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Abstract—Soft information is information contained in natural
language messages written by human informants or human intel-
ligence gatherers. Tractor is a system that automatically processes
natural language messages and represents the information ex-
tracted from them as propositional graphs. Propositional graphs
have several benefits as a knowledge representation formalism
for information fusion: n-ary relations may be represented as
simply as binary relations; meta-information and pedigree may
be represented in the same format as object-level information;
they are amenable to graph matching techniques and fusion with
information from other sources; they may be used by reasoning
systems to draw inferences from explicitly conveyed information
and relevant background information. The propositional graphs
produced by Tractor are based on the FrameNet system of deep
lexical semantics. A method of producing propositional graphs is
proposed using dependency parse information and rules written
in the SNePS knowledge representation and reasoning system.
Keywords: Hard/soft data fusion, ontologies, propositional
graphs.

I. INTRODUCTION

Soft information fusion is the process of associating and
combining data and information from multiple soft data sen-
sors, such as humans in the field providing data in natural
language form. Soft information processing involves a number
of challenges to information fusion [1], [2]. A system that
accepts and uses natural language information must solve the
problem of natural language understanding, in which it must
represent the meaning of a message in a formalism more
amenable to automated processing than the text input.

Tractor is an architecture for soft information fusion in
development at the University at Buffalo as part of ongoing
research into using information fusion for counter-insurgency
(COIN) [3]–[8]. Tractor is composed of a syntactic processing
stage, in which it extracts syntactic information such as named
entities and word/phrase dependencies; a propositionalizer
stage, in which it produces a propositional graph; and a
context-based information retrieval stage, in which new infor-
mation is incorporated into a world state estimate. This paper
focuses on the propositionalizer stage.

First, semantic frames as a formalism for meaning are
introduced. Next, propositional graphs are demonstrated and
discussed. The pipeline for the propositionalizer is shown
and discussed. Finally, the use of propositional graphs for
soft information fusion is discussed. Some benefits of using

propositional graphs are demonstrated including how they can
be used to help solve current problems in soft information
fusion, and unsolved problems in their use are presented.

II. CASEFRAMES FOR SEMANTICS

In “The Case for Case,” Charles Fillmore argued for a
frame-based approach to the semantics of a sentence [9]. A
frame is a schematic representation of a situation with a set
of participants and conceptual roles. The Berkeley FrameNet
Project [10] is an implementation of the frame-based approach,
providing a large database of lexical entries and their associ-
ated semantic frames.

Every frame has an associated set of frame elements, which
are the semantic roles to be filled by entities of certain types.
Frame elements are further divided into core and non-core,
corresponding roughly to how central they are to the semantics
of the frame. A core frame element is a “conceptually nec-
essary component of a frame,” but a non-core, or peripheral,
frame element does not “introduce additional, independent or
distinct events” [11].

As an example, the Communication frame represents the
act of a communicator conveying a message. The core frame
elements are a Communicator of semantic type Sentient, a
Message of semantic type Message, a Medium, and a Topic
(with no associated semantic types in the FrameNet database).
Non-core frame elements include an Addressee (Sentient),
Manner, Place, Time, and so on. A frame can be thought of
as a structure with named slots for core elements. Participants
are fillers of those slots.

Frame semantics are compositional. The filler of a frame
element can be another frame. The semantics of the frame
is composed from the semantics of its frame elements and
their relation to each other in the frame. To continue with
the Communication frame example, suppose that the filler of
Message is the frame Commerce buy, which has the frame
elements Buyer and Goods and represents the act of a Buyer
purchasing Goods. The semantics of such a Communication
are the semantics of the Commerce buy frame in the Message
frame element composed with the information that the Com-
municator conveyed that Message. To re-phrase, the Communi-
cator conveyed the Message that the Buyer purchased Goods.
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Figure 1. Example Propositional Graph

SNePS is a logic-, frame-, and graph-based knowledge rep-
resentation and reasoning system developed at the University
at Buffalo [12], [13]. This paper uses FrameNet frames as the
semantic caseframes augmented by standard SNePS frames.
In SNePS, FrameNet frames are SNePS caseframes, FrameNet
core frame elements are slots of the caseframe, FrameNet non-
core frame elements are propositional assertions made about
the caseframe, and slot fillers have SNePS semantic types.
Each term in the SNePS logic has a semantic type. Like
FrameNet frames, SNePS caseframes are compositional: the
slot filler of a caseframe can be another caseframe.

III. PROPOSITIONAL GRAPHS

A propositional graph is a directed graph that represents
the semantics, or meaning, of a natural language input or
set of inputs. A SNePS knowledge base can be viewed as
a propositional graph of nodes and labeled directed arcs.

