green something,

then B on that thing is an answer

((- (GREEN B))) =>
((ON B x0) & (GREEN x0)) =>
(((RED B) & ((GREEN x0) & (ON B x0))))

6. (hypothetical/intensional)

if B is not red (note that this

implies B is green), then if a red
something is on B, then that thing on B
is an answer

((" (RED B))) =>
((ON x0 B) & (RED x0)) =>
(((RED x0) & ((GREEN B) & (ON x0 B))))

7. (hypothetical/extensional)
if B is red, then B on C is an answer
(this subsumes answer 1.)

((RED B)) =>
(((RED B) & ((GREEN C) & (ON B C))))

8. (hypothetical/extensional - will be
subsumed because C is green is a fact)
if B is not green (implies B is red)
and C is green (which is known),

then B on C is an answer

((GREEN C) & (- (GREEN B))) =>
(((RED B) & ((GREEN C) & (ON B C))))

13. (extensional)

Either B is red and B on C is an
answer or B is green and A on B is
an answer

(((RED B) & ((GREEN C) & (ON B C))) or
((RED A) & ((GREEN B) & (ON A B))))

Discussion and Future Work

This work has involved making modifications to a sim-
ple resolution theorem prover so that not only inten-
sional and extensional answers are considered, but also
hypothetical answers in the absence of constraining in-
formation.

While the dominant paradigm in theorem proving re-
mains that of providing only extensional answers, it is
relatively easy to enhance a theorem prover to provide
additional, valuable information in the form of inten-
sional answers. On examining all the resolvants pro-
duced during resolution, it is clear that these two cat-
egories are not sufficient to describe all of the infor-
mation generated during the process of resolution. A
new category of hypothetical answers was proposed to
describe some other potential answers that are gener-
ated. As more complex rule bases are developed, the
expectation is that further categories of answers may
be discovered.

There are many future directions for this work, in-
cluding the development of search strategies that guide
resolution to produce answers with particular attributes
in order (insofar as it is possible). Researchers have
met with considerable success developing search strate-
gies for resolution theorem provers, and the expectation
is that this is a fruitful area to pursue related to the
generation of answers. Other research interests include
providing answers at appropriate levels of detail, and
formally defining partial and complete answers.

References

Ali, S. S., and Shapiro, S. C. 1993. Natural Lan-
guage Processing Using a Propositional Semantic Net-
work with Structured Variables. Minds and Machines
3:421-451.

Borgida, A., and McGuinness, D. L. 1996. Asking
Queries about Frames. In Proceedings of KR-96, 340—
349. Cambridge MA: Morgan Kaufmann.

Cholvy, L., and Demolombe, R. 1986. Querying a
Rule Base. In Proceedings of the First International
Workshop on Ezpert Database Systems, 365-371.
Cholvy, L. 1990. Answering Queries Addressed to a
Rule Base. Revue d’Intelligence Artificielle 4(1).
Godfrey, P., and Gryz, J. 1996. Intensional Query
Optimization. Technical Report UMIACS TR 96-72,

University of Maryland at College Park, College Park,
MD.

Green, C. 1969a. Applications of theorem proving to
problem solving. In Walker, D. E., and Norton, L. M.,
eds., Proceedings of the International Joint Conference
on Artificial Intelligence, 219-239. 1JCAL

Green, C. 1969b. Theorem-proving by resolution as
a basis for question-answering systems. In Michie, D.,
and Melzer, B., eds., Machine Intelligence 4. Edin-
burgh University Press. 183—-205.

Imielinski, T., and Mannila, H. 1996. A Database Per-
spective on Knowledge Discovery. Communications of
the ACM 39(11):58-64.

Imielinski, T. 1987. Intelligent Query Answering in
Rule Based Systems. Journal of Logic Programming
4(3):229-257.

McCune, W. W. 1994. Otter 3.0 Reference Manual
and Guide. Argonne National Laboratories.

Motro, A. 1989. Using integrity contstraints to provide
intensional answers to relational queries. In Proceed-
ings of VLDBS89, the 15th International Conference
on Very Large Databases, 237-246. Amsterdam The
Netherlands: VLDB89.

Motro, A. 1994. Intensional answers to database
queries. IEEE Transactions on Knowledge and Data
Engineering 6(3):444-454.

Motro, A. 1996. Panorama: A Database System that
Annotates Its Answers to Queries with their Proper-

ties . Journal of Intelligent Information Systems 7:1—
25.

Rich, E., and Knight, K. 1991. Artificial Intelligence.
McGraw Hill, 2 edition.

