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Abstract

The SNePS knowledge representation, reasoning, and acting system has several features that facilitate metacog-
nition in SNePS-based agents. The most prominent is the fact that propositions are represented in SNePS as terms
rather than as sentences, so that propositions can occur as arguments of propositions and other expressions without
leaving first-order logic. The SNePS acting subsystem is integrated with the SNePS reasoning subsystem in such
a way that: there are acts that affect what an agent believes; there are acts that specify knowledge-contingent acts
and lack-of-knowledge acts; there are policies that serve as “daemons”, triggering acts when certain propositions
are believed or wondered about. The GLAIR agent architecture supports metacognition by specifying a location for
the source of self-awareness, and of a sense of situatedness in the world. Several SNePS-based agents have taken
advantage of these facilities to engage in self-awareness and metacognition.

Keywords: metacognition, knowledge representation, SNePS, agent architectures, self-awareness, embodied agents,
cognitive robotics, commonsense reasoning.

Introduction

The terms metacognition, metarepresentation, and metareasoning have been defined in various ways, varying from
general to specific: “Broadly definedmetacognitionis any knowledge or cognitive process that refers to, monitors, or
controls any aspect of cognition” (Moses and Baird, 1999) (italics in the original). “Cognitive systems are character-
ized by their ability to construct and process representations of objects and states of affairs. Mental representations
and public representations such as linguistic utterances are themselves objects in the world, and therefore potential ob-
jects of second-order representations, or ‘metarepresentations’ ” (Sperber, 1999). “Metareasoning is reasoning about
reasoning—in its broadest sense, any computational process concerned with the operation of some other computa-
tional process within the same entity” (Russell, 1999). “A metacognitive reasoner is a system thatreasonsspecifically
about itself (its knowledge, beliefs, and its reasoning process), not one that simplyusessuch knowledge” (Cox, 2005)
(italics in original).

The SNePS1 knowledge representation, reasoning, and acting system, and its predecessor systems were designed
from their beginnings to support metarepresentations (Shapiro, 1971; Shapiro, 1979) (cf. (Shapiro and Rapaport,
1992)). More recently, SNePS-based cognitive agents, usually called Cassie, have taken advantage of these facilities to
have models of themselves, and to have explicit acting plans that control their own beliefs (Shapiro and Rapaport, 1987;
Shapiro, 1989; Shapiro, 1998; Santore and Shapiro, 2003; Shapiro and Kandefer, 2005). This is further facilitated by
the GLAIR (Grounded Layered Architecture with Integrated Reasoning) agent architecture, that specifies how an agent
acquires beliefs about its own actions and percepts, and how it has a sense of its own situatedness in the world.

In this article, we will report on various aspects of SNePS, GLAIR, and Cassie that facilitate metacognition, and
give examples of metacognition in SNePS-based systems.

The GLAIR Architecture

The Grounded Layered Architecture with Integrated Reasoning (GLAIR) (Hexmoor et al., 1993; Hexmoor and Shapiro,
1997; Shapiro and Ismail, 2003), illustrated in figure 1, is a cognitive agent architecture with five layers.

1SNePS is available for free downloading fromhttp://www.cse.buffalo.edu/sneps/Downloads/ .
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Figure 1: The GLAIR architecture: The KL layer is the agent’s mind, the PML and SAL layers are its brain/body.
The KL and PMLa layers are independent of whether the agent’s body is implemented in software, virtual reality, or
hardware. If the PMLc and SAL run on a different computer from the KL, PMLa, and PMLb, then the PMLb and
PMLc communicate over I/P sockets, one for each modality. The SAL controls the sensors and effectors.

The Knowledge Layer (KL) is the layer at which “conscious” reasoning takes place. The KL is implemented in
SNePS and its subsystem SNeRE (the SNePS Rational Engine) (Shapiro and Rapaport, 1992; Kumar, 1996; Kumar
and Shapiro, 1994a; Kumar and Shapiro, 1994b; Shapiro, 2000b; Shapiro and The SNePS Implementation Group,
2004). SNePS, in turn, is implemented in Common Lisp. In the KL, terms of the SNePS logical language represent
the mental entities conceived of and reasoned about by the agent.

The Perceptuo-Motor Layer, Sublayer a (PMLa) contains the Common Lisp implementation of the actions that
are primitive at the KL,i.e., the routine behaviors that can be carried out without thinking about each step. PMLa is
implemented in Common Lisp in a way that is independent of the implementation of the lower layers.

The Perceptuo-Motor Layer, Sublayer b (PMLb) implements the functions of PMLa taking into account the partic-
ular implementation of the agent’s body. PMLb is implemented in Common Lisp using, when necessary, its facilities
for interfacing with programs written in other languages.

The Perceptuo-Motor Layer, Sublayer c (PMLc) contains the implementations of the PMLb functions for the
particular hardware or software agent body being used. PMLc has been implemented variously in C, Java, and the
Ygdrasil (Pape et al., 2003) virtual reality authoring system.

The Sensori-Actuator Layer (SAL) contains the sensor and effector controllers of the agent body.

SNePS

Basic Representation: Propositions, Acts, Actions, Policies

We view the contents of the SNePS knowledge base (KB), appropriately for its use as the agent’s KL, to be the
contents of the agent’s mind. SNePS terms denote the mental entities of the agent, entities the agent has conceived
of (Maida and Shapiro, 1982; Shapiro and Rapaport, 1987). Mental entities must include everything an agent can
possibly conceive of, including particular individuals, classes, relations, acts, and, most significantly for this paper,
propositions (Shapiro, 1993). The root of the SNePS ontology is thus entity. The next level, developed by considering
what a SNePS-based agent can do with each entity, is currently: proposition, act, policy, and thing. Apropositionis
an entity such that the agent can believe it or its negation. Anact is an entity that the agent can perform. Apolicy is
an entity, connecting propositions and acts, which the agent can adopt. Athing an entity that is neither a proposition,
act, nor policy2 Note that propositions, acts, policies, and things are exhaustive and mutually exclusive subclasses of
entity.