For example, Figure 1 is a visualization of the propositional
graph in SNePS representing the contents of the message:

01/13/07 — Cell phone call from unidentified male
in Adhamiya to unidentified male in Ramadi lasted
just five seconds with the words “my brother sends
greetings” spoken by originator of call.

This message is from the Soft Target Exploitation and
Fusion (STEF) research project [14], which resulted in a
message repository that contains natural language inputs from
a manufactured counterinsurgency scenario. A STEF message
is a timestamped, short English paragraph. STEF messages
are assumed to come from a counterinsurgency operation and
contain information about activities of interest.

A node in the graph is a well-formed term of SNePS.
Atomic nodes contain only a unique identifier; “Adhamiya,”

for example.1 A molecular node is a node with outgoing edges.
Aside from Some arcs, a propositional graph is a directed

acyclic graph (DAG). Every molecular node is the root of a
directed acyclic subgraph. This is important for maintaining
compositionality.

Nodes have compositional semantics: the meaning of a
molecular node is the meaning of the subgraph rooted at the
node. wft9 is a Duration relation with Duration and Entity
slots. wft6 is a Measure duration with Count and Unit slots.
The meaning of wft6 is “five seconds,” and the meaning of
wft9 is that the contact denoted by wft7 had a duration of five
seconds. wft8 is a MediumOf term relating a Medium and a
Communication. The meaning of wft8 is that the contact wft7
was conducted over a cell phone.

An edge in the graph is directed and named. It is a slot of the
caseframe of the originating node. A proposition is a molecular
node. A “!” in the node label indicates a proposition that is
asserted in the knowledge base (KB). For example, wft11 is
an asserted proposition of caseframe TimeOf, with typed slots
named Time and Event. The slot filler of the Time edge must
be of semantic type Time, and the slot filler of the Event node
must be of semantic type Event.

wft10 is a well-formed term of the Communication case-
frame, with typed slots Communicator and Message. A Com-
munication is of semantic type Event. The slot filler of a
Communicator edge must be of semantic type Sentient.

ind nodes indicate indefinite individuals. These are terms
about which we can make assertions and inferences without
knowing the specific object referred to [16]. A dotted arc

1The issues involved in representing the names of objects and the distinction
of the name from the object itself is beyond the scope of this paper. See
Rapaport [15] for further discussion.
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labeled “Some” is a restriction on the indefinite object. For
example, we know that the indefinite object “ind3”, which is
the Communicator of the Communication term wft10, must be
a member of class Sentient, because only a Sentient can fill
the Communicator slot.

We also know that the indefinite object “ind2,” which is the
Communicator of a Contacting term (wft7), is a member of
class Male and has an expected location of Adhamiya. Similar
restrictions hold for the indefinite object “ind1.” The relation
between an indefinite object and its restriction is the only cycle
in the graph.

The propositional graph structure easily allows us to repre-
sent binary and n-ary relations. TimeOf is a binary relation
between a Time and an Event. wft7 is a Contacting term
relating a communicator, an Addressee, and a Communication.
wft1, wft3, and wft5 are member-class binary relations. wft2
and wft4 are locative binary relations between a Person and a
Location.

Meta-information is a term about the term of interest. In
our example, wft10 represents the Communication that took
place. wft11 represents the proposition that the Communica-
tion took place at Time 2007-01-13. Pedigree information is
meta-information that establishes the chain of custody of the
information. In this case, the only pedigree information we
have is that the Communication came from some Sentient
Communicator, but more sophisticated pedigrees are possible.

There is information missing from this propositional graph.
The graph represents only the information contained in the
input message. For example, a human male is a subtype
of Sentient, but that sort of background information is not
shown in this graph. Nor does the graph contain contextual
information about the current state estimate.

Background and contextual information is represented as a
set of assertions in the knowledge base, which connects to
message nodes through reasoning rules and the nodes’ unique
identifiers. SNePS uses this graph structure with a set of rules
to implement reasoning.

IV. PROPOSITIONALIZER

In order to produce a propositional graph from a natural
language input, we need to convert from the syntactic informa-

tion contained in the sentence, such as word dependencies and
properly identified named entities, to the sentence’s semantic
payload. Figure 2 shows the design of the propositionalizer in
Tractor.

Tractor uses the Stanford dependency parser [17]. Named
entity recognition and dependency parsing are part of the
syntactic processing in Tractor. In the example, Adhamiya and
Ramadi are recognized as named entities of type location.
Figure 3 shows a dependency parse for the example. The
dependency parse shows typed syntactic dependencies, such
as “nsubj” for nominal subject and “dobj” for direct object.
The label “dep” is used for generic dependencies, which
occur when the dependency parser recognizes a syntactic
dependency but not its type.

In the dependency parsing view, sentences are built up from
clauses and phrases and their relationships to their head words.
A dependency parse is a DAG where node labels are heads of
phrases and edge labels are typed dependencies. A node in the
graph represents the clause or phrase rooted at the subgraph.
For example, the node labeled “seconds” represents the phrase
“just five seconds.” The node labeled “just” is an adverbial
modifier (advmod) of the phrase “five seconds.” The node
labeled “five” is a numerical modifier of the noun “seconds.”
The node labeled “lasted” is the head of the sentence and the
root of the graph.

The dependency parse is a representation of the surface
structure of the sentence. The meaning of a dependency parse
is the syntactic relations between the words and phrases of
that sentence.

In contrast, a propositional graph is a DAG (except “Some”
arcs, discussed earlier) where nodes are well-formed terms
in the SNePS logic. The meaning of a propositional graph
is the meaning of the input text it represents. The similarity
in structures between a dependency parse and a propositional
graph allows a mapping from parse to propositional graph that
is grounded in the theories of Fillmore and Beth Levin, who
posit that syntactic similarities mirror underlying semantic
similarities [9], [18].

The FrameNet database contains a many-to-many mapping
of lexical entries to semantic frames. The FrameNet tagger
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Figure 3. Example Dependency Parse (Partial)

takes a word stem from the input message and that word’s part
of speech tag, both obtained during syntactic processing, and
tags the word with its associated FrameNet frame (or possibly
set of frames). For example, the stem of “lasted” is “last.”
Last used as a verb is mapped to the Duration relation frame
in FrameNet. The entity whose duration is being measured
is a cell phone call. Call used as a noun is mapped to the
Contacting frame. In a survey of one corpus of 20 messages,
the FrameNet database contained 90% of the active verbs.

The syntax-semantics mapper gathers the syntactic tag,
dependency parse, and semantic tag information and produces
a set of assertions in SNePS. Translation rules written in
SNePS control the mapping from syntactic assertions to case-
frames. Multi-word named entities that occupy multiple nodes
in the dependency graph merge into one entity node in the
propositional graph.

The propositional graph Measure duration term with its
Count and Unit slots filled in with their canonical forms
is built from the dependency parse subtree rooted at the
word “seconds” as follows. The word “seconds” maps to the
FrameNet Measure duration frame:

(TextOf “seconds” 41)
(FrameOf “Measure duration” 41)

These are assertions in the knowledge base that the text of
word token 41 is “seconds,” and the FrameNet frame of word
token 41 is Measure duration.

Measure duration requires a Count and a Unit. The surface
structure of a Measure duration is a noun phrase whose head
is a temporal unit, in this case the word “seconds,” with a
“num” dependent constituting the count:

(TextOf “five” 39)

(Dependency num 41 39)
The Unit of the propositional graph is the canonical unit

“second,” derived from the word “seconds” from the depen-
dency graph:

(CanonicalOf second 41)
Canonicals are identified by the syntactic processor [8].

The word “five,” which is the “num” dependent in the phrase
“just five seconds,” maps to the canonical numeral 5, which
is the slot filler for Count:

(CanonicalOf 5 39)
The word “just” does not contribute to a Measure duration
caseframe and is ignored.

In the knowledge base, this syntactic-semantic mapping is
performed by a forward inference using the rule:

(forall (word-id can-unit num-id can-num)
(if (and (FrameOf “Measure duration” word-id)

(CanonicalOf can-unit word-id)
(Dependency num word-id num-id)
(CanonicalOf can-num num-id))

(MeaningOf (Measure duration can-num can-unit)
word-id)))

This rule attaches a semantic meaning, the subgraph rooted at
wft6 in Figure 1, to the head of the phrase in the dependency
graph, the node labeled “seconds” in Figure 3. The mapper
recursively fills in caseframe slots with the appropriate mean-
ings.

The head of a clause is a verb. The verb “lasted,” supple-
mented by its FrameNet Duration relation tag, maps to a term
of the Duration relation caseframe in SNePS as above:

(TextOf “lasted” 35)
(FrameOf “Duration relation” 35)
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In an active voice sentence like the example, the Entity of
the Duration relation is found as the noun subject (nsubj) of
the clause, and the Duration is the direct object (dobj). The
Duration can be filled by a term of the Measure duration
caseframe, in this case wft6:

(forall (word-id subj-id subj-meaning
obj-id can-num can-unit)

(if (and (FrameOf “Duration relation” word-id)
(Dependency nsubj word-id subj-id)
(MeaningOf subj-meaning subj-id)
(Dependency dobj word-id obj-id)
(MeaningOf

(Measure duration can-num can-unit)
obj-id))

(MeaningOf
(Duration relation subj-meaning

(Measure duration can-num can-unit))
word-id)))

This rule builds the subgraph rooted at wft9 in Figure 1
and asserts it as a meaning of the node labeled “lasted” in
Figure 3. Note that the rule ensures that the direct object is
an appropriate filler for the Duration slot of Duration relation
by enforcing that a meaning of the direct object is a Measure
duration.