2In previous papers, “things” were called “individuals”, but that was probably confusing, since this kind of entity includes classes and relations.
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A subset of the propositions represented in the KB are “asserted” and thus believed by the agent. The implemented
SNePS rules of inference specify how the assertion status can be inherited by propositions from other propositions
(Shapiro, 1993; Chalupsky and Shapiro, 1994). Open terms (terms containing unbound variables) do not exist in the
latest version of SNePS, SNePS 3 (Shapiro, 2000a), which is based on the logicLA (Shapiro, 2004), and is still being
implemented. They also did not exist in the variant of SNePS discussed in (Ali and Shapiro, 1993).

An act may be performed by an agent, and is composed of anaction and zero or more arguments. For example,
for the Fevahr3 version of Cassie (Shapiro, 1998), the termfind(Bill) denotes the act of finding Bill (by looking
around in a room for him), composed of the actionfind and the objectBill .4 That is, an action is a represented by
an act-valued function symbol.

Three policy-forming function symbols are built into SNePS, each of which take as arguments a propositionp
and an acta: ifdo( p,a ) is the policy that if the agent wants to know whether to believep, it should performa;
whendo( p,a ) is the policy that when the agent believesp, it should performa; wheneverdo( p,a ) is the policy
that whenever the agent believesp, it should performa.

A blocks-world example ofifdo is “If the agent wants to know whether block A is red, it should look at it”:
ifdo(ColorOf(A,red), lookAt(A)) (Kumar and Shapiro, 1994a).5

In the case of bothwhendo andwheneverdo , if the policy has been adopted, the agent performsa when forward
inference causesp to be believed. Also,a is performed ifp is already believed when the policy is adopted with forward
inference. The difference is that awhendo policy is unadopted after firing once, but awheneverdo remains adopted
until explicitly unadopted.

Things are all entities other than propositions, acts, and policies. Things mentioned so far in this section are
the person denoted byBill , the block denoted byA, the color denoted byred , the actions denoted byfind and
lookAt , and the relation denoted byColorOf . Fevahr Cassie’s things also include the category of robots, and the
sentence“Neither a borrower nor a lender be”, denoted by a functional term.

Bidirectional Inference

SNePS performs inference in a bidirectional fashion (Shapiro et al., 1982). A rule of the formall(x)(P(x) =>
Q(x)) can be used for backward chaining if an instance ofQ(x) is a goal or subgoal, or for forward chaining if an
instance ofP(x) is asserted into the KB in an appropriate way. (When a belief is asserted into the KB, it may be
done in a way that triggers forward chaining or not.) If bothall(x)(P(x) => Q(x)) andall(x)(P(x) =>
R(x)) are asserted, andP(a) is not asserted, andQ(a) is issued as a goal or subgoal, and thenP(a) is asserted
with forward chaining, bidirectional inference focuses the forward chaining so thatQ(a) is inferred, butR(a) is not.

Metaknowledge

Metaknowledge is knowledge about knowledge. More accurately, we are concerned with metabeliefs—beliefs about
beliefs. Since propositions are represented by terms in the SNePS logic (Shapiro, 1993; Shapiro, 2000b), metabeliefs—
which are propositions about propositions—are easily represented without leaving first-order logic. One example of a
proposition represented by a term is from the Wumpus-World-agent version of Cassie (Shapiro and Kandefer, 2005).
There,Have is a function symbol, andHave(gold) is a proposition-valued functional term denoting the proposition
that“I have the gold.”.

A SNePS proposition of the formP=>Q is not a sentence denoting True whenP is False orQ is True; rather it
is a functional term denoting the proposition that, from the agent’s point of view, if I believeP, then I am justified
in believingQ (Shapiro, 1993; Chalupsky and Shapiro, 1994). Notice that it is not “if I believeP, then I believeQ”,
because SNePS agents are not logically omniscient. If an agent believesP andP=>Q, then it will believeQonly when
the “rule” P=>Q“fires” (to borrow terminology from production systems). Rather than being a function from truth
values to truth values,=> is a function from propositions to propositions, a proposition-valued function. Moreover,
∼(P=>Q) simply denotes the proposition that belief inP is not justification for believingQ. So from∼(P=>Q)
it does not follow thatP, much to the consternation of some traditionalists. Similarly,P=>(Q=>R) denotes the

3“Fevahr” is an acronym standing for “Foveal Extra-Vehicular Activity Helper-Retriever”.
4Actually, since the Fevahr Cassie uses a natural language interface, the act of finding Bill is represented by the termact(lex(find),b6) ,

where:find is a term aligned with the English verbfind; lex(find) is the action expressed in English as“find” ; andb6 is a term denoting Bill.
However, we will ignore these complications in this paper.

5ifdo was calledDoWhenin (Kumar and Shapiro, 1994a).
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proposition that if I believeP, then I am justified in believingQ=>R. AlthoughP=>(Q=>R) and{P,Q}&=>R are
logically equivalent6, in the sense that they both say that belief inR is justified when bothP andQare believed, they
are treated differently by the SNePS inference system. If SNePS backchains into the latter rule,P and Q will be
established as parallel subgoals, but if SNePS backchains into the former rule, justP will be a subgoal. Only ifP
is then inferred willQ=>Rbe believed andQestablished as another subgoal. In either case, if SNePS forwardchains
into eitherP or Q, it will then backchain on the other, andR will be asserted if that backchaining is successful. From
this point of view,P=>Q, ∼(P=>Q) , P=>(Q=>R) , and{P,Q}&=>R are all examples of metabeliefs just as are
the more obvious cases such asBelieves(a,p) , wherea denotes some agent,p denotes some proposition, and
Believes(a,p) is a proposition-valued functional term denoting the proposition thata believesp (cf. (Wiebe and
Rapaport, 1986; Shapiro and Rapaport, 1991; Rapaport et al., 1997)). The policiesifdo(p,a), whendo(p,a) ,
andwheneverdo(p,a) , although not beliefs about beliefs (because policies are not entities to be believed), are
metapropositions in the sense that they are SNePS terms whose arguments are propositons and they are used to monitor
beliefs.