The dependency parser parses quoted text, “my brother
sends greetings” in the example. In this example the quoted
text is a coded phrase and not meaningful without knowledge
of the code. A challenge for developing rules for the propo-
sitionalizer is dealing with cases like this. The ideal case is
to produce a propositional graph as shown in Figure 1, in
which the coded phrase is simply a quoted string filling the
Communication slot of the Contacting caseframe wft7.

The dependency parse also favors deep attachment of
phrases, which can be problematic. For example, the “from”
and “to” phrases should both be prepositional modifiers of

“call,” which would yield the Communicator and Addressee
of the Contacting caseframe, respectively. Instead, the parser
misparses the “to” phrase as a prepositional modifier of
“Adhamiya,” yielding the nonsensical phrase “Adhamiya to
unidentified male in Ramadi.” A significant research challenge
remains in mapping mis-parsed sentences to the appropriate
propositional graph.

Using sets of mappings like those detailed above, the
propositional graph terms can be recursively built from the
dependency parse subgraphs.

SNePS integrates the assertions into a global propositional
graph that contains the assertions in context with other inputs
and with background knowledge [19], [20]. The propositional
graph is ready for forward inferencing with background knowl-
edge and context.

V. SOFT INFORMATION FUSION

By providing a structure for meaning, propositional graphs
have great power and flexibility for merging new information
as it becomes available. Figure 4 shows the propositional graph
for an additional message from STEF:

01/14/07 — Originator of 1/13/07 cell phone call to
Ramadi from Adhamiya has now been identified as
Sufian Mashhadan. No other information about him.
The recipient has been identified as Ziyad al-Obeidi,
a suspected high-ranking member of al-Qaeda in
Iraq.

This message contains information about the information
in another message. Specifically, it identifies the previously
unknown communicator and addressee of a cell phone con-
tacting action. Previously it was known only that the indefinite
individual ind2 was male and in Adhamiya. ind2 should now
be identified in the graph as the individual named Sufian
Mashhadan. Similarly, ind1 should be identified as Ziyad al-
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Obeidi. This poses problems for linguistic inference and graph
matching.

wft7 of Figure 1 and wft19 of Figure 4 represent the same
cell phone call. However, in Figure 1, the communication
(wft10) takes place on 2007-01-13 (wft11!), but the time of
the cell phone call is unspecified. An inference step is required
to assert that in the case of an unspecified time of contacting,
the contact referred to in the message takes place on the date
of the message’s communication.

Background and contextual information can be used to
augment the propositional graph for further reasoning [4]. For
example, if it is known from a domain ontology or from
previous messages that Sufian and Ziyad are males, those
should be asserted. However, there is no such information
contained in the message.

Figure 5 shows the two messages merged into the same
graph. At this point, forward inferencing has yet to be done.
Once forward inferencing identifies the time of the cell phone
contact represented by wft7, the graph structures look similar
and graph matching can be performed. Although the informa-
tion required to identify ind1 with Ziyad and ind2 with Sufian
is incomplete, the similarities in graph structure between ind1
and Ziyad, ind2 and Sufian, and wft7 with wft19 should allow
identity assertions and node merges [3], [21].

This provides only a preliminary sketch of how a kind of
soft information fusion can be performed. Major challenges
in coordinating information from multiple soft information
sources include formalizing uncertainty, fusing uncertain infor-
mation, and performing inference using uncertain information
[6].

VI. CONCLUSIONS AND FUTURE WORK

Propositional graphs are a knowledge representation formal-
ism for natural language input that have strong advantages for
incorporation into an information fusion framework, including

the ability to represent n-ary relations as easily as binary
relations, to store pedigree and meta-information in the same
format as message data, to incorporate new information into
background knowledge sources and prior inputs, to draw
inferences, and to merging using graph matching techniques.
The propositionalizer component in Tractor takes as input
syntactically processed natural language text and produces
propositional graphs representing the meaning contained in the
input. FrameNet semantic frames and the SNePS knowledge
representation and reasoning system are used by Tractor to
produce the graphs.

The tools used by the propositionalizer are currently in
development. Current work has created ground truth proposi-
tional graphs for comparison using FrameNet frames and the
SNePS system. The graphs used in this paper have been hand-
built using the mappings detailed in section IV. Automating
this process to produce propositional graphs such as these
is the major implementation focus of future work on the
Propositionalizer. Future work also includes creating measures
of conformance to ground truth graphs and tools to measure
that conformance.
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