Categories of Acts

External, Mental, and Control Acts

SNePS actions and, by extension, acts, may be subclassified as either external, mental, or control. External acts either
sense or affect the real, virtual, or simulated outside world. An example mentioned above from the Fevahr version of
Cassie isfind(Bill) . No external acts are predefined in SNePS; they must be supplied by each agent designer.

Mental acts affect the agent’s beliefs and adopted policies. There are four:believe( p) is the act of asserting
the propositionp and doing forward inference on it;disbelieve( p) is the act of unasserting the propositionp,
so that it is not believed, but its negation is not necessarily believed;adopt( p) is the act of adopting the policyp;
unadopt( p) is the act of unadopting the policyp.

Beforebelieve changes the belief status of a propositionp, it performs a limited form of belief revision (Al-
chourŕon et al., 1985). Ifandor(0,0) {..., p, ... } is believed,7 it is disbelieve d. If andor( i ,1) {p,
q, ... } is believed, fori = 0 or i = 1, andq is believed,q is disbelieve d. Mental acts are metacognitive in
that they are agent acts that explicitly affect what the agent believes.

Control acts are the control structures of the SNePS acting system. The SNePS control actions areachieve ,
do-all , do-one , prdo-one , snif , sniterate , snsequence , withall , andwithsome .

If the propositionp is asserted, performing the actachieve( p) does nothing. Otherwise, performing the act
achieve( p) consists of inferring plans for bringing about the propositionp (by inferring instances of the proposition
GoalPlan( p,x ) ), and then performingdo-one on them.

Performing the actdo-all( {a1, ..., a n}) consists of performing all the actsa1, ..., a n in a nonde-
terministic order.

Performing the actdo-one( {a1, ..., a n}) consists of nondeterministically choosing one of the actsa1,
..., a n, and performing it.

Performing the actprdo-one( {pract( x1, a 1), ..., pract( xn, a n) }) consists of performing one
of the actsaj , with probabilityx j /

∑
ix i

Performing the actsnif( {if( p1,a 1), ..., if( pn,a n)[, else( d)] }) consists of using backward
inference to determine which of thepi hold, and, if any do, nondeterministically choosing one of them, saypj , and
performingaj . If none of thepi can be inferred, and ifelse( d) is included,d is performed. Otherwise, nothing is
done.

Performing the actsniterate( {if( p1,a 1), ..., if( pn,a n)[, else( d)] }) consists of using back-
ward inference to determine which of thepi hold, and, if any do, nondeterministically choosing one of them, saypj ,
performingaj , and then performing the entiresniterate again. If none of thepi can be inferred, and ifelse( d)
is included,d is performed. Otherwise, nothing is done.

Performing the actsnsequence( a1,a 2) consists of performing the acta1 and then the acta2.
6The term{P1, ..., P n} &=> {Q1, ..., Q m} denotes the proposition that if all thePi are believed then belief is justified in any or

all of theQj (Shapiro, 1979). If eithern orm is 1, the set brackets can be omitted.
7andor (Shapiro, 1979) is a parameterized connective that takes a set of argument-propositions, and generalizesand, inclusive or, exclusive or,

nand, nor, andexactly n of. A formula of the formandor( i,j ) {P1, ..., P n} denotes the proposition that at leasti and at mostj of the
Pks are true.
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Performing the actwithall( x, p(x), a(x), [ d ]) consists of performing backward inference to find
entitiese such thatp(e) is believed, and, if such entities are found, performinga on them all in a nondeterministic
order. If no suche is found, and the optional actd is present,d is performed.

Performing the actwithsome( x, p(x), a(x), [ d ]) is like performingwithall , but if any entitiese
such thatp(e) are found,a is performed on one of them, nondeterministically chosen.

Primitive, Defined, and Composite Acts

SNePS actions and acts may also be classified as either primitive, defined, or composite. Primitive acts constitute
the basic repertoire of a SNePS agent. They are either provided by the SNePS system, itself, or are implemented at
the PML. An example predefined action isbelieve ; an example primitive action defined at the PML is the Fevahr
Cassie’sfind . Because primitive actions are implemented below the KL, SNePS agents have no cognitive insight
into how they perform them.

A composite act is one structured by one of the control acts. For example, the Wumpus-World Cassie, whose
only primitive turning acts arego(right) and go(left) , can turn around by performing the composite act,
snsequence(go(right), go(right)) .

A defined act is one that, unlike composite acts, is syntactically atomic, and unlike primitive acts, is not imple-
mented at the PML. If a SNePS agent is to perform a defined acta, it deduces plansp for which it believes the
propositionActPlan( a,p ) , and performs ado-one of them. Such a plan is an act which, itself, can be either
primitive, composite, or defined. For example, the Wumpus-World Cassie has a defined actturn(around) defined
by ActPlan(turn(around), snsequence(go(right), go(right))) .

Examples of Metacognition

Self-Awareness

If “a metacognitive reasoner is a system that reasons specifically about itself” (Cox, 2005), it needs a model of itself.
There are two aspects to our approach to self-modeling: representation techniques in SNePS at the KL; and PML-KL
interaction. At the KL, the agent, itself, is represented by a SNePS term that is in no way different from the SNePS
terms representing other agents. Beliefs about itself are represented as propositions containing the self-term as an
argument. Beliefs about what the agent is doing and has done are represented using an interval model of time (Allen,
1983), with the times principally connected bybefore andduring relations (which each represent a disjunction of
several of Allen’s temporal relations). These beliefs form the agent’s episodic memory.

The PML is involved in self-awareness in order to model an agent’s sense of embodiedness and of being situated in
the world. There are two aspects to this: a source of beliefs; and a locus of indexical and similar information. Beliefs
about what the agent is doing and beliefs derived from the agent’s sensory organs are put into the KL directly from the
implementation of primitive sensory and efferent actions in the PMLa. For example, as mentioned above,find is a
primitive action for the Fevahr Cassie (Shapiro and Ismail, 2003). The implementation offind in the PMLa inserts
into the KL the belief that Cassie has found whatever she did. So after being told tofind(Bill) , Cassie believes,
and then says (via her natural language (NL) generation component) “I found Bill.” Having the agent’s beliefs of what
it senses and does inserted directly by the PML models these beliefs as “first-person privileged knowledge.”

Another aspect of being situated in the world is continuous awareness of one’s self and of one’s general orientation
in the world. We accomplish this via a set of PML deictic registers and modality registers, each of which is a variable
whose value is one or a set of KL terms.

The deictic registers derive from the theory of the Deictic Center (Duchan et al., 1995), and include:I , the register
that holds the KL term denoting the agent itself;YOU, the register that holds the KL term denoting the individual
the agent is talking with; andNOW, the register that holds the KL term denoting the current time. It is by using
these registers that the NL generator generates “I found Bill” in first-person, in past tense, and using the third-person
referring expression, “Bill ”. If she had been talking to Bill at the time, she would have said, “I found you” or “ I found
you, Bill.”

Each modality register contains the KL term or terms representing the act(s) the agent is currently performing,
or the percept(s) the agent is currently having in each effector or affector modality. The mechanisms for advancing
NOWuse these registers, as they change their contents, to place past acts and percepts in the past (Ismail, 2001). For
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example, Fevahr Cassie starts out talking with Stu. If Stu then tells her to “Talk to Bill.,” and Bill asks her “Who have
you talked to?”, she says, “I talked to Stu and I am talking to you.”

Lack of Knowledge Acting

The optional default act in the SNePS control actswithall andwithsome provide for acting on the basis of lack
of knowledge (cf. (Moore, 1988)). We are using this facility for a SNePS solution to what we call McCarthy’s second
telephone number problem (McCarthy, 1977). In this problem, the agent is asked to call someone. If the agent knows
the person’s phone number it should make the call. However, if it doesn’t, it must obtain the number from some
directory or other agent, and then dial it. Obtaining the number is to result in the agent’s knowing the person’s phone
number.

Our agent’s plan for calling someone is,

all(p)(Person(p)
=> ActPlan(call(p),

withsome(n,
Has(p,PhoneNumber,n),
dial(n),
snsequence(lookup(p),

call(p)))))

whereHas(p,PhoneNumber,n) means that “p’s phone number is n.”
In the following demonstration of a SNePS agent solving this problem, material output by the agent is shown in

bold monospace font. The “: ” is the system prompt. User input is inlight monospace font.

: Person(?x)?
Person(Stu)
Person(Mike)

: Has(?x,PhoneNumber,?y)?
Has(Mike,PhoneNumber,N(5,N(5,N(5,N(5,N(6,N(1,2)))))))

: perform call(Mike)
I am pressing 5.
I am pressing 5.
I am pressing 5.
I am pressing 5.
I am pressing 6.
I am pressing 1.
I am pressing 2.

: perform call(Stu)
I could not find Stu’s phone number in any external information source
available to me.
Do you know Stu’s number? yes
What is Stu’s number (e.g. 555-5555)? 555-7890
I am pressing 5.
I am pressing 5.
I am pressing 5.
I am pressing 7.
I am pressing 8.
I am pressing 9.
I am pressing 0.
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: Has(?x,PhoneNumber,?y)?
Has(Stu,PhoneNumber,N(5,N(5,N(5,N(7,N(8,N(9,0)))))))
Has(Mike,PhoneNumber,N(5,N(5,N(5,N(5,N(6,N(1,2)))))))

The agent engaged in an information-acquiring act because it lacked the information needed to perform another
act. After acquiring the information, it performed the latter act, and then knew the information it acquired.

Metacognition in Consistency Maintenance and Optimization

Any computational system that stores and reasons with information must have some means for adding new informa-
tion, changing existing information, and removing information. These belief change operations are especially needed
to resolve contradictions (also called “consistency maintenance” or “truth maintenance”).

SNePS uses a monotonic logic, so contradiction resolution requires that at least one base (input) belief that un-
derlies a contradiction must be retracted to eliminate that contradiction.8 The retraction process unasserts the belief,
effectively removing it from the current base (also called the current context); both the contradiction and any derived
beliefs that were dependent on that base belief are no longer derivable. The retracted belief is retained in the KB as an
unasserted belief about which the system can still reason.9

Belief change is managed in SNePS by SNeBR, the SNePS Belief Revision system (Martins and Shapiro, 1988;
Shapiro, 2000b). As implemented in SNePS 2.6.1, SNeBR detects contradictions, presents the user with possible
culprits, provides the interface for base belief retraction, and removes from the active KB derived beliefs whose
assertion status depended on any removed base beliefs. Automated retraction of base beliefs (Johnson and Shapiro,
1999; Shapiro and Johnson, 2000) and the belief base re-optimizing operation of reconsideration (Johnson and Shapiro,
2005a; Johnson, 2006) are implemented in other, developmental versions of SNePS.

Key guidelines for consistency maintenance are:10 when some beliefs are considered more important (or cred-
ible) than others, and consistency maintenance forces the removal of some beliefs, then the least important beliefs
should be selected for removal; and any beliefs removed during consistency maintenance must be responsible for the
inconsistency.

Because each belief is a term in the SNePS logic, metabeliefs can be used to indicate various levels of credibility.
For example, we can order the beliefsTruck(Obj1) (Object 1 is a truck) andHelicopter(Obj1) (Object 1
is a helicopter) to indicate that the first is more credible by assertingmoreCredible(Truck(Obj1), Heli-
copter(Obj1)) . This belief credibility ordering enables the automation of contradiction resolution. Reasoning
with the rule thatall(x)(andor(0,1) {Truck(x), Helicopter(x) }) (An object cannot be both a heli-
copter and a truck) the system detects a contradiction and, following the guidelines listed above, removes the least
credible belief11 and reports,

I will remove the following node: Helicopter(Obj1) .

Ordering beliefs by their source or category (Johnson and Shapiro, 1999; Shapiro and Johnson, 2000) is more
reasonable than ordering all beliefs individually. This results in a pre-order over the beliefs; some sources may be
equivalent (or incomparable) in strength, and beliefs from the same source (or equivalent sources) would have equiv-
alent strength (unless there is an additional sub-ordering of those beliefs).

Again, because each belief is a term in the language, assigning and ordering sources is easily represented in SNePS:

Source(UAV, Truck(Obj1))
(An unmanned aerial vehicle (UAV) is the source of the information that Object 1 is a truck.)

Source(Satellite, Helicopter(Obj1))
8In this section, “propositions” are referred to as “beliefs,” whether they are asserted or not.
9Note the difference between thecurrent base, which is the context comprised of the input propositions that arecurrentlybelieved, and the entire

knowledge base(KB), which containsall base propositions (both asserted and unasserted) as well as derived beliefs. TheactiveKB contains only
asserted base beliefs and the beliefs that have been derived from them. It is important to retain non-currently believed propositions when reasoning
in multiple contexts (Martins and Shapiro, 1983; Shapiro, 2000b), and when allowing for reconsideration, as will be discussed below.

10These guidelines are paraphrased from (Gärdenfors and Rott, 1995) and (Hansson, 1997).
11In this example, rules are preferred over observations. In the implementation of automated contradiction resolution (Johnson and Shapiro,

1999; Shapiro and Johnson, 2000), which is not included in the SNePS 2.6.1 release, if the system cannot identify a single belief for removal, it
advises the user, who must make the final selection.
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(Satellite imagery is the source of the information that Object 1 is a helicopter.)

all(s1,s2,b1,b2)( {Source(s1,b1),Source(s2,b2) }
&=> {(sourceMoreCredible(s1,s2)

=> moreCredible(b1,b2)),
(sourceEquallyCredible( {s1,s2 })
=> equallyCredible( {b1,b2 })) })

(Information from a more credible source is more credible than information from a less credible source,
but information from two equally credible sources are equally credible.)

When we then inputsourceMoreCredible(UAV,Satellite) (The UAV is more credible than satellite im-
agery) the system infersmoreCredible(Truck(Obj1),Helicopter(Obj1)) , which is used during auto-
mated contradiction resolution, as before.

Ordering beliefs is also helpful if a system needs to re-optimize the base. This can happen when new input and/or
inferences result in changes being made to the base or its ordering. For example, if the new information forces con-
tradiction resolution to remove some beliefp from the base, then any beliefq that is weaker thanp and was removed
because it conflicted withp, should be considered forpossiblereturn to the base. Alternatively, if the new information
re-orders the sources and/or beliefs (or further refines the pre-ordering), the base may need to be re-optimized with re-
spect to this new ordering. This optimization process is called reconsideration (Johnson and Shapiro, 2005a; Johnson,
2006) and is implemented using the anytime algorithm of dependency-directed reconsideration (DDR) (Johnson and
Shapiro, 2005b; Johnson, 2006).

DDR processes unasserted base beliefs thatmightbe able to return to the current base due to a stronger conflicting
belief being recently retracted or a re-ordering of the base beliefs. A belief can be re-asserted if its reassertion either
(1) does not raise an inconsistency or (2) each inconsistency its return raises can be resolved by retracting one or more
strictly weaker beliefs (called belief swapping). Beliefs are processed in a non-increasing order of credibility and are
only examined if they are directly linked to some change in the belief base.

This scales well in the case where new information forces a retraction. Each inconsistency resolution typically
involves a small subset of base beliefs, and reconsideration would involve a similarly small subset.12 If a belief is
returned with swapping, reconsideration continues but is progressing through ever decreasing credibility weights; if
there is no swap—whether or not the belief is reasserted—reconsideration along that branch of the KB is pruned. The
computational complexity of the DDR algorithm is minimal when a belief cannot return (no change to the base) and
has a higher cost when the base is improved.

Re-ordering base beliefs (both asserted and unasserted) might occur when a source is discovered to be unreliable—
forcing information from that source to be considered less credible than once thought. Reconsideration re-optimizes
the base to reflect the new ordering by processing retracted base beliefs that are now more credible than conflicting
base beliefs that are currently asserted. Unasserted base beliefs that have not changed their order relative to stronger
conflicting beliefs need not be processed.

Any implemented system is restricted by the real-world limitations of the size of its memory and the time it takes
to reason. There may be times when DDR must be interrupted so that further inferences can be made or actions taken.
Because the logic used in SNePS is a paraconsistent logic,13 the SNePS system can even reason in an inconsistent
space—though, typically, the inconsistency needs to be unrelated to the propositions being used in the reasoning.
When time allows, DDR can be re-called to re-optimize the KB and provide a more preferred belief base from which
to act and reason.

Whether for contradiction resolution or base optimization, the system uses metabeliefs to determinewhat it should
believe—insuring that it maintains and reasons from the most credible knowledge base possible given the current
constraints and needs of the user.

12This assumes inconsistency maintenance uses dependency-directed, truth maintenance system (TMS) techniques (de Kleer, 1986; Forbus and
de Kleer, 1993) as opposed to some ‘entire base’ technique using SAT testing, where scalability is an issue.

13It is not the case that everything is derivable from an inconsistency.
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Metacognition and Contextual Vocabulary Acquisition

Reading is a cognitive activity that begins by requiring a great deal of conscious processing (in order to assign sounds
to letters and meanings to words and sentences). Readers must think about which sounds go with which letters, and
then whether the resulting combined sound is a word that they know. For good readers, this process evolves into
an automatic process requiring little or no conscious activity (e.g., when looking at a text in their native language,
good readers cannotnot read the passage, since reading has become so automatic). But, for excellent readers, it
evolves once again into a conscious activity during which the reader monitors his or her reading (e.g., in order to draw
inferences about the passage being read). (See, e.g., (McNamara and Kintsch, 1996; van Oostendorp and Goldman,
1999; Ruddell and Unrau, 2004).) In short, for excellent readers, reading involves metacognition.

But even for readers who are not that excellent, reading contains metacognitive components. Moreover, we believe
that practice with at least one of these components (vocabulary acquisition) can improve reading and comprehension
skills. In our Contextual Vocabulary Acquisition project,14 we are developing a computational theory of how readers
can “figure out” (i.e., compute) a meaning for an unknown word from the textual context augmented by the reader’s
prior knowledge (Ehrlich, 1995; Ehrlich and Rapaport, 1997; Rapaport and Ehrlich, 2000; Rapaport, 2003; Rapaport,
2005; Rapaport and Kibby, 2007). This is a metacognitive task requiring readers to monitor their prior knowledge
while reading, i.e., to think about their thoughts in order to improve their vocabulary. We are adapting our theory
(implemented in SNePS) to a school curriculum that, we hope, will help improve students’ reading and comprehension
abilities by showing them a precise series of steps they can follow (i.e., by providing them with an algorithm) for
figuring out meaning from textual context plus prior knowledge.

In this section, we present one example of how our algorithm works. In theMorte Darthur (Malory, 1470)—one
of the earliest versions of the King Arthur legends—there occurs the following passage (here minimally paraphrased
into modern English):

Therewith two of them [i.e., two evil knights]dressedtheir spears and Sir Ulfyus and Sir Brastias [Arthur’s
knights]dressedtheir spears; they ran together with great force. (Malory, 1470, p. 15)

Even a very excellent reader who can manage to penetrate the archaic grammar (itself probably a metacognitive task)
is likely to be puzzled by this use of ‘dress’, given that for modern readers, ‘dress’ means—without question—“to put
clothes on”. Did these knights really put clothes on their spears?

Thus, puzzled readers compare what they are readingwith what they antecedently believedabout dressing and
spears in order to discover an inconsistency. This is therefore a metacognitive activity; metacognition tells the reader
that this makes no sense. So perhaps we should take the passage metaphorically; perhaps the “clothes” they put on
their spears were some sort of sheaths. But that, too, makes no sense: One would expect them toremovesuch sheaths
before battle, not put them on. Such (conscious) thinking about a cognitive process is also a metacognitive task.

A bit later, Merlin advises King Arthur on the disposition of troops:

When it is daylight, dress your battle right before the Northern host and the strong passage-way, so that
they may see all your host. (Malory, 1470, p. 19)

Here, the context strongly suggests that ‘battle’ means “troops”. Does this mean that the great King Arthur puts clothes
on his troops before battle? Again, even a metaphorical reading according to which he helps his troops don theirarmor
makes little sense; surely, King Arthur has better things to do with his time.

We have conflicts among what the text says, the reader’s knowledge of the meaning of ‘dress’, and the reader’s
prior beliefs that spears don’t wear clothing and that kings don’t put clothing on their troops.

Our implemented algorithm handles this situation as follows (as adapted from (Rapaport and Ehrlich, 2000)): First,
the system’s prior-knowledge base for this example includes the following two beliefs:all(x,y)(dresses(x,y)
=> {wears(y, clothesOf(y)), Isa(clothesOf(y), clothing) }) (If x dressesy, theny wearsy’s
clothes);all(x,y)( {Instance(x,spear), Isa(y,clothing) } &=> ∼wears(x,y)) (Spears don’t
wear clothing.)

Next, the system reads a sequence of passages containing ‘dress’, adapted from (Malory, 1470), interspersed with
questions and requests for definitions. First the system reads,

Passage D1King Arthur dressed himself.
14http://www.cse.buffalo.edu/˜rapaport/CVA/
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Then, asked to define “dress”, the system produces,

Definition D1 A person can dress itself; result: it wears clothing.

Then it reads,

Passage D2King Claudas dressed his spear . . . .

At this point, the system infers that King Claudas’s spear wears clothing. However, challenged with

Question D2 What wears clothing?

a contradiction is detected, and SNeBR is invoked, automatically replacing the prior belief that ifx dressesy, theny
wearsy’s clothes. (Rather than the prior belief that spears don’t wear clothing, because of the occurrence of a verb
in the antecedent, since people tend to revise beliefs about verbs rather than beliefs about nouns (Gentner, 1981)).
There follow several passages in the text in which dressing spears precedes fighting. Rather thanrejectingthe prior
definition, it ismodified.The system decides that to dress iseither to put clothes onor to prepare for battle:

Definition D3 A person can dress a spear or a person; result: the person wears clothing or the person is enabled to
fight.

Such disjunctive definitions are consistent with dictionary-like definitions of polysemous words.15 We plan to
investigate a method toinducea more general definition: In the present case, further experience with such phrases
as ‘salad dressing’, ‘turkey dressing’, and so on, should lead the reader to decide that ‘dress’ more generally means
something like “prepare” (for the day, by putting on clothes; for battle, by preparing one’s spear; for eating, by
preparing one’s salad; for cooking, by preparing one’s turkey; and so on).

Metacognition arises in this situation in a variety of ways. First, there is metacognitive activity when the reader
breaks out of the predominantly subconscious process of reading when faced with an inconsistency; the reader believes
that what she or he is reading is inconsistent with other things that she or he believes. This belief about a belief
is metacognitive. Second, when the reader decides to re-interpret what she or he reads in order to eliminate the
inconsistency, there is metacognitive activity, because this is a decision about what to believe. It is a cognitive process
(deciding) about another cognitive process (what to believe). Finally, the search for a more general meaning that
subsumes the apparently inconsistent ones is metacognitive, because it involves reasoningaboutnot merelywith one’s
(other) beliefs.

Metacognition in a Math-Capable Computational Agent

Mathematical problem-solving often requires some degree of metacognitive reasoning. The importance of metacog-
nition in mathematics education is well known (cf. (Cohors-Fresenborg and Kaune, 2001; Gartmann and Freiberg,
1995; Schoenfeld, 1992)) and should not be ignored when developing math-capable AI agents.

The applicability of multiple solution-methods to any given problem is a driving force for metacognition in math-
ematics. The differences between solution methods may involve different mathematical contexts (e.g., a student may
know how to solve a problem both algebraically and geometrically) or subtle variations (e.g., a child may count from
either the smaller or larger addend when count-adding two numbers). Furthermore, a student may use (or improvise) a
“non-standard” solution method in certain problem contexts (e.g., checking to see whether 4152342 is even to find the
remainder of 4152342 / 2, rather than performing the long division as with the other numbers). These abilities suggest
two metacognitive requirements for a math-capable AI agent: the ability to represent multiple procedures for the same
task; the ability to select between procedures using contextual information.

In this section, we will describe how these abilities can be supported in SNePS agents. The focus will be on
mathematical procedures at the level of counting and arithmetic.

Multiple Plans for a Single Act

Even in the early mathematical domain of arithmetic, a plurality of procedures arises for each of the arithmetic opera-
tions. There are at least three ways two natural numbers,x andy, can be added: count-addition; arithmetic addition;
and calculator addition.

15Their resemblance to “weakening” in belief revision is worthy of further investigation; see, e.g., (Benferhat et al., 2004).
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In count-addition,x+y is computed by counting fromx for y numbers, and seeing what number has been reached.
The result of the counting procedure is the result of the addition procedure.

In arithmetic addition,single-digit sums for all pairs of single-digit numbers are given. The numbersx andy are
treated as strings of decimal digits, and the notion of a “carry” is used when a single-digit sum exceeds 9. The sum
x + y is computed by performing columnwise sums for each increasing place-value inx andy, and concatenating
these results in the appropriate way.

In calculator addition,x+y is computed by performing a sequence of button presses on a calculator (e.g., entering
x, pressing+, enteringy, pressing=).

Each of these procedures specifies a potentially infinite set ofActPlan s, one for eachx andy pair.16 These are
specified in SNePS as follows:

all(x,y)( {Number(x),Number(y) }
&=> ActPlan(Add(x,y),

{CountAdd(x,y),
ArithAdd(x,y),
CalcAdd(x,y) })).

The propositions representing the result for each specific plan should be different, so that Cassie will remember which
way of addition was used. The three ways of adding two numbers require three propositions:CountSum(x,y,z) ,
ArithSum(x,y,z) , andCalcSum(x,y,z) . Whenever Cassie performs a series of arithmetic operations, she
will have a trail of result propositions that indicate which plan was chosen at each step. This memory of how a plan
was performed is essential for metacognitive reasoning.

In addition to a specific result propositions, there should also be a general result proposition so the sum may be
used in other operations without regard to how it was computed:

all(x,y,z)( {CountSum(x,y,z),
ArithSum(x,y,z),
CalcSum(x,y,z) }

v=> Sum(x,y,z)).

When Cassie is asked to perform an operation, sayperform CountAdd(2,3) , she will believe
CountSum(2,3,5) and, through forward inference,Sum(2,3,5) . The question “What is the sum of 2 and
3?” can be asked in two ways:Sum(2,3,?x) ?, which is plan-independent; andCountSum(2,3,?x)? , which
depends on Cassie having used theCountAdd method to obtain her sum.

Without any additional machinery, Cassie will nondeterministically select an addition plan whenever she is asked
to performAdd(x,y) . Metacognition requires that Cassie makes a more informed decision. A plan should be chosen
when it is an appropriate way of doing additionin the current context. To determine the contextual relevance of a plan,
it will be useful to categorize the different kinds of arithmetic procedures.

Categorization of Mathematical Procedures

Clearly, there are many more procedures for addition than those given in the previous section. The three listed above
are representative of three different procedural categories. Count-addition is a procedure in which an operation is
performed by appealing to a more basic operation. In fact, we can build up all of the fundamental arithmetic operations
in this way: addition is achieved by counting, subtraction is inverted addition, multiplication is repeated addition, and
division is inverted multiplication. These are categorized assemanticprocedures because they involve a semantic
interpretation of the given procedure in terms of another (simpler) procedure. Arithmetic addition is a procedure
characterized by syntactic operations in a positional number system and uses columnwise operations. This is done
without a semantic interpretation for each of the single-digit sums (i.e., it doesn’t tell us what additionis in terms
of another concept). Such procedures are categorized assyntacticprocedures. Calculator addition requires non-
mathematical operations (i.e., button presses) and an external (trusted) source. Such procedures are categorized as
extendedprocedures.

16Because SNePS uses the unique variable binding rule (Shapiro, 1986), which stipulates that no one term can substitute for different variables,
separateActPlan s must be defined for adding a number to itself (“doubling a number”).
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The borders between these procedural categories are not sharp ones. Arithmetic addition, for example, usually
requires a student to mark single-digit sums on a piece of paper; using an extended medium is a characteristic of an
extended procedure. However, even with an imperfect categorization, it is important to assign some category to each
of the agent’s procedures. A procedure’s category will be indicative of the situations in which a procedure will be most
useful.

Semantic routines will be most useful for an agent in a context of explanation. This might include anything
from a tutoring system for a human user to an agent taking a Turing Test (in which mathematical understanding is
tested alongside natural-language understanding). Syntactic routines will be most useful when an agent must “show
its work” or leave some indication of its activities. The utility of extended routines is very much dependent on the
extended medium being used. In general, extended routines may be most useful in various contexts of discovery, or
when a syntactic or semantic routine is simply unavailable. An agent that must obtain mathematical results quickly
(perhaps reacting in a time sensitive setting) and use those results without explanation could apply an extended routine
that uses a calculator. Extended routines may also be applied when real-world objects (external to the agent) must be
manipulated to find a solution. The problem context will ultimately determine which category is most appropriate.

Enforcing a problem context in SNePS can be done in two ways: (1) by extending the antecedent constraints for
ActPlan s and (2) by redefining the SNeREdo-one primitive act to guide Cassie’s decision-making.

Antecedent Constraints: An act such asAdd(x,y) can only be meaningfully performed by Cassie ifx andy are
restricted to the domain of numbers. This is achieved via theNumber(x) proposition. Given a contextual proposition
InContext(x) indicating that the agent is in current contextx, we might have:

all(x,y)( {Number(x),Number(y) }
&=> {(InContext(Explanation)

=> ActPlan(Add(x,y),
CountAdd(x,y))),

(InContext(ShowingWork)
=> ActPlan(Add(x,y),

ArithAdd(x,y))),
(InContext(Discovery)

=> ActPlan(Add(x,y),
CalcAdd(x,y))) }).

Unless each antecedent is satisfied, including the contextual proposition, Cassie will not consider acting upon an
ActPlan . This is ana priori and “conscious” consideration (i.e., it will explicitly appear in Cassie’s chain of rea-
soning before any act is attempted). Further refinement of antecedent constraints will lead to more specific contextual
behavior. For example, if an agent is told to add 2 and 3,CountAdd (i.e., counting from 2 for 3 numbers) will not
be an expensive operation. On the other hand, if an agent is adding 123 and 728123,CountAdd is very costly (i.e.,
counting from 123 for 728000 numbers!). We might add antecedent constraints forcing an agent to performCoun-
tAdd when the numbers are single digits (via aDigit(x) proposition), andArithAdd for multi-digit numbers.

Redefining thedo-one Act: Another technique for enabling context-driven action is to modify thedo-one prim-
itive act. When Cassie is able to derive multiple plans for an act, the SNeRE executive cycle schedules ado-one on
the set of those plans. In its unmodified form,do-one selects one of the plans at random. It can be modified to make
a more deliberative decision by incorporating path-based reasoning (Shapiro, 1991) to determine the current context
(using anInContext(x) proposition as in the previous section) and the procedural category of each plan being
considered. The latter piece of metaknowledge can be stored in a propositionActCategory(x,y) as follows:

ActCategory(CountAdd(x,y), Semantic).
ActCategory(ArithAdd(x,y), Syntactic).

ActCategory(CalcAdd(x,y), Extended).

With an appropriately re-defineddo-one , making an assertion about context guarantees that the appropriate proce-
dure is chosen (e.g., selectingCountAdd(x,y) whenInCategory(Semantic) is asserted).
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In contrast to the method of adding antecedent constraints, this method is online and “subconscious” for Cassie
(i.e., it happens after Cassie has decided to perform the general actAdd(x,y) and uses path-based inference to decide
upon a plan in the PML layer).

Sensitivity to context (as provided by either of the above techniques) is a useful application of metacognition. It
will also lead to a more human-like behavior of the arithmetic task (i.e., we tend to count-add on our fingers only for
small numbers and sum up larger numbers in columns and rows).

Self Regulation

The capacity for control and self regulation is an important feature of mathematical metacognition: “How well do you
keep track of what you’re doing when (for example) you’re solving problems, and how well (if at all) do you use the
input from those observations to guide your problem solving action” (Schoenfeld, 1987, p. 190).

Given a standard algebraic problem such asx − 2 = 0, consider the following two solution procedures (solving
for x):

A B
x− 2 = 0 x− 2 = 0

+2 +2 −2 −2
x = 2 x− 4 = −2

+4 +4
x = 2

Clearly procedure A is a more direct solution. Procedure B seems to be a roundabout way towards the solution. The
“directness” or “roundaboutness” of a procedure is a metacognitive judgment. This judgment is based on the fact that
procedure B uses more operations (of comparable complexity) than procedure A.

Goldfain (Goldfain, 2005) describes a technique with which SNePS agents can enumerate their own actionswhile
they are acting. By counting up the arithmetic routines in a mathematical task (e.g., an algebraic task), an agent can
get a rough sense of a plan’s efficiency. An agent must be provided with enough logic to establish which operations
are comparable in complexity (this is even more metacognitive information).

A math-capable agent should have some sense of whether each step in its reasoning is bringing it any closer to a
solution. For the example above, addingy to both sides to producex − 2 + y = y leaves us with something more
complex than the original problem. An agent who performs such a step should stop in its tracks; detecting that it is
moving “farther” away from an answer. We would never teach a student a rule toalwaysmake every line of work
‘simpler” than the previous one. However, there are several mathematical procedures where this would at least be a
good rule-of-thumb. A SNePS implementation of this ability is beyond the scope of this paper, but it is worth further
investigation.

Conclusions

The SNePS knowledge representation, reasoning, and acting system has several features that facilitate metacognition
in SNePS-based agents. The most prominent is the fact that propositions are represented in SNePS as terms rather than
as logical sentences. The effect is that propositions can occur as arguments of propositions, acts, and policies without
limit, and without leaving first-order logic. The SNePS acting subsystem is integrated with the SNePS reasoning
subsystem in such a way that there are acts (believe anddisbelieve ) that affect what an agent believes, there
are acts (snif , sniterate , withall , withsome ) that specify both knowledge-contingent acts and lack-of-
knowledge default acts, and there are policies (ifdo , whendo , wheneverdo ) that serve as “daemons”, triggering
acts when certain propositions are believed or wondered about.

The GLAIR agent architecture supports metacognition by specifying the PML as the source of self-awareness.
Affective and effective actions implemented in the PML are the source of first-person privileged knowledge about
what the agent is sensing and doing. Deictic and modality registers located in the PML provide the agent a sense of
situatedness in its world.
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Several SNePS-based agents have taken advantage of these facilities to engage in self-awareness and metacog-
nition: Fevahr Cassie has a model of herself and episodic memory of what she has done; a SNePS agent uses lack-
of-knowledge acting to acquire information it needs to make a telephone call; an enhanced SNePS belief revision
system can use belief credibility and source credibility information, represented as metaknowledge, to do automatic
belief revision on knowledge from multiple sources; a SNePS agent modifies its prior beliefs of word meaning to
accommodate unusual usages in a text; a version of Cassie uses knowledge of the context to choose an appropriate
method of arithmetic. The ongoing implementation and development of SNePS may allow for further applications of
metacognition.
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